Суперсимметрии: как мы их находим?

Суперсимметрии: как мы их находим?

 

Так из чего же состоит темная материя — из LSP или из чего-нибудь еще? Если темная материя состоит из каких-то разновидностей WIMP, обнаружить их будет относительно несложно — вот почему мы так уверены, что их откроют в ближайшие несколько десятилетий. Произведем краткий обзор состояния наших знаний на сегодняшний день. Мы с очень хорошей точностью знаем плотность массы темной материи во Вселенной, так что или у нас очень много легких WIMP, или относительно мало очень массивных. Мы точно знаем, что WIMP не могут быть слишком легкими, меньше массы протона, поскольку уже построили множество ускорителей, способных создавать легкие частицы, но пока что никаких WIMP не видели.

С другой стороны, WIMP могут быть очень тяжелыми и при этом не противоречить космологическим наблюдениям. Как мы уже объяснили, было жизненно необходимо, чтобы WIMP на ранних стадиях развития Вселенной умели превращаться в обычную материю, которую мы наблюдаем теперь, и наоборот, что задает нижний предел того, насколько темная материя способна взаимодействовать с обычной. Этот нижний предел взаимодействия задает и верхний предел массы частицы темной материи — она составляет 40 тысяч масс протона, хотя это очень завышенная оценка, поскольку большинство теорий предсказывают, что масса WIMP составляет меньше тысячи масс протона.

Нам нужно вычислить массу частицы темной материи и разобраться, в каких взаимодействиях эта частица участвует, а потом посмотреть, соответствуют ли эти данные суперсимметрии, теории струн или еще чему-нибудь. Однако получить частицы темной материи экспериментально очень трудно, поскольку они буквально утекают сквозь пальцы. Тем не менее мы располагаем несколькими способами узнать их характеристики.

 

1. Сделайте их сами.

 

В главе 4 мы уделили много времени разговору о том, как создавать в ускорителях массивные частицы вроде частицы Хиггса. А вдруг там можно создать и частицы темной материи? Конечно, частицы темной материи, как и нейтральную частицу Хиггса, руками не потрогаешь и на стол не положишь, но мысль эта здравая. Столкните друг с другом две частицы с достаточной энергией — и рано или поздно вы получите WIMP. Однако измерение их массы будет основано на том, чего мы не видим. Массой WIMP будет энергия, недостающая в балансе энергии столкновения (и масс сталкивающихся частиц) и энергий (и масс) вылетевших частиц.

 

2. Их полно кругом!

Мы уже говорили и снова повторим1, что буквально купаемся в темной материи, но не в состоянии засечь ее прямо, не считая гравитации (которая у отдельных частиц пренебрежимо мала) или слабого взаимодействия (которое вообще пренебрежимо мало, и точка). Тем не менее кое-что нам под силу — например, сделать ванны из жидкости, которая, будучи предоставлена сама себе, ни с чем не взаимодействует.

 


1А вы нам не верите!


 

Едва ли не самое масштабное мероприятие такого рода — это проект XENON100, в котором участвует около 120 килограммов жидкого ксенона. Ксенон выбран потому, что в нормальных условиях он не взаимодействует с другими материалами и не распадается. По мысли исследователей, если поместить детекторы глубоко под землю и внимательно следить, чтобы туда не попадали космические лучи, то при нормальных обстоятельствах необъяснимых сигналов быть не должно.

Установив ванны и детекторы, ученые просто сидят и ждут, когда мимо проскочат частицы темной материи. Может статься, такая частица ударит в протон, а протон выдаст излучение, которое удастся засечь. Пока что ни одной частицы мы не видели, но возлагаем большие надежды на детекторы Нового поколения — которые куда чувствительнее.

3. Пусть Вселенная потрудится за вас. Главное в WIMP — то, что их полным-полно1,

пространство ими так и кишит. Как бы слабо они ни взаимодействовали, они все же вступают во взаимодействия. Что будет, если столкнуть WIMP и анти-WIMP? Как правило, ничего. Скорее всего они просто пройдут друг сквозь друга. А может быть, сделают то же самое, что делали все частицы и античастицы с начала времен,— уничтожат друг друга, и создадут гамма-излучение. Если направить телескопы в нужную сторону, мы, вероятно, увидим свет, возникший в результате этих столкновений.

 


1Видите? Так что не бойтесь поднять руку, пусть вас тоже сосчитают.


Предположительно смотреть стоит именно в ту сторону, где больше массы. Беда в том, что при таком подходе массу следует искать именно в центре галактики, а там происходит много других событий — например, в центральную черную дыру падает вещество,— отчего тоже возникает высокоэнергичное гамма-излучение. Отличить сигнал от помех будет очень трудно, поэтому пока что достоверных наблюдений сделано не было.

В 2008 году НАСАНациональное управление США по аэронавтике и исследованию космического пространства (англ. National Aeronautics and Space Administration) — агентство, принадлежащее федеральному правительству США, подчиняющееся непосредственно вице-президенту США и финансируемое на 100 % из государственного бюджета, ответственное за гражданскую космическую программу страны. Все изображения и видеоматериалы, получаемые НАСА и подразделениями, в том числе с помощью многочисленных телескопов и интерферометров, публикуются как общественное достояние и могут свободно копироваться. в сотрудничестве с министерствами энергетики США, Франции, Германии, Италии, Японии и Швеции запустило на орбиту гамма-обсерваторию им. Ферми. Этот космический телескоп позволит нам исследовать центр галактики, а также звездные скопления, потенциальные черные дыры и другие излюбленные места обитания темной материи.

Хотите верьте, хотите нет, а у темной материи остается все меньше тайных убежищ.


Долго ли живут протоны? >>


Найти на unnatural: Суперсимметрии как мы их находим
Автор: admin | 21 Октябрь 2011 | 129 просмотров

Новые статьи:

Оставить комментарий:

Все размещенные на сайте материалы без указания первоисточника являются авторскими. Любая перепечатка информации с данного сайта должна сопровождаться ссылкой, ведущей на www.unnatural.ru.