Мониторинг мелкого космического мусора. Часть III

В жизни каждого мужчины наступает такой момент, когда он начинает задаваться вопросом: “Где купить виагру ?”. Отвечу: “На сайте www.indiapharm.ru”, где этот медицинский препарат можно приобрести с доставкой на дом, не отходя от своего компьютера!



Советская космическая станция «Салют-7». Ее основной миссией стало проведение различных (технических, физических, химических и т.п.) опытов в условиях невесомости

 

Активные технологии измерений in-situ используют специальные бортовые датчики ударов частиц КМ (конденсаторные, полупроводниковые, химические). Такие датчики регулярно применялись в течение многих лет. Они устанавливались на борту КС «Салют», «Мир» [Kuzin, 1993], на ИСЗ серий «Эксплорер-16, -23, -46», «Пегас» [Mulholland, 1993]. Например, на ОС «Мир» во время миссии шаттла STS-76 были размещены детекторы и коллекторы КМ. После 18-месячной экспозиции в космосе они были возвращены для анализа на Землю миссией STS-86 [Horz, 1999].

 

Простейшие и дешевые детекторы ударов (конденсаторные, акустические, пьезоэлектрические, датчики давления) просто регистрируют факт удара [PINDROP…, 2004]. Более сложные и высокотехнологичные детекторы (плазменные, химические, композитные, спектроаналитические, фотометрические) позволяют восстановить широкий диапазон характеристик ударившейся о поверхность КА частицы КМ. С помощью новейших активных детекторов можно измерять характеристики процесса удара во времени и динамике.

 


Рис. 2. Форма и размеры космического аппарата LDEF были таковы, что научное сообщества за глаза называло его школьным автобусом. LDEF стал экспериментальным стендом, на котором в течении 5,7 лет изучалось как воздействует открытая космическая среда на различные материалы

 

КА LDEF (Long Duration Exposure Facilit) (рис. 2) был оснащен простейшими активными детекторами — полупроводниковыми конденсаторами, которые разряжаются во время удара. Цель эксперимента — изучение концентрации скоплений КМ на низких высотах [Mulholland et al., 1991; Potter, 1993]. Вообще, для увеличения объема и разнообразия собираемых данных о КМ, целесообразно одновременно устанавливать различные типы детекторов.

 


КА «Кассини»

 

Удобство активных детекторов состоит в том, что нет необходимости возвращения их на Землю для анализа, большая часть которого выполняется на борту. Полученные данные (количество ударов в единицу времени и на единицу площади, время каждого удара, скорость, размеры и материал частиц) транслируются на Землю. Диапазон высот, на которых можно проводить измерения, по сути, ограничен только дальностью действия радиопередатчика. Сложные детекторы для определения относительной скорости при ударе, химического состава материала частиц КМ были установлены, например, на борту КА «Хитеи» (Япония) и «Бремсат» (Германия), а также на «Кассини». Их стоимость колебалась от 100 000 до 1 млн дол. [Hudepohl et al., 1992].

 

Для обнаружения скоплений кМ можно обойтись и более дешевыми детекторами, например, подобными установленным на LDEF. Такими детекторами, действующими по принципу емкостного разряда, была оснащена промежуточная ступень РН КА «Клементина-1». По периферии переходника ступени размещались детекторы с суммарной площадью активной поверхности 0,14 м2. Переходник был сброшен на высокоэллиптической орбите вокруг Земли. Счетчик метеороидов и частиц КМ имел массу всего 500 г [Kinard, 1993]. Эксперимент продолжался до тех пор, пока переходник не вошел в плотные слои атмосферы в мае 1994 г. Его стоимость составила 200 000 дол.

 

Кроме дороговизны, у активных детекторов есть и другие недостатки. Площадь экспонированной в космосе чувствительной поверхности датчика может составлять всего несколько сантиметров при значительной массе самого датчика (десятки килограмм). Нужна вспомогательная аппаратура для обслуживания датчика, которая опять-таки имеет массу и занимает немалый объем. Могут возникнуть проблемы с интерпретацией полученных данных, а также потребоваться многочисленные калибровочные тесты. Конечно же, ведутся интенсивные работы по преодолению этих недостатков [Mulholland, 1993]. Разрабатываются комбинированные системы детекторов с упрощенной методикой калибровки [Kassel, Wartman, 1994].

 

Очень большой недостаток активных датчиков — ограниченная площадь рабочей поверхности детектора. По этой причине размер наибольшей обнаруженной детекторами LDEF частицы равнялся 1 мм [See et al., 1990]. Дело в том, что плотность потока среднеразмерных частиц много меньше, чем мелких.

 


Сверху — спутник PALAPA-B2, снизу – шаттл «Челленджер»

 

Миссия STS-41C в 1984 г. возвратила на Землю около 3 м2 внешнего покрытия КА Solar Max после его более четырехлетнего пребывания в космосе. Эта же миссия вывела в космос спутник LDEF с поверхностью 130 м2. В ноябре 1984 г. миссия STS-51A возвратила на Землю ИСЗ PALAPA-B2 после девятимесячного его пребывания в космосе. Данные о 1600 ударах КМ в возвращенную часть поверхности Solar Max подтвердили значительное присутствие мелкого КМ в низкоорбитальной области. Обследование 1 м2 поверхности ИСЗ PALAPA-B2 выявило более 50 отверстий в термопокрытии и 8 кратеров глубиной до 0,7 мм в солнечных панелях. Изучение возвращенных из космоса поверхностей продолжается до сих пор. Оно уже позволило многое понять в происхождении мелкого КМ и степени его опасности [Bernhard, Christiansen, 1997].

 

Значительное увеличение площади рабочей поверхности детектора и времени его пребывания в космосе позволило бы не только существенно увеличить объем измерений самой мелкой фракции КМ, но и расширить возможность более полного изучения среднеразмерной фракции. Реальные возможности продвижения в этом направлении показаны в [Kuzin, 1993; Strong, Tuzzolino, 1989]. В этом отношении перспективны и не дороги тонкопленочные активные детекторы, генерирующие сигнал, будучи пробиты элементом КМ. К сожалению, проблематично обеспечение достаточной продолжительности их полета на низких орбитах (учитывая высокое отношение площади поперечного сечения к массе). Кроме того, они сами становятся источником возможного столкновения с другими КО [Orbital___, 1995].

 

 


Запуск КА ARGOS состоялся 23 февраля 1999 г.

 

В заключение статьи упомянем об интересном эксперименте, в котором Чикагский университет в феврале 1999 г. вывел в космос КА ARGOS (Advanced Research and Global Observation Satellite), оснащенный инструментом для регистрации космической пыли — SPADUS, на почти полярную орбиту высотой 830 км. В этом эксперименте впервые в истории освоения космоса бортовые датчики предоставили прямые свидетельства принадлежности субмиллиметрового КМ взрывам конкретных КО. Главная задача программы состояла в обнаружении малых частиц размером менее 100 мкм. В течение первого года полета SPADUS зарегистрировал 195 ударов таких частиц — в среднем по одному удару каждые два дня. В конце марта 2000 г. темп обнаружения ударов резко возрос, более чем на порядок, свидетельствуя о вхождении детектора в облако или поток мелкого КМ. 40 % из обнаруженных в конце марта ударов КМ было ассоциировано с разрушением третьей ступени китайской РН «Долгий марш 4В» [Opiela, Johnson, 2000; Tuzzolino, 2000].


Расшифровку всех приведенных в статье условных сокращений смотреть здесь: «Исследование ближнего космоса: условные сокращения».

Все размещенные на сайте материалы без указания первоисточника являются авторскими. Любая перепечатка информации с данного сайта должна сопровождаться ссылкой, ведущей на www.unnatural.ru.