Необычный

Склока в лаборатории

Решили кардинальным образом изменить дизайн своей квартиры, который навевает на Вас только уныние и скуку? Тогда Вам определенно точно стоит купить светильники schonbek , который станет самой яркой, в прямом смысле этого слова, изюминкой вашей квартиры.

Приобрести такой светильник по самой низкой цене Вы сможете только на сайте www.svetclub.ru!


Если сравнивать то, как разные открытия сказались на жизни и благополучии людей, то открытие инсулина было, возможно, самым ярким событием в истории современной науки. Вплоть до 1920-х диагноз «диабет» (который врачи обычно ставили, увидев пятна высохшего сахара на обуви или брюках пациента-мужчины) обещал раннюю и болезненную смерть. Ее можно было избежать разве что за счет жесткой диеты, не менее мучительной для большинства больных, чем сама болезнь.

 

История инсулина не обошлась без несчастий, злобы и обманов. Когда в 1923 году Нобелевскую премию присудили двум главным действующим лицам — Фредерику Бантингу (1891-1941) и Джону Маклеоду (1876-1935), это вызвало возмущение у тех, кто (не без оснований) считал, что их роль в открытии преуменьшена или забыта. Одним из возмущавшихся был Николае Паулеску, румынский физиолог, чьи наблюдения были решающими в отыскании связи между диабетом и дефицитом активного компонента поджелудочной железы. Он открыл, что повышенный уровень сахара в крови и моче собак, у которых диабет был искусственно вызван удалением поджелудочной железы, становился ниже, когда вытяжку из поджелудочной вводили животным обычной инъекцией. Паулеску пришлось отложить свои исследования на четыре года — по той причине, что в его страну в конце Первой мировой вторглись австро-венгерские войска. Когда же он вернулся к этой теме, то Бантинг, Маклеод, Бест и Коллип в Торонто уже вплотную подошли к разгадке.

 


Такого ученого, как Фредерик Бантинг должен знать каждый человек, болеющий диабетом, ведь именно этот канадский ученый открыл инсулин

 

Молодой немецкий врач Георг Цюльцер добился, похоже, потрясающего результата, вводя умирающему пациенту вытяжку поджелудочной — однако его работы также проводились в чрезвычайно неподходящих для этого условиях и были прерваны войной. Куда более известный немецкий физиолог, Оскар Минковский, считал претензии Цюльцера смехотворными: именно Минковский первым установил связь между сахаром и поджелудочной железой. Считают, что он догадался о присутствии сахара в моче собаки без поджелудочной (к тому же страдающей недержанием), когда заметил, что пятна на лабораторном полу собирают мух. В этой истории нет повода сомневаться хотя бы потому, что ее рассказывал знаменитый американский физиолог У.Б. Кэннон; однако сам Минковский всегда отрицал, что причина открытия — случайное стечение обстоятельств. Так или иначе, Минковский, которому научный руководитель поручил исследовать роль поджелудочной железы в расщеплении жиров, действительно диагностировал у собаки, которой удалили эту железу, сахарный диабет. На заявления Цюльцера Минковский отвечал, что ничуть не меньше сожалеет о его неудаче.

 

Окончательной победы добилась группа с факультета физиологии Торонтского университета, которую возглавлял Маклеод. Бантинг был вдохновителем исследований, а Маклеод сначала отнесся к затее с неприязнью, но потом стал ее активно поддерживать. Чарльз Бест, студент факультета, присоединился к ним в качестве ассистента Бантинга, а биохимик Джеймс Коллип был нанят для решения конкретной задачи — чтобы выделить из вытяжки поджелудочной железы неуловимое активное вещество. И Бест, и Коллип были твердо убеждены, что Нобелевскую премию следовало вручить и им, тогда как Бантинг, человек с непреклонными взглядами и характером параноика, считал результат по большей части своим и не упускал случая оговорить и принизить Маклеода. Часть грязи успела прилипнуть, поэтому часто и безосновательно утверждают, что вклад Маклеода в открытие был ничтожен и тот украл заслуженное признание у остальных. Дележ добычи, породивший так много обид, был, вероятно, справедливым, хотя многие и убеждены, что Бест был исключен из числа лауреатов незаслуженно (однако уже скоро был вознагражден множеством наград и почестей), в то время как Маклеод, к ярости Бантинга, излишне подчеркивал заслуги Кол липа. И действительно, Маклеод публично пообещал, что поделится с Коллипом половиной суммы премии; в письме другу он сообщает: «Думаю, я преуспел в том, чтобы убедить людей: его [Коллипа] вклад вовсе не был несоизмерим со вкладом Бантинга». В свою очередь Бантинг заявил, что отдаст половину денег Бесту.

 


Джеймс Коллип

 

Самый яркий за все время охоты за инсулином инцидент произошел в январе 1922 года. Майкл Блисс, автор классического исследования по истории инсулина, описывает его как «одну из самых примечательных личных стычек в истории науки». После ряда огорчительных неудач Коллип наконец сумел приготовить высокоактивный экстракт, который, вероятно, состоял в основном из чистого инсулина. (Совсем скоро он обнаружит, что не в состоянии приготовить его заново, и на повторение достигнутого понадобится еще больше времени.) Вот как Бантинг вспоминает знаменитую ссору двадцать лет спустя:

 

Худшее из наших столкновений случилось как-то вечером в конце января. Коллип становился все менее и менее общительным и в конце концов после недельного отсутствия в полшестого вечера возник на пороге нашей маленькой комнаты. Он остановился сразу за дверьми и произнес: «Коллеги, у меня получилось».

 

Я повернулся и произнес: «Славно, поздравляю. И как же вы этого добились?»

 

Коллип ответил: «Вам я решил не сообщать».

 

Его лицо побелело как мел, и он собрался уходить. Тогда я одной рукой схватил его за воротник плаща и, почти приподняв его, силой усадил на стул. Не помню всего, что тогда было сказано, — помню только, как заявил, что он, к счастью, намного тщедушней, иначе я «вытряс бы из него душу». Он рассказал, что обсудил ситуацию с Маклеодом и что Маклеод одобрил его решение не сообщать нам, каким способом экстракт был очищен.

 

По версии Чарльза Веста, все выглядело несколько иначе:

 

Однажды вечером в январе или феврале 1922 года, когда я работал один в здании Медицинского центра, доктор Дж.Б. Коллип заглянул в небольшую комнату, где у нас с Баннингом стояли собачья клетка и разные химические приборы. Он сообщил мне, что покидает нашу группу и что намерен запатентовать на свое имя наши улучшения в процедуре подготовки экстракта поджелудочной железы. Такое развитие событий меня ошеломило, так что я настоятельно попросил подождать прихода Фреда Бантинга, а для большей уверенности, что он действительно дождется, я запер дверь, а сам уселся на стуле напротив нее. Бантинг вернулся в Медицинский центр очень нескоро. Наконец он появился в коридоре, ведущем в нашу комнату. Я передал ему слова Коллипа, и Бантинг весьма спокойно это выслушал — однако я не мог не почувствовать, как в нем накапливается ярость. О том, что за этим последовало, я умолчу. Бантинг был явно разгневан, поэтому Коллипу следует считать большой удачей, что он остался цел. Поскольку я опасался, что Бантинг совершит что-нибудь такое, о чем нам обоим потом придется горько сожалеть, мне пришлось удерживать его всеми средствами, какие только у меня имелись.

 

Майкл Блисс высказывает предположение, что Коллип и Маклеод были в большой обиде на Бантинга за выходки, которые он позволял себе последние несколько недель — возможно, Бантинг пытался преждевременно устроить клинические испытания неочищенного и потенциально опасного препарата, приготовленного им вместе с Бестом. Блисс пишет:

 

Я предполагаю, что Коллип и Маклеод едва ли были в состоянии руководить действиями Бантинга последние несколько недель, в частности из-за того, что попытка Бантинга приготовить вместе с Бестом экстракт для первых клинических испытаний подрывала сам дух командной работы. Похоже, Бантинг присвоил себе некоторые из усовершенствований, внесенных Коллипом в процедуру приготовления экстракта. Бантинг продемонстрировал им свое недоверие, и теперь у них не было оснований верить ему. Очистка экстракта была задачей Коллипа, а не Бантинга или Беста. Коллип и Маклеод могли решить, что Бантинг покушается на авторство Коллипа. Стоит тому докопаться до подробностей о процессе подготовки экстракта, и он припишет все заслуги себе. Вероятно, события и января (когда они только узнали о превышении Бантингом полномочий) подтолкнули их к убеждению, что Бантингу доверять не следует и что он попытается опередить прочих членов группы, подав заявку на патент. Паранойя столкнулась с паранойей. В результате Коллип и Маклеод решили не делиться с Бантингом и Бестом секретом приготовления эффективного экстракта для борьбы с диабетом.

 

Годы спустя Бантинг и Коллип помирились, и каждый из них признал вклад соперника в великое открытие. Так или иначе, в 1941 году Бантинг, который тогда состоял на службе у канадского правительства, провел последнюю ночь своей жизни в Монреале с Коллипом — а считаные часы спустя бомбардировщик, который должен был отвезти его в Англию, разбился, и все, кто находился на борту, погибли.

Автор: Admin | 2012-11-15 |

Там, где живут пришельцы: Солнечная система

1. Марс




Начнем с краткого описания небесного тела планетарного типа, получившего название Марс:
диаметр 6792 км (0,53 диаметра Земли), гравитация — 0,37 (это значит, что на марсианской поверхности Вы бы ощущали только 1/3 своего веса и подросли минимум на 3 см за счет расправления позвонков вашего позвоночника), атмосферное давление в 80-160 раз меньше Земного. Сутки на красной планете длятся почти столько же, сколько и на нашей, а вот один оборот вокруг Солнца проходит за 687 земных дней.

Климат: Марс находится на границе так называемой «зоны жизни» (она же обитаемая зона). Это значит, что если бы каким-то волшебным образом Земля оказалась на орбите Марса, то она получала бы от Солнца ровно столько тепла, сколько необходимо для существования океанов из жидкой воды на экваторе. Однако из-за крайне разряженной атмосферы моря и реки на Марсе просто не могут существовать: вода частично замерзает, частично испаряется из-за низкого давления. Основная часть воды сконцентрирована под поверхностью планеты в районах полюсов. Тем не менее, видимые из космоса полярные шапки Марса состоят по большей части не из водяного льда, а из замерзшего углекислого газа, температура замерзания которого значительно ниже воды. Читать дальше>>

Немезида из Нанси

Вы – настоящий геймер, который любит не только проходить новые игры за один присест на самом высоком уровне сложности, но и обожает читать журналы, посвященные игростроению, не желая упустить из виду ни один из заслуживающих внимания проектов. Именно поэтому я рекомендую Вам прямо сейчас посетить сайт elite-file.com, где Вы сможете скачать игру crysis 2, в которой на высочайшем уровне находятся как игровая, и сюжетная линии.


Роберт Вуд (1868-1955), профессор физики в Университете Джона Хопкинса, основатель спектроскопии, писал стихи (сборник его стихов, вышедший под названием «Как отличить птиц от цветов», переиздается и в наши дни), а также был еще известным шутником и мистификатором. Многие его эскапады стали легендами. Например, жителей Балтимора он пугал так: в дождливые дни плевал в лужи и незаметно подбрасывал туда кусок металлического натрия — в итоге плевок загорался ярко-желтым пламенем.

 

А вот другая история. В юности Вуд жил в Париже, в небольшом пансионе. Как-то постояльцы этого пансиона с удивлением заметили, что Вуд обильно посыпает каким-то белым порошком куриные кости, оставшиеся после ужина на тарелках. На следующий вечер, когда всем подали суп, Вуд принес с собой небольшую спиртовую горелку и уронил каплю супа в пламя. Красная вспышка вызвала у него улыбку удовлетворения: белый порошок, объяснил он соседям по столу, был хлоридом лития, а красный цвет пламени свидетельствует, что хлорид лития теперь в супе. Вуд подозревал, что хозяйка использует кости по второму разу — и теперь подозрение подтвердилось. Стоит, однако, заметить, что подобный сюжет рассказывают и про Георга фон Хевеси, пионера в области радиоактивных меток: как-то он пометил объедки радиоактивной солью и потом обнаружил радиоактивность супа при помощи счетчика Гейгера. Такой тест куда чувствительней, чем с литиевым пламенем. Впрочем, каждая наука подразумевает свою методику. (Знаменитый геохимик Виктор Мориц Гольдшмидт, собираясь бежать из нацистской Германии, запасся ампулой с цианидом калия; когда ампулой заинтересовался коллега с инженерного факультета, Гольдшмидт, по легенде, ответил, что цианид — это только для профессоров химии, а профессорам механики полагается иметь с собой веревку.)

 

В Париже Вуд устроил еще один розыгрыш. Он обнаружил, что домовладелица (или консьержка), которая жила этажом ниже, держит на балконе черепаху. Тогда Вуд приобрел выводок черепах разных размеров, а потом длинной палкой с крюком вытащил с балкона хозяйкиного питомца и подменил его черепахой чуть побольше. Каждый день он заменял черепаху следующей по размеру. Изумленная хозяйка рассказала Буду про удивительную черепаху, и тогда он посоветовал ей проконсультироваться у известного университетского профессора, а попутно сообщить в газеты. Пресса, надо думать, охотно взялась наблюдать за расширяющейся черепахой, и тогда Вуд направил процесс в обратную сторону: животное уменьшалось столь же загадочно, как недавно росло. Догадался ли хоть кто-нибудь в Париже об истинных причинах феномена, не сообщается.

 


Француз Рене Блондло прославился благодаря своей ошибке – открытию так называемых N-лучей, при помощи которых человеческий глаз может видеть слабоосвещенные предметы. Позже было доказано, что подобных лучей не существует

 

Вуд сделал много полезного в спектроскопии (в частности, разработал конструкцию спектрометра с длинным ходом лучей — туда он научил забираться своего кота, чтобы чистить прибор от паутины и пыли). Но чаще вспоминают его участие в одном из самых странных эпизодов в истории физики. Известный французский физик Рене Проспер Блондло открыл нечто, являющееся, по его мнению, новой формой электромагнитного излучения. Это нечто он назвал N-лучами в честь Нанси, своего родного города. Существование N-лучей было очевидно Блондло, его коллегам из Нанси и еще нескольким французским ученым, но в куда меньшей степени ученым из других точек мира. Позже было доказано, что N-лучи — вымысел, и воспринимать их способны только те, кто заранее в них поверил. Заблуждение было окончательно раскрыто Вудом, когда в 1903 году он навестил лабораторию Блондло в Университете Нанси. Вот весьма красноречивый рассказ Вуда о том, как ему удалось вывести на чистую воду неудачника Блондло:

Прочтя о его (Блондло) замечательных опытах, я решился повторить их, но ничего не добился, хотя и потратил на это целое утро. Согласно Блондло, такие лучи спонтанно испускают многие металлы. Детектором может служить лист бумаги, весьма слабо подсвеченный, поскольку — чудо из чудес — когда N-лучи касаются глаза, они усиливают его способность видеть объекты в полутемной комнате.

 


Ошибочные опыты Блондло показали, что невооруженный взгляд воспринимает гораздо больший световой спектр в присутствии иллюзорных N-лучей, которые оказались всего лишь игрой его воображения

 

Масла в огонь подлили другие исследователи. Год не успел закончиться, а в Comtes Rendus (сборнике докладов, сделанных на сессиях Французской академии наук) вышли сразу двенадцать статей о N-лучах. Шарпентье, известный своими фантастическими экспериментами по гипнотизму, заявил, что N-лучи испускаются мускулами, нервными тканями и мозгом, и его невероятные утверждения появились в журнале Comtes, который поддерживал великий д’Арсонваль, главный специалист по электричеству и магнетизму во Франции.

 

Затем Блондло заявил, что сконструировал спектрограф с алюминиевыми линзами и призмой из того же материала, и обнаружил, что спектральные линии разделены темными интервалами — а это свидетельствует о существовании N-лучей с разной преломляемостью и разной длиной волны. Блондло измерил длины волн, а Жан Беккерель (сын Анри, первооткрывателя радиоактивности) заявил, что N-лучи можно передавать по проводам. К началу лета Блондло опубликовал двадцать статей, Шарпентье — тоже двадцать, а Жан Беккерель — десять, и все они касались свойств и источников N-лучей.

 

Ученые в других странах относились ко всему этому с откровенным скепсисом, однако Академия отметила работу Блондло присуждением премии Делаланда в 20 000 франков и золотой медалью «за открытие N-лучей».

 

В сентябре (1904 года) я отправился в Кембридж на собрание Британской ассоциации содействия развитию науки. После заседания несколько ученых остались обсудить, как быть с N-лучами. Профессор Рубенс из Берлина был наиболее выразителен в своем негодовании. Он чувствовал себя в особенности задетым, поскольку кайзер распорядился, чтобы именно он приехал в Потсдам и там продемонстрировал лучи. Две недели бесплодных попыток повторить опыт французов вынудили его со стыдом признаться кайзеру в собственном бессилии. Повернувшись ко мне, он сказал: «Профессор Вуд, не съездите ли вы в Нанси прямо сейчас — посмотреть на опыты, которые там ставят?» — «Да, да, — заговорили разом все англичане, — это хорошая мысль, поезжайте!» Я предложил съездить Рубенсу, поскольку это он оказался главной жертвой, но Рубенс ответил, что Блондло вел с ним весьма учтивую переписку и охотно откликался на просьбы предоставить дополнительные данные, так что выйдет некрасиво, если Рубенс вдруг приедет с инспекцией. «Кроме того, — добавил он, — вы американец, а американцам всё позволено…».

 

Итак, я поехал в Нанси, договорившись с Блондло встретиться рано вечером у него в лаборатории. Он не понимал английского, и я решил разговаривать с ним на немецком, чтобы тот не смущался обмениваться не предназначенными моему слуху репликами со своим ассистентом.

 

Сначала Блондло показал карточку, где светящейся краской были нарисованы несколько кругов.

 

Затем он включил газовую горелку и обратил мое внимание на то, что яркость увеличивается, когда N-лучи включены. Я отметил, что не вижу изменений. Блондло объяснил: это все потому, что мои глаза недостаточно чувствительны, и мое замечание ничего не доказывает. Тогда я предложил поступить так: время от времени я выставлял бы на пути лучей непрозрачный свинцовый экран, а он говорил бы, когда яркость карточки меняется. Почти все его ответы были ошибочными: Блондло сообщал о перемене яркости, когда я не совершал никаких движений вовсе — и это уже многое доказывало, но я пока помалкивал. Затем он продемонстрировал мне едва подсвеченные часы и попробовал убедить меня, что сможет разглядеть стрелки, если будет держать прямо над переносицей большой плоский напильник. Мой очередной вопрос был о том, могу ли я подержать напильник сам. Перед этим я заметил у Блондло на столе плоскую деревянную линейку (а дерево считалось одним из немногих веществ, которые никогда не испускают N-лучей). Блондло с этим согласился, и я, нащупав линейку в темноте, поднес ее к лицу экспериментатора. Ну да, разумеется, он без труда разглядел стрелки — и это тоже кое-что доказывало.

Однако решающая и самая впечатляющая проверка была впереди. Вместе с ассистентом, который уже поглядывал на меня враждебно, я зашел в комнату, где стоял спектрометр с алюминиевыми призмой и линзами. Окуляр прибору заменяла вертикальная нить, окрашенная люминесцентной краской, а специальная ручка (со шкалой и цифрами на ободе) позволяла перемещать ее вдоль участка, куда предположительно проецировался спектр N-лучей. Блондло уселся перед спектрографом и начал медленно поворачивать ручку. Предполагалось, что, пересекая невидимые линии спектра N-лучей, нить будет каждый раз вспыхивать. Подсветив шкалу небольшой красной лампой, Блондло зачитал мне цифры, соответствующие отдельным спектральным линиям. Такой эксперимент сумел убедить не одного скептика, поскольку измерения повторялись в их присутствии, и цифры все время получались одними и теми же. Я попросил приступить к замерам и, вытянув руку в темноте, приподнял алюминиевую призму спектрометра. Он в очередной раз повернул ручку и назвал те же цифры, что и прежде. Прежде чем включили свет, я успел вернуть призму на место, а Блондло сообщил ассистенту, что у него устали глаза. Ассистент тут же попросил у Блондло разрешения повторить для меня опыт. Пока свет не погас, я успел заметить, что призма весьма точно сориентирована на маленькой круглой подставке, так что углы приходятся как раз на обод металлического диска. Выключатель щелкнул, и в темноте я сделал несколько шагов в сторону призмы, и двигался подчеркнуто шумно, но призму на этот раз не трогал. Ассистент как ни в чем не бывало продолжил крутить рукоять, но вскоре, обращаясь к Блондло, торопливо пробормотал по-французски: «Я ничего не вижу, никакого спектра нет. Подозреваю, что американец что-то испортил». Блондло тут же зажег газовую лампу, подошел к призме и тщательно ее оглядел, потом повернулся ко мне, однако я никак не отреагировал. На этом сеанс и закончился.

 

На следующее утро я отправил в Nature письмо с подробным описанием моих наблюдений, не упоминая, однако, последнюю хитрость, а лабораторию Блондло скромно назвал «одним из мест, где ставятся опыты с N-лучами». Французский полупопулярный журнал La Revue Scientifique начал свое расследование, попросив ведущих французских ученых высказаться по поводу N-лучей. Было опубликовано около сорока писем, причем Блондло защищали только шестеро. В самом едком, за авторством Ле Беля (одного из основателей стереохимии), говорилось: «Какое же зрелище являет французская наука, если один из выдающихся ученых измеряет положение спектральных линий, в то время как призма покоится в кармане его американского коллеги!»

 

На ежегодном собрании Академии, где официально объявлялось, кому присуждена премия и медаль, было заявлено, что награда досталась Блондло «за совокупность достижений всей его жизни».

 

Вмешательство Вуда в «дело об N-лучах» было определенно разгромным. С этих пор разговоры об N-лучах прекратились, однако сам Блондло так и не признал свои лучи иллюзией. Он преждевременно покинул университет и в одиночестве продолжал искать неуловимое излучение в своей домашней лаборатории.

Автор: Admin | 2012-11-03 |

Шифр, который нельзя взломать

Все люди перешагнувшие черту взросления рано или поздно задумываться: “Как заняться саморазвитием и существует ли такое понятие, как личностный рост по-умному?”. Ответ: да! И Вы сможете убедиться в этом лично, если посетите сайт www.vidabonito.ru, где найдете самую необходимую информацию для осуществления всех поставленных вами целей.



В 1940 году Отто Фриш (1904-1979) сформулировал первый теоритический механизм детонации атомной бомбы

 

Английский физик Отто Фриш в начале Второй мировой войны оказался в английском городе Бирмингеме. Фриша тогда занимали два вопроса: первый — можно ли создать ядерную бомбу в ближайшее время, и второй — как не позволить немецкому правительству добраться до норвежских запасов тяжелой воды (оксида дейтерия), которая при разработке бомбы определенно понадобится. Для анализа ситуации был создан специальный комитет. Рассказ Фриша хорошо описывает царившее там напряжение.

 


Немецкий физик Рудольф Пайерлс (1907–1995) был ассистентом Отто Фриша и сыграл одну из главных ролей в становлении британской ядерной программы

 

Доклад, который Пайерлс (другой немецкий физик, также эмигрировавший в Англию и живший в то время в Бирмингеме) и я направили сэру Генри Тизарду по совету Олифанта, ускорил создание комитета. Во главе его встал сэр Джордж Томсон (сын Джозефа Томсона, первооткрывателя электрона). Он и дал комитету кодовое имя «Комитет Мод (Maud)». Поводом к этому стала телеграмма от Нильса Бора, заканчивающаяся загадочными словами «AND TELL MAUD RAY KENT» («И СКАЖИ МОД ЛУЧ КЕНТ). Мы все были убеждены, что это шифровка — возможно, анаграмма, предупреждающая нас о чем-нибудь. Мы пробовали переставлять буквы разными способами и получали искаженные сообщения вроде таких: «РАДИЙ ВЗЯТ» (следовало думать, что нацистами), или «U И D РЕАГИРУЮТ» — это должно было означать, что уран вступает в цепную реакцию с тяжелой водой, соединением кислорода и тяжелого водорода, дейтерия, обозначаемого буквой D. (Фриш забывает добавить, что к анализу шифра подключили профессионала-криптоаналитика, который выдал ответ «MAKE UR DAY NT» («ПРЕВРАТИ ДНЬ В НЧЬ»)). Разгадка появилась только после войны, когда мы узнали, что Мод Рэй (Maud Ray) из графства Кент (Kent) служила у Бора гувернанткой.

 


Андре Вейль (1906-1998)

 

В 1939 году похожая путаница в Финляндии стала причиной ареста (и чуть не привела к гибели) французского математика Андре Вейля. Вместе с женой он въехал в страну в июне того года, собираясь посетить двоих друзей, финских математиков. 30 ноября Вейль (уже без жены — та отправилась в туристическую поездку на север) был арестован. В тот день началась русско-финская война, первые бомбы упали на Хельсинки, и Вейль посчитал разумным скрыться на время авианалетов за городом. А когда они закончились, он отправился обратно в гостиницу, но по пути, из-за близорукости не разглядев издалека солдат с зенитными пулеметами, подошел к ним и стал рассматривать их в упор. Одежда выдавала в нем иностранца, и, разумеется, он был арестован по подозрению в шпионаже в пользу Советского Союза.

 

В камере Вейль утешал себя тем, что Софуса Ли, знаменитого норвежского математика, попавшего в похожие обстоятельства, тоже арестовали за шпионаж, когда он прибыл в Париж во время Франко-прусской войны 1870 года. Следствие по делу Вейля обнаружило в его бумагах два письма от русского математика, одно из которых заканчивалось так: «Надеюсь, ваш знаменитый коллега М. Бурбаки продолжит присылать мне доказательства своей впечатляющей работы». Дело в том, что Вейль, скорее всего, состоял в группе французских математиков, которые собирались в парижском кафе и публиковались под коллективным псевдонимом «Н. Бурбаки». Подпись уточняла, что автор состоит в «Польдевской академии наук» (Польдевия — вымышленное государство, которое еще раньше придумала группа мистификаторов из парижской Высшей нормальной школы.)

 

Такое нагромождение чепухи не могло не показаться полиции подозрительным. Вейлю не удавалось связаться с пригласившими его в гости математиками, однако один из них, Рольф Неванлинна, был полковником запаса, и теперь его призвали в армию. По счастливой случайности однажды вечером на каком-то приеме он оказался за одним столом с главой хельсинкской полиции: тот простодушно сообщил, что завтра они собираются казнить шпиона, который почему-то знает Неванлинну. Полковнику Неванлинне стоило большого труда уговорить полицейского не расстреливать Вейля, а вместо этого довезти его до границы и выдворить из страны. Действовать так стражу порядка раньше не приходилось. Вейля доставили до границы в запечатанном купе и выпустили на шведской погранзаставе. Оттуда он сумел добраться до Англии, где его снова арестовали за уклонение от воинской повинности во Франции. Математика выдали французской полиции, так что следующие несколько месяцев он провел в тюрьме (там, кстати, приступ математического вдохновения подтолкнул Вейля к написанию очередной статьи), а потом предстал перед военным судом, после чего надолго облачился в военную форму.

Автор: Admin | 2012-11-03 |

Мраморные столы и ведра с водой

Вам необходимо срочно доставить ценное письмо? Нет ничего проще! Исполнителем столь ответственной задачи станет самая быстрая и надежная курьерская служба Москвы — «Магеллан».
Узнать расценки на стоимость курьерских услуг Вы сможете на сайте courieri.ru.


Ярчайшим представителем трансмутации является так называемый философский камень, который, по мнению современных ученых, представлял собой не мифический предмет, а совершенно реальный механизм получения золота из неблагородных металлов.

 


Чуть Выше Вы можете видеть картину английского художника Джозефа Райта (1771 год), на который изображен старый алхимик, пытающийся получить философский камень

 

В 1934 году физики пребывали в крайнем волнении по поводу трансмутации, или превращения одних элементов в другие. Было доказано, что ядра некоторых тяжелых атомов способны захватить летящий нейтрон и в итоге превратиться в новый, более тяжелый, изотоп. Энергия, переданная нейтроном ядру в момент столкновения, излучалась в виде гамма-лучей, которые и свидетельствовали, что реакция проходит успешно. Великий итальянский физик Энрико Ферми запустил целую программу исследований, чтобы выяснить, как ведут себя разные элементы при нейтронной бомбардировке. Радость от первых успехов в опытах с легким элементом (натрием) была омрачена странностями результата: гамма-излучение возникало с куда большей задержкой, чем позволяла теория. Нужно было более убедительное доказательство захвата нейтронов. Два молодых и талантливых ассистента Ферми, Эмилио Сегре и Эдуардо Амальди, решили, что справились с задачей, когда показали, что алюминий, следующий объект изучения, оказался способен не только захватывать нейтроны, но и образовывать при этом радиоактивный изотоп со временем жизни (измеренным по испусканию гамма-лучей) около 3 минут. Обрадованный Ферми сообщил об этом на конференции в Лондоне.

 


Энрико Ферми (1901-1954) стал одним из основоположников квантовой физики

 

Однако затем Сегре, простудившись, решил провести несколько дней дома и оставил Амальди продолжать опыты в одиночку. К всеобщему разочарованию, тот не смог повторить прежние наблюдения. Ферми, крайне обозленный перспективой унизительного опровержения, выплеснул все недовольство на ассистентов, которые теперь раз за разом получали стабильно ошибочные и, как могло показаться, бессмысленные результаты. Тогда в лаборатории и появился новый сотрудник — молодой одаренный физик, Бруно Понтекорво. Знаменитым он стал 20 годами позже: располагая важной информацией о разработках ядерного оружия, он сбежал в Советский Союз. Понтекорво и Амальди принялись за калибровку процесса нейтронной активации, взяв серебро за эталон — было известно, что при захвате нейтрона оно дает относительно долгоживущий изотоп, за распадом которого удобно наблюдать. Но тут, к изумлению и даже ужасу экспериментаторов, выяснилось, что результат зависит от конкретного места, где ставят опыт. Вот как это описывает Амальди: «В темной комнате рядом со спектрометром стояло несколько деревянных столов, которые обладали волшебным свойством: облученное на них серебро приобретало куда большую активность, чем когда его облучали на мраморном столе в той же комнате».

 

Аномалия требовала отдельного расследования. Поначалу решили оградить прибор от внешних воздействий заслоном из свинца. Но тут ассистентам Ферми пришлось уйти — принимать у студентов экзамены, и нетерпеливый Ферми решил продолжать эксперимент сам. О том, что случилось дальше, Ферми рассказал в письме своему будущему коллеге, знаменитому космологу Субраманьяму Чандрасекару:

Вот как я пришел, вероятно, к самому важному из моих открытий.

 

Мы весьма активно работали над индуцированной нейтронами радиоактивностью, однако результаты получались абсолютно бессмысленными. И тут вдруг меня посетила мысль: а что, если на пути у падающих нейтронов поставить кусок свинца? С огромным трудом мне удалось добыть аккуратно изготовленный образец для эксперимента. Однако что-то меня смущало, и я был рад любому поводу оттянуть эксперимент со свинцом. Когда, наконец, я все-таки собрался уже установить его куда следовало, я вдруг подумал: «Стоп, кусок свинца мне тут не нужен, а нужен кусок парафина». Это случилось неожиданно, безо всякой видимой причины. Я тут же взял первый кусок парафина, какой попался под руку, и установил его там, где минуту назад хотел поставить свинец.

 

Ферми тут же получил резкий скачок вверх активности мишени. Он велел срочно созвать Сегре и остальных сотрудников в лабораторию, чтобы те увидели поразительный эффект своими глазами. Сегре решил, что счетчик радиоактивности просто сломался, и его потом долго убеждали, что он ошибается. Ужиная дома с женой (как он поступал всегда, что бы ни случилось с ним днем), Ферми размышлял: если эффект от парафина настолько велик, а еще активация зависит от того, на мраморном столе или на деревянном ставят опыт — то, возможно, нейтроны замедляются в столкновениях с ядрами водорода (то есть протонами, масса которых почти совпадает с массой нейтрона), а уж водорода в парафине или дереве хватает с избытком. И что, если — вопреки изначальному предположению — легче всего поглощаются медленные, а вовсе не быстрые нейтроны?

 

Ферми вернулся в лабораторию и вместе с ассистентами вынес источник нейтронов и серебряную мишень к пруду посреди институтского сада. Водород, содержавшийся в воде и в золотых рыбках, вел себя точно так же, как и водород в парафине. После были перепробованы и другие легкие элементы, которые тоже срабатывали, но неизменно хуже, чем водород, — тот при столкновении отбирал у нейтрона наибольшую часть импульса. Написанную вскоре статью отправили в лучший итальянский физический журнал. Так была открыта новая глава в истории атомной физики (и в истории теорий, которые в конце концов привели к созданию атомной бомбы) . Знаменитый физик-теоретик Ганс Бете говорил, что поглощение медленных нейтронов могло бы остаться неоткрытым, не будь Италия столь богата мрамором — тут даже лабораторная мебель делается из этого дорогого камня.

 

Совсем недавно обнаружились новые детали. Два итальянских физика узнали, что человек, в 1934-м работавший смотрителем лаборатории, дожил до столетия Ферми, которое отмечали в 2001-м. По его воспоминаниям, уборщица Цезарина Марани ежедневно мыла мраморные полы в коридоре и как раз тогда оставила три ведра воды под лабораторной скамьей. Позже ассистенты Ферми их заметят, а влажный воздух над ведрами признают источником столь важного для эксперимента водорода.

Автор: Admin | 2012-10-31 |

Игры со сладким: открытие аспартама

Многие современные психологи и психотерапевты утверждают, что аквариумные рыбки оказывают на человека столь же сильное расслабляющие и успокаивающее действие, как и антидепрессанты, однако без вреда для иммунной и нервной систем. Однако не секрет, что уход за рыбками – очень сложное занятие, на которое Вам придется затратить не только свое драгоценное время, но, что гораздо хуже, и нервы. Именно поэтому все заботы по уходу за вашими водоплавающими любимцами стоит доверить профессионалам.

Качественное обслуживание аквариумов здесь — на сайте www.aqioma.com – это лучшее что Вы можете дать своим рыбкам: опытные специалисты не только вычистят весь аквариум, включая грунт и декоративные элементы, но и откорректируют гидрохимические показатели воды.


Аспартам, или нутрасвит, уберег тучную часть человечества от многих и многих килограммов лишнего веса. Этот заменитель сахара лишен неприятного послевкусия (чем отличается от сахарина) и, по всей видимости, не имеет отрицательных побочных эффектов. Он был открыт благодаря чистой случайности, как, наверное, и все остальные заменители сахара, включая самый первый — сахарин. Сахарин был синтезирован в 1879 году в Балтиморском университете Джона Хопкинса неким Константином Фальбергом — студентом Айры Ремзена, одного из самых выдающихся американских химиков-органиков. Фальберг, удивленный сладковатым привкусом еды, которую он ел во время обеда, сообразил, что причина этого — наверняка одно из веществ, попавших ему на руки во время опытов. Этим веществом оказался амид ортосульфобензойной кислоты. Практичный студент запатентовал вещество и разбогател, только вот научного руководителя в патенте не упомянул. Простить Фальбергу эту оплошность Ремзен так и не смог.

 


Самый первый заменитель сахара – сахарин, был открыт еще в далеком 1879 году Константином Фальбергом

 


Химическая формула аспартама

 

Много лет спустя, в 1937-м, другой студент-экспериментатор, беззаботный американец с невообразимой сейчас привычкой курить в лаборатории, пытался синтезировать жаропонижающий препарат антипиретик; он затянулся сигаретой, оставленной на рабочем столе, и почувствовал, что та имеет сладковатый вкус. Так появились на свет подсластители на основе цикламатов. Еще один заменитель сахара, ацесульфам, впервые дал о себе знать, когда сотрудник лаборатории решил послюнить палец, перед тем как вынуть лист бумаги из стопки.

 

Джеймс Шлаттер работал химиком-органиком в лаборатории фармацевтической компании G.D. Searl, где занимался поиском лекарства от гастрита. Ему предстояло синтезировать пептид (цепочку аминокислот, связанных друг с другом, как в белке), отвечающий фрагменту гормона гастрина. Вместе с коллегой он приготовил несложное соединение такого рода (метиловый эфир аспартилфенилаланина) и приступил к его очистке переосаждением — широко принятый метод в органической химии. Шел декабрь 1965-го. Вот как Шлаттер описывает, что случилось затем:

«Когда я нагревал аспартам в колбе с метиловым спиртом, смесь, внезапно закипев, выплеснулась наружу. В результате немного порошка попало мне на пальцы. Чуть позже — лизнув пальцы, чтобы взять бумаги, — я обратил внимание на сильный и очень сладкий вкус. Сначала я подумал, что все дело в сахаре, которым мог запачкаться еще утром. Однако, как я вскоре сообразил, это было исключено, коль скоро в обед я все-таки мыл руки. Все обстоятельства указывали на емкость, куда я спрятал кристаллизовавшийся метиловый эфир аспартилфенилаланина. Решив, что дипептид вряд ли ядовит, я попробовал немного и убедился: это и есть вещество с моих пальцев.

Сейчас любой химик обязательно работает в перчатках, поэтому в наши дни это открытие вряд ли состоялось бы и человечество так никогда бы и не узнало про сладкий вкус дипептидов«.

 


Кристаллы тростникового сахара, который очень называют коричневым

 

Но самое курьезное открытие заменителя сахара принадлежит иностранному студенту лондонского Королевского колледжа, который в 1976 году неправильно воспринял просьбу своего научного руководителя мистера Л. Хоуга. Профессора интересовала возможность использовать в промышленности синтетические производные сахарозы — обычного сахара из тростника или свеклы. Несколько таких производных уже были получены в лаборатории, и одним из них была трихлорсахароза (то есть сукралоза — сахароза, где три атома водорода замещены на хлор). Хоуг попросил Шашиканта Фадиса исследовать (to test) вещество, а студент, плохо знавший английский язык, понял просьбу учителя как «попробовать на вкус» (to taste), что немедленно и сделал. Сукралоза, как выяснилось, принадлежит к числу самых сладких веществ в мире, и в тысячекратно меньших концентрациях заменяет сахарозу.

Автор: Admin | 2012-10-22 |

Недостающее звено. Часть V

Вы наконец-то решились взять в банке кредит на крупную денежную сумму, необходимую Вам для покупки квартиры? Тогда перед подписанием всех необходимых бумаг я настоятельно рекомендую Вам посетить сайт ruscredits.com, вооружившись знаниями с которого Вы сможете разобраться во всех тонкостях и нюансах кредитного займа и точно не останетесь у “разбитого корыта”!



В 2004 году пещера Лианг-Буа вновь обрела известность, когда археологи обнаружили в ней останки взрослой женщины гоминида. Ее рост при жизни составлял не более одного метра, из-за чего ее тут же окрестили хоббитом

 

Основным объектом исследований стала Лианг-Буа, известковая пещера в западной части Флореса, близ городка под названием Рутенг. Еще в 1950-х Верховен успел начать раскопки в верхней части пещеры. С тех пор там все время копали, прочесывали и бурили, но только на поверхности, а Майк Морвуд с командой хотел проникнуть на глубину. В 2003 г. по окончании сезона раскопок большая часть группы уже собралась уезжать, и на раскопе работали индонезийцы под руководством Томаса Сутикны из Индонезийского археологического центра.

 


Стегодоны жили в Азии в плиоценскую и плейстоценскую эпохи

 

12 сентября 2003 г. я получил от Майка Морвуда электронное письмо, содержание которого превзошло мои самые смелые мечты: на глубине 5,9м был найден почти полный человеческий скелет. Рядом обнаружилось множество каменных орудий, а также следы охоты на стегодона. Судя по стершимся зубам, скелет был взрослый, однако почему-то всего 1 м ростом. Поскольку вместе с останками нашли и древесный уголь, Майк спрашивал, не хочу ли я провести датирование образцов. Я, конечно, не смог упустить такого подарка судьбы.

 


Раскопки в пещере Лианг-Буа

 

Пещера в Лианг-Буа — это огромная каверна с массивными сталактитами, свисающими с потолка. Когда я приехал на раскопки, там шла бурная деятельность. Отряды местных жителей терпеливо перебирали и просеивали отложения, поступавшие из раскопа. Главную выемку, где, собственно, и нашли скелет, перестали рыть, лишь дойдя до 10 м глубины. Стены были укреплены досками, а внутри ветвилась сложная система лестниц и мостиков, ведущих на разные уровни. По контрасту с изнуряющей жарой снаружи пещера казалась настоящим раем — прохладно и сыро. Если надумаете разбивать лагерь на Флоресе, лучшего места, чем Лианг-Буа, не найти.

 


Найденная в пещере Лианг-Буа самка Homo floresiensis получила имя Фло. По костям ее черепа было реконструировано ее лицо, которое является экспонатом Национального музея естественной истории

 

Главная находка представляла собой останки взрослой женщины. Кости ее к моменту обнаружения по текстуре напоминали папиросную бумагу, останки еще не успели окаменеть. Пришлось приостановить раскопки на три дня в ожидании, пока скелет просохнет на воздухе. Когда же его извлекли из земли, сразу стало ясно, что женщину нельзя отнести ни к Homo sapiens, ни к Homo erectus. Многое в ее строении оказалось необычным. Не только маленький рост, но и крошечный мозг — внутренний объем черепа составлял всего 380 см3, почти как у шимпанзе. Раньше самым маленьким у представителей рода Homo считался объем мозга 500 см3, а ведь он принадлежал самому древнему из всех видов, Homo habilis, жившему около 2,5 млн. лет назад. Были и другие необычные черты, характерные для более ранних видов: скошенный лоб, широкие кости малого таза, свисающие до колен руки и зубы с несколькими корнями. Каменные орудия свидетельствовали, что в умственном развитии этим маленьким людям уж точно не откажешь, самостоятельно думать они умели.

 

Найденные останки определенно не имели никакого отношения к современным пигмеям. Несмотря на маленький рост, у пигмеев размер черепа вполне обычный и никаких других странностей строения, отмеченных у найденного в Лианг-Буа скелета, у них не наблюдается. Тогда что это? С такими особенностями развития этот скелет получался еще более древним, чем яванские Homo erectus. Маленький народец больше походил на самых первых представителей рода Homo.

 

Вскоре после того, как я ответил на письмо Майка, прибыли образцы древесного угля. Я не смел и надеяться, что по ним удастся установить возраст находки. Уж очень далекую древность предполагали особенности найденного скелета, наверняка далеко за пределами возможностей радиоуглеродного анализа. Одна ко подготовку образцов к анализу я постарался провести как можно скорее.

 

Никогда не забуду тот момент, когда пришли результаты. Я поехал на север Уэльса участвовать в конференции, шел второй час ночи, я едва держался на ногах. Назавтра предстоял утренний доклад, а я еще только доделывал слайды к презентации. И тут по электронной почте пришло письмо. Я заглянул в ящик, посмотреть, от кого. Это оказался Кит Файфилд, проводивший анализ образцов в Австралийском национальном университете. Дрему и усталость сняло как рукой. Образцы, найденные рядом со скелетом в пещере Лианг-Буа, удалось проанализировать радиоуглеродным методом. Я быстро пересчитал полученные данные в календарный возраст. Получалось, что эта представительница древнего племени жила 18000 лет назад. Я чуть с ума не сошел от изумления и восторга. До утра не сомкнул глаз.

 

Значение этих результатов было огромно. Древняя ветвь, очевидно, зародившаяся от самых ранних доисторических мигрантов из Африки, перекочевала через линию Уоллеса, развивалась в изоляции на острове и там же угасла. Ранее считалось, что только нашему виду, Homo sapiens, оказалось бы по силам пересечь полоску океана в несколько километров на плоту или бревне, причем не одному представителю, а достаточно большому количеству, чтобы основать новую популяцию. И вот перед нами древний вид, которому это удалось не единожды, а как минимум трижды. Даже при понижении уровня моря во время ледниковых периодов, чтобы перебраться с отправной точки на острове Бали до Флореса, потребовалось бы пересечь океан сначала до Пениды, потом до Ломбока и Сумбавы (которые при низком уровне воды превращались в единое целое). Есть вероятность, что и другие острова могли стать пристанищем древних человеческих популяций, которые независимо от других развивались в отдельные виды, — ведь не обязательно конечной точкой маршрута был Флорес, люди могли перебраться и дальше на восток.

 


Череп флоресского человека

 

28 октября 2004 г. мы представили свою находку миру, дав новому виду имя Homo floresiensis, «человек флоресский»; правда, теперь он известен и под неофициальным прозвищем — «хоббит». Мир забурлил. Действительно ли это новый вид? А вдруг это просто пигмей с редким заболеванием, которое привело к недоразвитию головного мозга? Повторялась история с открытием неандертальцев и Homo erectus. Критиков не убедило даже обнаружение других ископаемых останков сходной комплекции. Что ж, всем не угодишь.

 


Флоресский хоббит Эбу Гого

 

Интересно, что на Флоресе ходит несколько довольно подробных преданий, где описываются существа, подобные «хоббитам». Предания эти были известны задолго до объявления о находке. В некоторых из них фигурирует «эбу гого» — «предок, который ест всё». Прозвище появилось после неоднократных встреч поселенцев с этими существами, которые поглощали даже тарелки из дынных корок, на которых оставлялось угощение. Судя по тому, насколько подробны эти предания, древний вид должен был просуществовать на Флоресе достаточно долго и исчезнуть лишь несколько столетий назад.

 

Только подумать, что каких-нибудь 30 000 лет назад на нашей планете параллельно обитало как минимум четыре вида человеческих существ! А теперь мы считаем себя единственными. Что же будет, если вдруг обнаружится живой представитель какого-нибудь из вымерших видов? Как мы поступим? Пожмем ему руку, запрем в клетку или притворимся, что его не существует?

Автор: Admin | 2012-10-15 |

Утраченные миры. Часть IV

Вашему сынишке исполнилось 4 месяца, а это означает, что пришло время введения прикорма. Не знаете что это такое? Тогда прямо сейчас вбейте в поисковую строку Яндекса запрос: “введение прикорма каши”, который пренепременно приведет Вас на сайт www.frisoclub.ru, благодаря которому Вы узнаете, что такое прикорм, для чего он нужен и когда его следует начинать!



Современный Квинсленд – оплот безмятежности и покоя. Однако когда Джеймс Кук увидел этот уголок нашей планеты, то окрестил его «дымным континентом». Причиной этому послужил действовавший в 18 веке вулкан Линч

 

Давно известно, что австралийские аборигены широко использовали огонь для охоты и борьбы с вредителями. Джеймс Кук, например, проплывая мимо Австралии в 1770 г., назвал ее «дымным континентом». В кратере Линча (это потухший вулкан в северовосточном Квинсленде) содержатся отложения, дающие информацию об изменениях в окружающей среде по крайней мере за последние 200 000 лет. Вместе с Питером Кершо из университета Монаша мы с коллегами проанализировали самые верхние слои отложений на содержание разных видов пыльцы, чтобы выяснить, как вела себя растительность в прошлом. Заодно мы измерили и количество древесного угля, сохранившегося в слоях этих отложений, что указывало бы на наличие горения.

 

На 11-метровой глубине обнаружилось неожиданное и резкое увеличение следов огня. Эта глубина соответствует времени, когда происходил драматический долговременный переход от тропической растительности к засухо- и жароустойчивой, такой как, например, эвкалипты. Ничего подобного в предыдущие ледниковые периоды в районе кратера Линча не наблюдалось. Значит, дело в людях. Результаты радиоуглеродного датирования показывают, что выжигание флоры началось 46000 лет назад — статистически одновременно с вымиранием мегафауны. Возможно, выжигая растительность, люди настолько изменили природу Австралии, что для крупных животных в ней больше не нашлось места? Если да, то можно ли сделать такой же вывод относительно других частей света?

 


Рис. 2. Мегатерий, он же гигантский ленивец, весил более 4 тон и достигал шестиметровой длины

 


Рис. 3. Мастодонты – огромные млекопитающие, населявшие Северную и Центральную Америку

 


Рис. 4. Колумбийский мамонт – был последним представителем американской мегафауны, который вымер 12 500 лет назад. Размеры этих животных поражали: высота – 4 метра, вес – 10 тонн, а длина спиралевидных бивней доходила до 4,25 метров

 

Северная Америка потеряла чуть меньше крупных животных, чем Австралия, — около 73%. Среди них попадались не менее диковинные виды: гигантский ленивец под 3 м ростом и 2500 кг весом; по крайней мере два вида лошадей, верблюд, мастодонт — родственник мамонтов и современных слонов, а также колумбийский мамонт, достигавший 3,4м (рис. 2-4). Здесь останки датировали в основном с помощью радиоуглеродного метода, поскольку вымирание произошло сравнительно позже австралийского.

 

В Северной Америке большая часть мегафауны, судя по всему, исчезла не далее чем 11 400 лет назад. Мастодонту и мамонтам загадочным образом удалось продержаться дольше — они вымерли 10900 лет назад, то есть, возможно, процесс вымирания прошел две стадии. Однако в любом случае эти драматические события отстают от австралийских на целых 35 000 лет. Почему же массовое исчезновение животных происходило в разных частях света в разное время?

 

То была, без сомнений, эпоха больших перемен. В Северной Америке во времена, соответствующие вымиранию мегафауны, шли масштабные климатические и природные сдвиги. Начиналось долгое и болезненное восстановление после ледникового периода. Как мы знаем, ледники начали отступать примерно 17000 лет назад. Более того, как показывают остатки древесного угля и пыльцы, сохранившиеся в озерных отложениях по всей территории Северной Америки, около 15 000 лет назад температура достигла достаточных показателей для развития сомкнутых лесов, при этом существенных признаков горения не было. Видимо, под натиском лесов начали исчезать степи, разраставшиеся одновременно с мегафауной во время последнего ледникового периода. Если дело было не в огне, то, возможно, резкое потепление привело к нехватке пищи для животных? Процент стабильных изотопов углерода в останках мамонтов и мастодонтов эту версию подтверждает. Ограниченный рацион сделал эти виды, как и гениорниса, уязвимыми для резких изменений среды обитания. Не сумев быстро адаптироваться к новым условиям, они оказались под угрозой.

 

В дополнение ко всему вышеперечисленному исследователям удалось извлечь генетический материал в форме дезоксирибонуклеиновой кислоты (более известной как ДНК) из почвенных и озерных отложений Северотихоокеанского региона. Так появилась потрясающая возможность воссоздать картину древней природы. ДНК, взятая из экскрементов, оставленных кочующими животными, показывает резкое снижение травяной растительности и рост мхов как раз в то время, когда исчезала мегафауна. В таком случае резкое изменение климата в Северной Америке представляется более логичной причиной вымирания животных, чем в Австралии.

 

Однако многие исследователи так не считают и склонны возлагать вину на человека. Впрочем, в Северной Америке сторонников и противников этой теории, не в пример австралийцам, примерно поровну. Вымирание происходило практически одновременно с серьезными климатическими изменениями и появлением человека.

 

В отличие от Австралии, Северная Америка всегда имела регулярное сообщение с Азией через Берингов пролив. Когда уровень моря понижался во время сменяющих друг друга ледниковых периодов, Берингов пролив становился перешейком, естественным мостом между двумя континентами, называемым Берингией. Известно, что современный человек появился в северовосточной Азии около 30 000 лет назад, однако тогда уровень моря был еще высок. Сухопутный мост в Беринговом проливе покоился под водой. Данные радиоуглеродного анализа свидетельствуют, что первые поселенцы перебрались на территорию современной Аляски примерно 13 000 лет назад — когда на исходе ледникового периода климат, видимо, потеплел достаточно, чтобы осваивать север Сибири и пересечь пролив, пока уровень моря снова не поднялся. Затем эти переселения внезапно прекратились. Несмотря на то, что льды начали таять 17 000 лет назад, большая часть Канады и севера США оставалась под ледником. Традиционно историки предполагали, что люди смогли пробраться в глубь континента, лишь когда растаяло достаточно льдов и образовался проход.

Автор: Admin | 2012-10-10 |

Льды наступают. Часть IV

В нашем мире все взаимосвязано и простое обновление обоев вашего рабочего стола может кардинально изменить вашу жизнь к лучшему!

Скачать красивые обои на любой вкус Вы сможете совершенно бесплатно на сайте www.nastol.com.ua.



Что нас ждет в будущем: глобальное потепление или новый Ледниковый период?

 

Чтобы представить себе, какие климатические перемены ждут нас в будущем, нужно иметь возможность изучать стремительные изменения, случавшиеся в прошлом. К сожалению, в отношении океана редко удается найти свидетельства быстрых климатических изменений, а когда таковые есть, сложно добиться точной датировки. Поэтому исследователи принялись прочесывать остальные части света в поисках мест, для которых есть детальные свидетельства климатических изменений. И вскоре их взоры обратились к полярным шапкам.

 

На полюсах ежегодно выпадающий снег сохраняется в виде ледяных слоев, накапливавшихся многие тысячи лет. Глубоко в этой толще тысячелетиями таятся самые разнообразные признаки климатических и природных изменений: пыль, кислотность, вулканический пепел, парниковые газы и изотопы. В Антарктиде удалось восстановить картину климатических изменений, охватывающую период 800000 лет. В ней отчетливо различаются циклы 100 000 лет, спрогнозированные орбитальной теорией. В Гренландии ледяная летопись позволяет углубиться в прошлое лишь на 123 000 лет, однако каждый ее год можно рассмотреть отдельно. В результате получается изумительно подробная реконструкция климатической картины данного региона, которую океан предоставить вряд ли смог бы.

 


Рис. 4. Температурные изменения в Гренландии за последние 90 000 лет.

Примечание. Периодизация вымирания мегафауны рассматривается в следующей главе.

 

Картина, впрочем, получается пугающая: гренландские льды показывают обширные и частые температурные сдвиги в период от 90000 до 11550 лет назад. Так называемые осцилляции Дансгора-Эшгера (см. рис. 4) — это резкие температурные колебания, по амплитуде схожие с переходом от ледникового периода к межледниковому, но в куда более сжатые сроки — несколько лет. Ничего подобного орбитальная теория, учитывающая изменения в обращении Земли вокруг Солнца, не предвидела и не описывала. В чем же дело?

 


Ключ к разгадке надо искать в ледовых слоях на глубине 8200 лет назад. Взятый оттуда 200-летний срез отражает таяние уходящих североамериканских ледников — крохотного охвостка последнего ледникового периода. Вся образовавшаяся в результате пресная вода устремилась в Северную Атлантику, легла слоем на поверхности океана и успешно предотвратила формирование холодной и более плотной морской воды. Как мы помним, образование глубинных более плотных и холодных слоев — часть общего океанского круговорота. И вот 8200 лет назад он почти замер от этого неожиданного, чуть не ставшего смертельным притока. Было нарушено течение Гольфстрима, несущего теплые воды на север, и в высоких широтах наступило резкое похолодание. Вот так и случился мини-ледниковый период в северной части планеты.

 

Если именно этим обусловлены осцилляции Дансгора-Эшгера, похоже, резкие перепады от холода к теплу и наоборот испытывают Землю на прочность куда чаще, чем мы думаем. Экстремальное воплощение эта идея получила в голливудском фильме 2004 г. «Послезавтра». Несмотря на фантастичность сюжета, если океан действительно острее реагирует на изменения, чем мы думали, таяние полярных льдов и вправду может почти мгновенно остановить тот самый круговорот-конвейер в Северной Атлантике, приведя к катастрофическим последствиям не только для северных широт, но, вероятно, и для всей планеты.

Автор: Admin | 2012-10-07 |

Льды наступают. Часть III

Организациям и частным лицам, чья деятельность так или иначе связана с металлургией, следует знать, что группа компаний «ВСК» оказывает услуги по металлообработке, в список которых входят: фрезерные, токарные, шлифовальные и расточные работы.

Получить более подробную информацию по ценам и видам оказываемых услуг можно на сайте www.vsk-service.ru.



Рис. 2. Самым крупным исландским ледником считается Ватнайёкюдль, который множество озер в числе которых Ёкюльсаурлоун , фотографию которого Вы можете видеть чуть ниже

 

В конце XIX в. было обнаружено, что во многих озерах, питаемых ледниковыми водами, образуется строго определенная картина донных отложений (рис. 2). Ледники редко состоят из чистого льда. Обычно они содержат большое количество минеральных вкраплений разного размера, которые попадают в тело ледника из перепаханного им рельефа. Весной и летом часть льдов тает, и вода с каменным крошевом стремится в прилегающие озера. Тяжелые частицы песка первыми оседают слоем на озерном дне. Затем, до следующей весны, по мере того как таяние убывает, на этот нижний, более грубый слой оседает более легкая и мелкая взвесь.

 

В это время шведский ученый Герард де Геер обнаружил слои такого рода в древних озерных отложениях на территориях, которые когда-то были покрыты ледниками. Он пришел к выводу, что регулярные отложения грубого и мелкого песка, как и годичные кольца у деревьев, отображают отдельные годы. Де Геер ввел термин «варва» (годичный слой отложений) и выдвинул мысль, что по этим слоям можно вычислить, сколько лет ледник питает озеро. Поскольку варвы зависят от количества растаявшего льда, толщина слоев меняется от года к году, от миллиметра до нескольких сантиметров. В соседних, сообщающихся озерах должна наблюдаться сходная картина отложений, поскольку питающие их ледники подвергались одним и тем же климатическим воздействиям. А значит, как и в дендрохронологии, можно создавать сравнительные и перекрестные шкалы.

 

С 1878 г. де Геер выводил на полевые исследования в шведские долины целые армии студентов, которые должны были сравнивать варвы озер, образовавшихся в местах отступления ледников в конце последнего ледникового периода. С тех пор озера успели высохнуть, и, к счастью для де Геера, их дно теперь прорезано ручьями и потоками, которые обнажили донные отложения. К 1910 г. ученый мог с уверенностью утверждать, что когда-то вся Скандинавия была покрыта огромной ледяной шапкой. Тут-то и вскрылась ошибочность датировки. Отступление ледников началось примерно 10000 лет назад, а не 80000, как предполагал Кролл, — в этом и состоял основной промах орбитальной теории.

Милутин Миланкович

 

Решить загадку оказалось под силу одному человеку — сербу по имени Милутин Миланкович, который большую часть Первой мировой войны провел за переосмыслением идей Кролла. В 1920 г. Миланкович вычислил совокупное воздействие эксцентричности, то есть изменения формы орбиты (в рамках 100 000 лет), нутации (за 41 000 лет) и прецессии равноденствий (за 26 000 лет) на количество солнечного тепла, полученного разными земными широтами за последний миллион лет. Миланкович считал, что ключ к разгадке надо искать в высоких широтах, в частности на 65° северной широты: именно там сильнее всего менялось количество получаемого солнечного тепла.

 

Самое главное открытие, позволившее Миланковичу сделать шаг вперед, состояло в следующем: он сообразил, что сохранению снежного покрова до следующей зимы способствовали низкие летние температуры. Только при значительном устойчивом снижении максимальных температур лед мог не таять и накапливаться. В этом Миланкович противоречил Адемару и Кроллу, утверждавшим, что начало ледникового периода обуславливают морозные зимы. Результат получился ошеломляющим. Вопреки прогнозам предшественников, считавших, что ледниковый период закончился 80 000 лет назад, Миланкович датировал отступление ледников 10000 лет назад, в полном соответствии с данными, полученными де Геером и другими.

 

Таким образом подтвердился возраст последнего ледникового периода, но как быть с остальными? Если ледники наступали не единожды, может ли орбитальная теория помочь в их датировке? Загвоздка состояла в том, что результаты расчетов никоим образом нельзя было перепроверить по земному рельефу. Последний ледник уничтожил почти весь рельеф, созданный своими предшественниками. Лишь кое-где остались крошечные следы их деятельности. Науке же требовалась непрерывная, уходящая в прошлое шкала, показывающая результаты работы ледников.

 

Ответ нашелся совсем не там, где его искали.

 

Давайте вкратце подведем итог того, что мы узнали. В конце XVII в. люди начали обращать внимание на странные, рифленые скальные поверхности в гористых районах Европы, а также камни, многие из которых отличались по геологическим характеристикам от окружающего ландшафта. В те времена большинство людей не сомневалось в их связи со Всемирным потопом, описанным в Книге Бытия. К 1840 г. Агассис пришел к выводу, что на самом деле это последствия Великого ледникового периода. В дальнейшем, с 1860 по 1910 г. первоначальная теория Агассиса была опровергнута, однако массовое наступление ледников в прошлом подтвердилось, и самый поздний из ледниковых периодов, как выяснилось, закончился 10 000 лет назад. Причины их возникновения тогда оставались неизвестными, однако к 1920-м гг. Миланкович доказал, что с большой долей вероятности ответ надо искать в том, как меняется обращение Земли вокруг Солнца на гигантских многотысячелетних промежутках времени. Но как определить время наступления более ранних ледниковых периодов, по-прежнему не знал никто.

 

До сих пор вся бурная исследовательская деятельность велась на суше. Океаном никто не интересовался. Лишь в начале 1930-х гг. научились, выходя на научно-исследовательских судах, бурить океанское дно длинными металлическими трубками и, взяв пробы грунта, исследовать отложения. Бытовало мнение, что океанская среда в последнее время оставалась практически неизменной.

 

С этим мнением пришлось расстаться в 1955 г., когда итальянцу Чезаре Эмилиани пришло в голову взглянуть на раковины фораминифер, сохранившихся в течении сотен тысяч лет в пробах грунта с океанского дна. Эти крохотные создания обитают в океанской толще на разной глубине, и после смерти их раковины погружаются в донный ил. Эмилиани предположил, что по стабильным изотопам, сохранившимся в фораминиферах, можно попытаться определить, каким был климат в прошлом.

 

Изотопы, как мы помним, это атомы с одинаковым содержанием протонов, отличающиеся по количеству нейтронов. Несмотря на то, что до сих пор мы в основном рассматривали радиоактивные формы, стабильных изотопов на самом деле большинство. Поэтому, как только изотоп усваивается организмом, соотношение одного стабильного изотопа к другому остается неизменным. Сколько бы времени ни прошло, показатели стабильных изотопов должны остаться прежними.

 

Эмилиани пытался реконструировать древние температуры по двум стабильным изотопам кислорода — 16O и 18O. Для наглядности представьте себе их в виде двух шаров разного веса. 18O будет чуть тяжелее — на два нейтрона, однако в химических реакциях оба будут вести себя абсолютно одинаково.

 

Прелесть использования фораминифер в том, что они получают кислород непосредственно из океанской воды и он идет на строительство их раковин из карбоната кальция. Исследования современных фораминифер показали, что, как только температура воды понижается, они начинают усваивать больше изотопов тяжелого кислорода — так называемая «положительная» тенденция. По мере потепления, наоборот, усваивается больше легкого кислорода, и фораминиферы становятся «отрицательными». Рассмотрев соотношение различных форм кислорода в раковинах фораминифер из донных проб, Эмилиани пришел в изумление: за последние 300 000 лет наблюдалась явная смена холодного и теплого климата. Форма температурной кривой совпадала с прогнозами, сделанными на основе орбитальной теории. Выходит, Миланкович был прав?

 

Но не все так просто. Действительно ли изотопы в фораминиферах отмечают температурные изменения? Исследования современных фораминифер это подтверждают, однако как обстояло дело во время древних ледниковых периодов? Не изменились ли с тех времен правила игры?

 

Ледниковый период отличается не только похолоданием, но и уменьшением испарения с поверхности океана. Чем дальше, тем больше тяжелых молекул воды остается в океане, поскольку молекулам, состоящим из легкого кислорода, испаряться в таких условиях легче. В высоких широтах эта испарившаяся влага конденсируется и выпадает в виде снега, формируя пространный ледяной покров. Другими словами, из океана извлекается преимущественно 16O, который затем запирается в ледяной корке, а в океанской воде повышается содержание 18O. Однако в межледниковый период все происходит с точностью до наоборот. В результате потепления с влагой испаряется больше тяжелого кислорода, а лед тем временем тает, возвращая обратно в океан скованный 18O. В результате содержание 18O в океанской воде падает. Таким образом, показатели содержания изотопов кислорода в фораминиферах за протяженные временные периоды можно мерить по объемам льда.

 

В 1960-х американец Джон Имбри и британец Ник Шеклтон выступили с предположением, что пробы, взятые очень близко к полюсам, будут отражать одновременно и температурные изменения, и изменения объема льда. Однако, как ни странно, самую достоверную картину давно растаявших льдов, по их словам, надо искать вовсе не там, а в океанских отложениях тропических широт. Океан — это огромный конвейер, перемещающий теплые поверхностные слои воды в Северную Атлантику (теплое течение Гольфстрим) и возвращающий их холодными, более плотными глубинными течениями. Со временем, через несколько столетий, эти глубинные слои поднимаются на поверхность в процессе апвеллинга, который завершает весь цикл. Благодаря этим процессам океанские воды отлично перемешиваются. Когда лед на полюсах тает, перемены в содержании изотопа кислорода быстро распространяются на весь мировой океан и воспринимаются фораминиферами, строящими свои раковины. А поскольку температура в тропиках за прошедшее время менялась гораздо меньше, тропические фораминиферы покажут, фактически, только изменения объема льдов.

 

Впрочем, выводы о температурных изменениях, полученные Эмилиани на основе кривой содержания изотопов кислорода, — это еще не все. Проблема в том, что океанские донные отложения накапливаются в большинстве своем слишком медленно, чтобы проверить по ним расчеты орбитальной теории на циклы в 100 000, 41 000 и 26 000 лет.

 


Рис. 3. Изменения объемов льда и солнечного излучения за последние 600 000 лет

 

В середине 1970-х все внимание ученых было приковано к двум пробам донного грунта из Индийского океана. Судя по изменениям в магнитном поле Земли и радиоуглеродному анализу фораминифер из проб, в этих местах оказалась необычайно высокая скорость отложения наносов. Следовательно, эти пробы можно было анализировать по более узким временным интервалам, чем остальные. Значит ли это, что нашлась возможность проверить орбитальную теорию? Извлеченные фораминиферы подвергли анализу на изотопы кислорода. Научное сообщество замерло в ожидании. Полученные в результате анализа изменения объемов льда полностью совпали с прогнозами орбитальной теории (см. рис. 3), подтвердив циклы эксцентричности, нутации и прецессии. Наконец было напрямую доказано, что ледниковые периоды обусловлены изменениями в обращении Земли вокруг Солнца. Адемар, Кролл и Миланкович оказались в конечном итоге правы.

Автор: Admin | 2012-10-07 |
9 страница из 22« Первая...5678910111213...20...Последняя »

GIF
Видео
Видео
Все обо всем
Забавно!
Иллюстрированные факты
Искусство
Истории
Все размещенные на сайте материалы без указания первоисточника являются авторскими. Любая перепечатка информации с данного сайта должна сопровождаться ссылкой, ведущей на www.unnatural.ru.