ЭВОЛЮЦИЯ ГЕОЛОГИЧЕСКИХ ПРОЦЕССОВ ВО ВРЕМЕНИ. Часть II

Бороздите бескрайние просторы интернета в поисках ответа на свой вопрос: “как сделать куклу своими руками?”, тогда я настоятельно рекомендую Вам незамедлительно посетить сайт azzbuka.ru, где подробно описана методика по изготовлению куклы, которая станет идеальным подарком, как для взрослого человека, так и для ребенка.


Несколько лет назад со мной связался Дмитрий Селивановский — физик из славного города Нижнего Новгорода и поведал мне, что при облучении воды шумами в ней резко увеличивается концентрация перекиси водорода — Н2О2. Сие означает, что шумовая встряска (всего-то порядка 60 децибел в экспериментах) вызывает диссоциацию части молекул воды, водород быстро уходит (благодаря своей способности к диффузии), а кислород остается в воде, и какая-то его часть идет на образование перекиси водорода. Концентрация перекиси легко определяется, только измерять нужно быстро, поскольку это соединение нестойкое и быстро распадается с выделением того же кислорода. Мировой океан постоянно наполнен шумами от штормов, грозовых разрядов, сейсмичности планеты, и когда Селивановский с коллегами оценили возможный приток кислорода в атмосферу от этого явления, то оказалось, что он примерно в 100 раз эффективнее фотосинтеза.

 

Водород утекает в космическое пространство*, а кислород пополняет атмосферу и активизирует реакции окисления на поверхности планеты, вплоть до появления красноцветов. Причина периодичности этого явления, видимо, связана с циклическим характером водородной дегазации планеты, которая (помимо «водородной продувки») активизирует эндогенную активность планеты, и в том числе ее вулканическую деятельность, влияющую на климат Земли.

 

———————————————————————————————————

* У водорода имеется два стабильных изотопа: протий — 1H (99,9844%) и дейтерий — 2D (0,0156%). Поскольку протий в два раза легче, то его диссипация в космическое пространство происходит в несколько раз быстрее. По этой причине гидросфера обогащена дейтерием на 75%с относительно глубинного флюида. Эта величина определяется по формуле: (Кокеанафлюида -1) • 1000 = 75%, где R = 2D/ 1H. Данный факт (обогащение гидросферы дейтерием) со всей очевидностью указывает на диссипацию водорода от Земли в космическое пространство.

———————————————————————————————————

 

Выше мы говорили про образование «шляп силикатного расплава» в верхних частях интерметаллических диапиров, нагнетаемых в осевые части океанических структур. Как вы помните, это происходит при контакте силицидов диапиров с водой гидросферы и со -провождается высвобождением водорода, изотопия которого должна соответствовать смеси глубинного водорода (присутствующего в диапирах) и водорода гидросферы, обогащенного дейтерием. Вместе с тем, по нашим представлениям, масса водорода, дегазированного за всю историю планеты, в сотни раз больше его суммарного количества в коре и гидросфере. В данной связи должны существовать струи чисто ювенильного водорода (идущего от ядра планеты и обедненного дейтерием), выносящие водород в атмосферу, из которой он утекает в космическое пространство. Масштабы этого явления должны быть грандиозными, однако следует помнить о его периодичности, прежде чем выказывать претензии в связи с тем, что оно якобы не наблюдается в настоящее время в должном объеме.

 

Кроме того, водород — это газ без вкуса, цвета и запаха, и поэтому его выходы трудно обнаружить. К тому же из-за своего малого веса он не задерживается на дневной поверхности, а очень быстро уходит в верхние слои атмосферы и далее, т.е. водород — это трудноуловимая субстанция. И тут еще срабатывает психологический фактор: мы не привыкли искать то, чего не может быть, по нашему разумению. В рамках традиционных представлений (ядро — железное, мантия — силикатная) глубинного водорода не должно быть. А если так, то кто будет искать эти водородные струи? Иногда помогал «его величество» случай. Как-то геологам удалось прибыть в эпицентр землетрясения (на Кавказе) сразу после сейсмического толчка, когда еще не осела пыль. У одного из них была бутылка с водой, он вытащил пробку, вылил воду, бутылка заполнилась пыльным воздухом, и ее закупорили. Анализ показал, что содержимое этой бутылки отличается от обычного воздуха аномально большим содержанием водорода.

Впрочем, неуловимости водорода, похоже, приходит конец. Сейчас появились компактные приборы для определения концентрации водорода в атмосфере: загоняете щуп в землю, прокачиваете почвенный воздух в анализатор прибора, и через несколько минут считываете готовый результат. Я не видел публикаций по результатам использования данного прибора. Но весьма показательно, как изменилось отношение к моей концепции у специалистов, которые тестировали этот прибор на природных объектах, от нейтрального или негативного до явно заинтересованного и позитивного. Видимо, они намерили что-то очень интересное и очень неожиданное (в смысле — «неожидаемое») для традиционной точки зрения.

 

Вместе с тем бывали случаи, когда водород сам себя обнаруживал, и весьма эффектно. В конце 50-х годов XX века в Якутии бурили кимберлитовую трубку «Удачная». С глубины 375 метров ударил фонтан газа, и это оказался водород с небольшой примесью метана. Буровики не были готовы к такому повороту событий, фонтан вспыхнул, и буровая сгорела полностью. Факел горел две недели, затем его потушили взрывом и скважину затампонировали. Судя по пламени, за сутки водорода извергалось не менее 50 тысяч кубометров (более 600 литров в секунду), и за все время горения дебит оставался неизменным. Поразительно, но этот факт никак не обсуждался в научной литературе, а так и остался невостребованным в производственном отчете. В этом же отчете отмечалось, что при проходке шурфов водород часто выходил из трещин «со свистом и плевался щебенкой». Интересно бы знать, сколько подобных невостребованных фактов имеется в производственных отчетах по другим регионам, особенно на площадях альпийского орогенеза и на сопредельных территориях.

Дорогие геологи, коллеги, настало время вытащить все эти факты на свет божий. Нам необходимо знать планетарные масштабы этого явления, чтобы определить, в какой фазе цикла дегазации (и тектоно-магматической активности) находится наша планета на современном этапе своего развития. От этого зависит полнота нашего понимания ее сегодняшней геодинамики, характера сейсмичности и вулканизма, возможных вариаций климата, магнитного поля и др. И все это, как вы понимаете, жизненно важно. Мы ведь знаем, что в прошлом биосфера неоднократно попадала в глобальные катастрофы, и далеко не все эти события можно связать с падениями астероидов, что-то происходило и в связи с внутриземными процессами.

 

Однако мы отвлеклись и давно пора вернуться к теме изложения. Итак, в рамках нашей модели объем гидросферы на Земле регламентируется не количеством водорода, а той долей кислорода, которая остается после окисления петрогенных элементов при формировании (точнее, при доращивании) литосферы. Несколько ниже, в этом же разделе, мы вернемся к данной проблеме, поскольку нам следует объяснить, каким образом акселерация расширения планеты одновременно обусловила резкое увеличение объема гидросферы, т.е. объяснить, почему гидросфера именно с конца палеозоя и в мезокайнозое стала прибывать в объеме и океанические структуры, в процессе своего заложения, разрастания и углубления, оказались заполненными водой.

 

Сокращение экзотермических реакций окисления к концу архея обусловило падение температуры в пределах силикатно-окисной оболочки и консолидацию литосферы. В результате в ней стали появляться поля направленных деформаций и создались условия для заложения линейноориентированных структур — нижнепротерозойских зеленокаменных поясов. Начавшийся в нижнем протерозое процесс расширения планеты определил всю дальнейшую эволюцию ее геодинамического режима. Помните, где-то выше мы обсуждали опыты на «клизматроне», показавшие, что с расширением планеты (и увеличением мощности металлосферы) количество структур растяжения на ее поверхности должно уменьшаться, а их протяженность должна увеличиваться. Вместе с этим параллельно во времени, происходила дифференциация потока водорода от повсеместного в архее до разделенного, в последующие эпохи на отдельные струи, которые к концу палеозоя стали собираться в крупные «реки». В данной связи становятся понятными: повсеместность тектономагматической активности в архее, стягивание ее во множественные зеленокаменные пояса нижнего протерозоя, а также трансформация последних в верхнем протерозое и фанерозое во все более протяженные складчатые пояса и закономерное сокращение их количества в каждом последующем цикле.

 

Сбор водорода в крупные изолированные струи и, наконец, в «реки» обусловливает все большую степень насыщения тектоно-генов водородом и, следовательно, все большую глубину зоны заглатывания. Соответственно, должны возрастать и масштабы последующего разуплотнения, определяющего рельеф орогенов. Это является причиной увеличения контрастности тектонических движений во времени, которое проявляется в возрастании интенсивности тектонического скучивания и горообразования от ранних геотектонических циклов к поздним. Как вы помните, моласса появляется в результате эрозии рельефа и отложения обломочного материала в краевых прогибах, межгорных впадинах и прочих депрессиях складчатых поясов. И поскольку тектоническое скучивание и орогенез сопровождаются возведением рельефа, то об интенсивности этих процессов можно судить по относительной распространенности молассы среди других осадочных формаций тектонического цикла. В данной связи можно отметить, что моласса начинает фиксироваться в разрезах складчатых поясов с рубежа примерно 1,65 миллиарда лет назад (т.е. с конца среднего протерозоя), и с каждым новым тектоническим циклом ее относительная распространенность закономерно возрастала.

 

Вернемся к проблеме резкого увеличения объема гидросферы в течение мезокайнозоя, синхронного с акселерацией расширения планеты. Многим это представляется либо весьма загадочным, либо нереальным, не правда ли? Однако ничего нереального здесь нет, поскольку, в рамках нашей концепции, именно акселерация расширения планеты обусловила прирост гидросферы. Для пояснения этого тезиса мы предлагаем проследить за целой цепью взаимообусловленных явлений. Прежде всего, вспомним, что кислород из внутренних сфер планеты выносится водородными струями. В результате над тектоногенами интерметаллические силициды превращаются в силикаты, т.е. на подошве литосферы формируются выступы из вновь образованных силикатов. Расширение планеты сопровождалось увеличением мощности металлосферы. С увеличением мощности металлосферы число тектоногенов сокращалось, и они становились гораздо более узкими в поперечном сечении. Отсюда следует, что объемы, в которых происходило окисление петрогенных элементов, со временем также сокращались. И по всей вероятности, резкий скачок в этом сокращении произошел в мезокайнозое, когда мощность металлосферы приросла настолько, что водородный поток стал собираться в обособленные «водородные реки» с узкой устьевой зоной. Резкое сокращение объемов, в которых только и могло происходить образование силикатов (в связи с тектоногенами), приводило к тому, что кислород начинал поступать в эти объемы в избытке, т.е. сверх того количества, которое требовалось для полного окисления петрогенных элементов. Из этого избытка кислорода производилась вода, благо, что водорода в данной зоне (в устье «водородной реки») более чем достаточно.

 

Резкое увеличение объема гидросферы в мезокайнозое находит подтверждение по данным изотопии кислорода. Многочисленными исследованиями установлено, что отношение 18O/16O в воде мирового океана сохранялось постоянным на протяжении всего мезозоя и кайнозоя. Величине δ18O в современной морской воде приписывается нулевое значение, т.е. она используется в качестве стандарта. При образовании осадков в морской воде карбонаты, глины и кремни обогащаются тяжелым изотопом кислорода с величиной δ 18O = +30‰ (в среднем). За мезокайнозой в океанах на -копилось примерно 200 метров осадков. В молодых складчатых поясах накопились километры морских отложений и сотни метров на платформах. И все эти осадки также обогащены тяжелым изотопом кислорода. Но если при этом отношение 18O/16O в воде мирового океана сохранялось постоянным, то спрашивается, ка -ким образом восполнялась потеря 18O. Ответ может быть только один — в мезокайнозое был приток ювенильной воды с повышенным содержанием 18O. Глубинные ювенильные воды (их еще называют магматическими) имеют усредненное значение δ 18O= +6‰. Расчеты показывают: для удержания изотопии океана в мезокайнозое на нулевом уровне, его объем должен был удвоиться за счет притока ювенильной воды из недр планеты.

 

Дорогой читатель, я чувствую, что вам это кажется, мягко говоря, фантастическим. Мне также трудно было смириться с таким выводом. Трудно было представить, что такая огромная субстанция, как океан, может легко менять свои параметры. Но потом я попытался осознать масштабы мирового океана в соответствии с размерами планеты, и мое неверие тут же исчезло. Если представить Землю в виде шара-глобуса диаметром в 2,5 метра (в квартире это будет под потолок), то 5-километровая глубина океана на этом глобусе сократится до одного миллиметра. По сути, океан в масштабах планеты — это тонкая пленка.

 

Теперь пару слов относительно того, есть ли достаточно эффективные процессы вывода ювенильной воды на поверхность планеты в необходимых количествах. Разумеется, есть, и прежде всего это магматизм, вулканизм и сопутствующие им постмагматические и поствулканические явления. Много лет назад, мои друзья геологи-вулканологи пригласили меня на Камчатку и поселили одного в прекрасном доме на склоне знаменитого вулкана «Мутновский». И надо было такому случиться, что расположенный рядом вулкан «Горелый», как по заказу, стал проявлять свою вулканическую активность. «Горелый» — это небольшой щитовой вулкан, и поэтому не было никаких проблем с восхождением на его вершину. Первые три недели его активность выражалась в газовой продувке, и я постарался ничего не пропустить из того, что происходило. А происходило следующее. На вершине (в верхней части щитового свода) была воронка диаметром в 400 метров и глубиной около 120 метров, с плоским дном и почти вертикальными стенками. Она образовалась во время предыдущих лавовых извержений. Небольшая периферическая камера опорожнилась от магмы через боковой отвод, в образовавшуюся пустоту произошло обрушение кровли, и на поверхности появилась эта самая воронка. Ко времени моего прибытия на ее дне открылась дырка диаметром в 50 метров, имеющая на выходе небольшой раструб до 70 метров. Из этой дырки вырывалась струя раскаленных газов. Совершенно отчетливо было видно, что струя при попадании в раструб не заполняла его, а отрывалась от стенок и сохраняла свой диаметр в 50 метров. Такое происходит с газовыми струями только на сверхзвуковых скоростях (более 330 м/сек). Разумеется, все это сопровождалось весьма впечатляющими звуковыми эффектами. При выходе наружу струя превращалась в столб белого пара, который поднимался на высоту нескольких километров. Струя в основном состояла из водяного газа, и подсчеты показали, что в одну секунду из этой дырки в атмосферу выбрасывалось почти 100 тонн воды. Так вот, всего пять дырок такого типа за 50 миллионов лет способны доставить на поверхность планеты половину объема современной гидросферы. Но ведь это только небольшая дырка диаметром около 50 метров, тогда как вулканические кратеры измеряются сотнями метров и даже километрами. Существует ареальный тип извержений с множественными эксплозивными центрами и т.д. и т.п. Короче говоря, не может быть никаких проблем с доставкой воды на поверхность планеты в необходимых (в рамках нашей модели) количествах.

 

В свете сказанного выше можно утверждать, что объем гидросферы на Земле будет прирастать и в будущем до тех пор, пока существует водородсодержащее ядро планеты. Причины этого были уже названы. И если, дорогой читатель, перечисленное выше не выстраивается у вас в логическую цепь, приводящую к выводу о неизбежности грандиозных трансгрессий в будущем в связи с поднятием уровня океана, то подождите сразу возводить хулу на автора, может быть, стоит еще раз пробежать глазами по некоторым уже прочитанным местам. Мне кажется, сказанного выше достаточно, чтобы модель «ожила», заработала и показала неизбежность именно такого ближайшего геологического будущего.


Найти на unnatural: ЭВОЛЮЦИЯ ГЕОЛОГИЧЕСКИХ ПРОЦЕССОВ ВО ВРЕМЕНИ Часть
Автор: admin | 2 Февраль 2012 | 426 просмотров

Новые статьи:

Оставить комментарий:

Все размещенные на сайте материалы без указания первоисточника являются авторскими. Любая перепечатка информации с данного сайта должна сопровождаться ссылкой, ведущей на www.unnatural.ru.
Rambler's Top100