Космологическая эволюция и космическая распространенность химических элементов

Космологическая эволюция и космическая распространенность химических элементов

 

Вопрос о том, какие молекулы могут образовываться, определяется не только физическими условиями и химическими свойствами веществ, но и тем, какое их количество содержится в космическом веществе. Содержание химических элементов в космосе определяется эволюцией окружающего нас мира — Вселенной, и несет в себе информацию об этой эволюции.

Вселенная образовалась около 15 млрд. лет назад в результате Большого взрыва. Ядра атомов водорода и гелия возникли в первые минуты расширения Вселенной. Сотни тысяч лет спустя вещество остыло до температуры, когда атомы Н и Не стали нейтральными. Углеродом и следующими за ним в периодической системе химическими элементами (часто называемыми в отличие от Н и Не тяжелыми элементами или металлами) космическое вещество начало обогащаться на миллиард лет позже, когда во Вселенной сформировались первые звезды. Они были массивными, короткоживущими (<10 млн. лет) и до наших дней не сохранились. В конце своей эволюции они выбросили в окружающий газ продукты происходившего внутри них термоядерного горения — углерод и более тяжелые элементы.

Около 12-13 млрд. лет назад, когда содержание тяжелых элементов достигло уровня ~10-4-10-5 от современного, образовались самые старые из наблюдаемых сейчас звезд и содержащие их галактики (включая нашу Галактику). По мере завершения своей эволюции эти звезды продолжали обогащать межзвездный газ внутри галактик тяжелыми элементами. Чем меньше масса звезды, тем медленнее она эволюционирует и тем дольше живет.

Последующие поколения звезд формировались из межзвездного вещества с все большим содержанием тяжелых элементов по отношению к водороду и гелию. Солнце родилось около 5 млрд. лет назад из межзвездного вещества, 2 % массы которого составляли химические элементы тяжелее гелия. Сейчас межзвездное вещество, сосредоточенное в основном в диске нашей Галактики (наблюдаемом как Млечный путь), содержит около 4 % тяжелых элементов, т. е. вдвое больше, чем при образовании Солнца.

В межзвездной среде Галактики наблюдаются сравнительно небольшие вариации содержания углерода и более тяжелых элементов, по-видимому, не превышающие примерно 3-4 раз. Основная доля объема Галактики и других галактик, как и большинство астрономических объектов в галактиках (кроме старых звезд), а также вне галактик, имеют более или менее универсальное содержание элементов, характерное для атмосферы Солнца. Относительное содержание наиболее распространенных элементов (по числу атомов, а не в долях массы) представлено в табл. 1. Содержание элементов тяжелее железа мало, < 10-5 по числу атомов.

Из старых звезд к настоящему времени не успели завершить эволюцию лишь звезды с массами менее ~0.8 массы Солнца. Элементный состав их атмосфер не изменился, т. е. содержание углерода, кислорода и других элементов в атмосферах старых звезд очень мало.

Исследование экзосолнечных планет указывает, что для образования планет необходимо достаточно высокое содержание тяжелых элементов. У звезд, содержащих примерно втрое меньше тяжелых элементов, чем на Солнце, пока планеты не обнаружены. Заметим, что в атмосферах небольшой части звезд, более горячих, чем Солнце, имеются сильные отклонения содержания отдельных элементов от средней космической распространенности, прежде всего, избытки редких элементов — бария, ртути, лантанидов. Хотя эти избытки могут достигать 5 и даже иногда 6 порядков величины, они, по-видимому, не представляют интереса для темы данного обзора. После исчерпания ядерного топлива звезды сбрасывают значительную часть своей массы либо плавно, создавая околозвездные оболочки и так называемые планетарные туманности (название историческое, к планетам отношения не имеет), либо при взрыве звезды, наблюдаемой как явление сверхновой звезды. Центральная часть заканчивающей свою эволюцию звезды превращается в очень плотный объект: белый карлик, нейтронную звезду или черную дыру. Сброшенное вещество содержит продукты ядерной переработки, т. е. обогащено тяжелыми элементами, и пополняет ими межзвездную среду в галактиках. Обогащение элементами группы железа и более тяжелыми происходит практически только при взрывах сверхновых.

Звезды около 90 % времени своей эволюции проводят на стадии главной последовательности, когда в их недрах идут ядерные реакции горения водорода и образования гелия. После исчерпания в ядре звезды водородного топлива ядро сжимается, а внешние части звезды расширяются. Диаметр звезды возрастает во много раз, а температура поверхности падает — звезда становится красным гигантом или сверхгигантом с температурой поверхности Т < 4000 К. Этот этап занимает около 10 % всего времени активной жизни звезды — пока в ее недрах происходят экзотермические ядерные реакции (ядерная эволюция). В ядрах красных гигантов и сверхгигантов гелий превращается в углерод и более тяжелые элементы (иногда вплоть до железа). Преимущественно образуются четно-четные изотопы (см. примечание к табл. 1).

Тем временем внешние части звезды медленно (со скоростью ~10-50 км/с) разлетаются, создавая охлаждающуюся при расширении околозвездную оболочку — идеальное место для интенсивного образования как сложных молекул (в том числе, вероятно, фуллеренов С60 и др.), а также формирования наночастиц — тугоплавких зерен размером примерно до 100 нм.

 

Таблица 1. «Нормальное» содержание элементов в космическом веществе по числу атомов относительно водорода, соответствующее составу атмосферы Солнца

Атомный 

Элемент 

Распростра- 

Атомный 

Элемент 

Распростра- 

номер 

 

ненность 

номер 

 

ненность 

1 

Н 

1 

12 

Mg 

2.6 х 10-5

2 

Не 

0.1 

14 

Si 

3.3 х 10-5

6 

С 

3.3 х 10-4

16 

S 

1.6 х 10-5

7 

N 

0.9 х 10-4

18 

Аr

0.6 х 10-5

8 

О 

6.6 х 10-4

20 

Ca 

0.2 х 10-5

10 

Ne 

0.8 х 10-4

26 

Fe 

4.0 х 10-5

В природе преобладают четно-четные изотопы четных элементов: 12С, 16O,20Ne, 24Mg, 28Si, 32S, …, 56Fe …

 

Расширение околозвездных оболочек приводит к выносу молекул и пылинок в окружающую межзвездную среду.

При догорании гелия ядро одиночной звезды (не являющейся компонентом тесной двойной звездной системы) с массой меньше ~10 масс Солнца сжимается, превращаясь в горячий белый карлик. Часть образованных в ядре тяжелых элементов выносится расширяющейся оболочкой в межзвездную среду.

Эволюция более массивных звезд и некоторых маломассивных двойных звездных систем завершается мощным взрывом и образованием нейтронных звезд и черных дыр. Взрыв, наблюдаемый как явление сверхновой звезды, сопровождается образованием всех элементов тяжелее железа вплоть до трансурановых и выносом их ударной волной наружу в межзвездное пространство.

Из обогащенного тяжелыми элементами межзвездного газа рождается новое поколение звезд. Такой круговорот вещества в галактиках приводит к постепенному обогащению Вселенной элементами тяжелее гелия.

Поскольку звезды образуются не поодиночке, а группами (скоплениями, ассоциациями, комплексами) в так называемых очагах звездообразования, наиболее массивные из родившихся совместно звезд успевают взорваться как сверхновые и «запачкать продуктами своей жизнедеятельности» протопланетные диски близлежащих звезд солнечной массы и менее массивных. Вероятно, такому воздействию подверглась на ранних этапах своего развития Солнечная система.

Обсуждавшаяся на совещании интенсивная астероидная бомбардировка «молодой» Земли могла произойти в результате прохождения одной из звезд вблизи Солнечной системы. Вероятно, это была одна из звезд, родившихся одновременно с Солнцем в том же очаге звездообразования.



На носу Новый Год, а Вы до сих пор не выбрали подарок для своей Возлюбленной? Тогда советую вам как можно быстрее купить фотоэпилятор sensepil, благодаря которому ножки вашей избранницы будут гладкими как шелк. Приобрести этот или любой другой фотоэпилятор Вы сможете на сайте домашний-фотоэпилятор.рф.


Найти на unnatural: Космологическая эволюция космическая распространенность химических элементов
Автор: admin | 3 Декабрь 2011 | 1 855 просмотров

Новые статьи:

Оставить комментарий:

Все размещенные на сайте материалы без указания первоисточника являются авторскими. Любая перепечатка информации с данного сайта должна сопровождаться ссылкой, ведущей на www.unnatural.ru.
Rambler's Top100