Юпитер. Часть II

В наше неспокойное время каждый желающий обезопасить себя и близких просто обязан купить шокер, признанный самым действенным средством для предупреждения уличных нападений. Приобрести качественное и надежное электрошоковое оружие Вы сможете только на сайте shoker.in.ua.


052412 0943 Planetsend13 Юпитер. Часть II

Рис. 2. Овальное красное пятно на Юпитере

 

Кроме того, преимущественно в экваториальной области планеты образуются компактные светлые облака, видимые, однако, менее отчетливо вследствие их меньшей контрастности. Очень интересным образованием является так называемое красное пятно, имеющее овальную форму и достигающее в длину 25 000 км. Оно расположено в области широкой южной экваториальной полосы (рис. 2). Это удивительное образование было открыто французским астрономом Дж. Д. Кассини (1625—1712) в 1664 г. и с тех пор несколько раз исчезало и появлялось снова, каждый раз оставаясь подобным прежнему по своей форме и расположению.

В семидесятых годах прошлого столетия красное пятно Юпитера появилось необычайно контрастным и имело ярко-красный цвет, но с 1882 г. его контрастность начала постепенно ослабевать. Тем не менее, можно констатировать, что красное пятно оказывает какое-то воздействие на окружающие его облака и полосы. В южной экваториальной полосе всегда остается выемка, в которой лежит это пятно и которая движется вместе с ним с несколько меньшей скоростью, чем это свойственно другим образованиям на Юпитере, расположенным на той же широте.

 

Действительно, период вращения красного пятна самый медленный из наблюдаемых на Юпитере и составляет 9 час. 55 мин. 40,6 сек. Облака, образующиеся на той же широте, казалось бы, должны обязательно прийти с ним в соприкосновение. Этого, однако, никогда не бывает. Приближаясь к красному пятну, светлые облака обычно разделяются на два потока, огибающих пятно с обеих сторон в пространстве между пятном и соответствующими темными полосами. Пройдя мимо него, облака снова соединяются в один поток. Это происходит так, как будто бы красное пятно есть центр отталкивательных сил, и тем более значительных, чем интенсивнее окраска пятна.

 

Можно было бы описать различные случаи значительных возмущений на Юпитере, появление необычайных образований с быстрыми перемещениями, внезапными распадами обширных облаков на отдельные пятнышки и т. п.

 

Подобные явления, которые можно наблюдать даже в небольшие телескопы, заставляли предполагать, что Юпитер еще не вполне охладился и отличается огромной внутренней энергией. В таком случае можно было бы полагать, что на этой, планете должно быть много паров воды. Однако в ее спектре имеется много полос поглощения, которые долго не могли быть отожествлены, но среди них не оказалось ни одной принадлежащей водяному пару. Температура облачной поверхности Юпитера, вычисленная по наблюдениям с термоэлементами, оказалась близкой к —140° С, что свидетельствует об отсутствии у Юпитера заметного теплового лучеиспускания.

 

Только в 1932 г. американские астрофизики Адаме и Денгем на основании лабораторных опытов установили, что полосы поглощения Юпитера принадлежат соединениям водорода с углеродом и азотом (метан и аммиак) при низкой температуре. По мере понижения температуры соединения водорода с азотом постепенно выпадают в жидком состоянии и пополняют наблюдаемый облачный слой. Соответствующие полосы поглощения при этом постепенно ослабевают. По интенсивности линий поглощения аммиака в атмосфере Юпитера Денгем заключил, что количество аммиака, оставшегося еще в газообразном состоянии, сравнительно невелико.

 

На Сатурне, вследствие еще более низкой температуры, количество газообразного аммиака еще меньше. На Уране и Нептуне этот газ уже целиком перешел в жидкое конденсированное состояние и никак не проявляет себя линиями поглощения. Напротив, полосы метана в спектрах более далеких планет имеют большую интенсивность, нежели в спектрах Юпитера и Сатурна, чему способствует выпадение аммиака в более глубокие слои атмосфер планеты.

Можно предполагать исходя из сравнительно очень малой средней плотности Юпитера и в особенности Сатурна, что эти планеты в значительной мере состоят из водорода и, быть может, частично из гелия. Например, наиболее удовлетворительное представление о распределении плотности вещества внутри Юпитера, определяемом по вращению и видимому сжатию планеты, получается, если предположить, что Юпитер на 85% состоит из водорода, на 10% — из гелия и только на 5% из других, более тяжелых газов, показывая, таким образом, наибольшее сходство с Солнцем. Однако до последнего времени молекулярный водород в атмосфере Юпитера не наблюдался и потому, что его полосы поглощения находятся в далекой, трудно наблюдаемой ультрафиолетовой области спектра. Однако, если содержание водорода очень велико, то его можно обнаружить по линиям положения в инфракрасной области спектра. И действительно, тщательные наблюдения Кисса и его сотрудников на высокогорной обсерватории Мауна Лао на Гавайских островах позволили обнаружить в инфракрасной части спектра Юпитера четыре водородные линии, с длиной волны 0,85, 0,83, 0,84 и 0,80 микрона, что очень хорошо согласуется с лабораторными данными, относящимися к водороду.

Автор: admin | 24 Май 2012 | 68 просмотров

Новые статьи:

Оставить комментарий:

You must be logged in to post a comment.

Все размещенные на сайте материалы без указания первоисточника являются авторскими. Любая перепечатка информации с данного сайта должна сопровождаться ссылкой, ведущей на www.unnatural.ru.