Что нам стоит знать о колебаниях и волнах? Часть II

Хотите в разы преумножить свой капитал? Тогда я хотел бы порекомендовать Вам банк «РОСТ», вклады в который считаются на данный момент самыми выгодными! Посудите сам: вложив 1 000 000 рублей, Вы каждый месяц будете получать дивиденды в размере 8 000 рублей!


waves 300x225 Что нам стоит знать о колебаниях и волнах? Часть II

Быстрое изменение давления может образоваться и в твердом, и в жидком, и в газообразном теле. Поэтому во всех этих телах возможны продольные волны. Привычные нам звуки тоже распространяются и в воздухе, и в воде, и в стенах наших зданий в виде продольных волн. В твердом теле скорость продольных волн зависит не только от модуля сдвига, но еще и от модуля объемного сжатия k:

 

042712 2145 5 Что нам стоит знать о колебаниях и волнах? Часть II

 

В этом случае на отклоняющуюся от положения равновесия частицу действуют возвращающие силы, связанные с изменением объема вещества и с изменением его формы. Частица возвращается в положение равновесия и передает свое движение соседним частицам скорее, чем в случае действия одних только сил, вызванных изменением формы, поэтому скорость продольных волн в твердом теле всегда больше скорости поперечных волн. Отношение этих скоростей для большинства твердых тел остается почти неизменным:

 

042712 2145 6 Что нам стоит знать о колебаниях и волнах? Часть II

 

Если вещество, в котором распространяется упругая волна, однородно, то волна движется по прямой. Но представим себе, что волна упала на границу, за которой свойства вещества изменились так, что скорость упругих волн там стала больше.

 

042712 2145 7 Что нам стоит знать о колебаниях и волнах? Часть II

Рис. 2. Схема образования преломленных и отраженных волн при падении ‘продольной волны на границу раздела двух сред. АВ — направление движения падающей на границу продольной волны; ВС, BD, BF, BG — направление движения четырех вторичных волн, образовавшихся на границе раздела

 

Из школьного курса физики хорошо известно, что в этом случае волна преломится и в среде с большей скоростью пойдет более полого. Вглядимся внимательнее в чертеж (рис. 2): продольная волна, идя по пути ЛБ, в точке В упала на границу раздела двух сред тп. Дальше она в силу законов преломления должна идти по пути ВС. Но в точке В частицы нижней среды испытали толчок не точно в направлении ВС, а наискось, в направлении BE. Значит, кроме продольной волны здесь, на границе двух сред, должна образоваться и вторая преломленная волна — поперечная BD. Угол, под которым она пойдет, зависит целиком от соотношения скоростей волн: исходной (продольной) — в верхней среде и образовавшейся (поперечной) — в нижней. Распределение амплитуд в обеих преломленных волнах будет зависеть от угла падения исходной волны, а также от соотношения скоростей и связанного с ним соотношения углов, по которым побегут волны.

 

Остается добавить, что кроме преломленных волн на каждой границе двух сред будут образовываться еще и волны, отраженные от этой границы, тоже продольная BF и поперечная BG. Можно представить себе, какое сложное переплетение различных волн получится, если исходная волна пройдет несколько границ! Но именно это свойство волн и позволило разобраться в строении недр земного шара.

 

Что же будет, если скорость волн в твердом теле не постоянна, а плавно меняется с глубиной? В этом случае пути упругих волн будут искривляться, и в конце концов ушедшая в глубину волна может выйти наружу.

 

Всего сказанного еще недостаточно, чтобы понять, как удалось с помощью упругих волн заглянуть в земные глубины. Нам придется поговорить еще о так называемых головных и поверхностных волнах.

 

Если упругие продольные волны исходят из одного источника, то по мере удаления от него они падают на границу раздела двух сред все более наклонно. Если в нижней среде скорость волн выше, то при определенном угле, называемом углом полного внутреннего отражения, преломленная волна пойдет вдоль границы двух сред. Это и будет головная волна. Распространяясь вдоль границы, она непрерывно излучает колебания в вышележащую среду. По этим колебаниям и узнают, что глубже, вдоль границы раздела бежит головная волна.

 

А вот если источник колебаний был расположен вблизи свободной поверхности твердого тела, тогда кроме уже известных нам волн вдоль поверхности тела побежит волна особого типа — поверхностная волна. Ее движение не захватит глубоко частицы тела — на глубине около одной длины волны колебания поверхностной волны практически уже неощутимы. В этом отношении упругая поверхностная волна очень похожа на привычные нам водяные волны с той только разницей, что возникновение водяных волн связано с действием силы тяжести, а не упругих сил, как в твердом теле.

 

Представим себе, что в твердом теле существует слой, скорость упругих волн в котором меньше, чем по обе стороны от него. Что будет с волной, попавшей в этот слой? Стремясь наверх, она искривит свой путь и вернется обратно; стремясь вниз, она испытает то же самое. Вечная пленница слоя пониженной скорости, волна не растратит теперь свою энергию на все пространство, а сосредоточит ее в узком слое, называемом волноводом.

 

Не растратит? Как же растрачивает волна свою энергию? Дело в том, что упругость реальных тел никогда не бывает идеальной. Какая-то часть энергии, потраченной на раскачивание все новых и новых частичек тела, утрачивается безвозвратно для упругих колебаний, так как превращается в тепло. Поэтому амплитуда колебаний в волне, распространяющейся в твердом теле, постепенно уменьшается. В колебаниях с коротким периодом движение частиц происходит более энергично, и энергия расходуется в них на тепло более быстро. Упрощенно можно сказать, что любая волна за один период колебаний (т. е. на пути в одну длину волны) теряет примерно одинаковую долю энергии. Поэтому короткопериодные колебания на одинаковом по длине пути затухают быстрее длиннопериодных. Это же явление хорошо знакомо нам и в оптике: более длиннопериодное излучение красного цвета лучше проникает через туман, чем более короткопериодное другого цвета. Недаром все сигнальные огни на высоких вышках — красного цвета.

 

042712 2145 8 Что нам стоит знать о колебаниях и волнах? Часть II

Вооруженные этими сведениями, мы можем приступить к путешествию в земные глубины. Нам придется использовать колебания самого разного происхождения: их источниками будут удары и взрывы, осуществленные человеком, внезапные грозные подземные толчки землетрясений, притяжение Луны и медленное дыхание земных глубин. Но для всех видов колебаний Земли геофизика нашла «работу», все они записываются сложными приборами геофизических станций и, будучи порождением жизни Земли, сами вносят свою лепту в раскрытие ее тайн.


Найти на unnatural: Что нам стоит знать колебаниях волнах Часть
Автор: admin | 28 Апрель 2012 | 324 просмотров

Новые статьи:

Оставить комментарий:

Все размещенные на сайте материалы без указания первоисточника являются авторскими. Любая перепечатка информации с данного сайта должна сопровождаться ссылкой, ведущей на www.unnatural.ru.
Rambler's Top100