Необычный

Основные компоненты межзвездной среды

Основные компоненты межзвездной среды (МЗС)

 

Подавляющая часть объема Галактики и других галактик занята межзвездной средой -материей, заполняющей пространство между звездами внутри галактик. Именно из межзвездной среды рождаются звезды и окружающие их протопланетные диски, а затем планетные системы. Причем на ранних стадиях образования звезд и протопланетных дисков молекулярный состав вещества сохраняется таким, каким он был в наиболее холодных участках межзвездной среды, из которых образуются протозвезды.

Основные компоненты межзвездной среды приведены в табл. 3. Заметим, что все эти компоненты существуют не сами по себе, а любая их пара взаимосвязана, причем в большинстве случаев взаимодействие сильное. Поскольку в межзвездной среде осуществляется примерное равенство плотности энергии движений газа (кинетической энергии), магнитного поля и заряженных частиц (космических лучей), межзвездная среда представляет собой очень сложно структурированный, динамичный объект (см., напр., Бочкарев, 1985).

 

Таблица 3. Основные компоненты межзвездной среды

1. 

Газ (атомы, молекулы, ионы, электроны) 

~ 99% массы 

2. 

Пыль 

~ 1% массы 

3. 

Магнитные поля 

~ 0% массы 

4. 

Космические лучи 

~ 0% массы 

5. 

Электромагнитное излучение

~ 0% массы 

 

 

Дефицит тяжелых элементов в межзвездном газе

 

Содержание элементов в газовой фазе межзвездной среды заметно отличается от указанной в табл. 2 средней распространенности: наблюдается дефицит тяжелых элементов, достигающий для Fe, Ni, Ti, Са, AI трех порядков величины. На рис. 1 видно, что величина дефицита зависит от температуры Тс его конденсации, т. е. перехода из газообразной в твердую фазу с образованием межзвездных пылинок.

 


Рис. 1. Зависимость дефицита элементов в межзвездном газе от температуры их конденсации Т. (образования пыли). Высоты баров указывают на степень неопределенности данных. По вертикальной оси отложен десятичный логарифм относительного содержания элементов (по отношению к водороду), отнесенный к соответствующей величине в солнечной фотосфере.

 

Поэтому величина дефицита элементов в газе дает информацию о составе межзвездной пыли. Суммарный дефицит тяжелых элементов в газовой фазе составляет ~1 % массы газа, что соответствует доли массы межзвездной пыли в межзвездной среде (табл. 3).

 

Наблюдения молекул

 

Межзвездное пространство пронизано ультрафиолетовым излучением горячих звезд. Поэтому в незащищенных от ультрафиолетового излучения областях межзвездной среды молекулы быстро разрушаются, так что их равновесное содержание очень мало. Поэтому в большом количестве молекулы присутствуют только в молекулярных облаках. Молекулярные облака — это плотные участки межзвездной среды, в которых пылинки, равномерно перемешенные с газом, ослабляют ультрафиолетовое излучение горячих звезд в тысячи, миллионы и более раз. Однако концентрация частиц газа в этих «плотных» участках составляет всего лишь ~103 см 3 (плотность ~10-21 г/см3). Такие участки межзвездной среды являются наиболее холодными. Их температура обычно составляет 10-30 К. Именно в такой «криогенной», разреженной космической среде находится большинство космических молекул.

В основном наблюдается собственное излучение молекул. При столь низких температурах тепловое излучение вещества имеет место только в радио- и субмиллиметровом спектральных диапазонах. Но как раз в эти спектральные диапазоны попадает огромное количество молекулярных линий, прежде всего вращательных переходов (рис. 2). При температурах 10-100 К молекулы не создают молекулярные полосы, содержащие большое количество спектральных линий. Их спектры просты. Специфика используемых астрономами в этих диапазонах радиофизических методов измерения позволяет реализовывать очень высокое спектральное разрешение λ/∆ λ =106-108. Это дает возможность не только однозначно отождествлять по набору спектральных линий молекулы и молекулярные ионы, но и легко различать их изотопические варианты. Из радиоспектров удается извлекать разнообразную информацию: распределение содержания различных молекул и молекулярных ионов внутри молекулярных облаков; распределение температуры и плотности вещества в них; детально изучать движения газа в разных местах облака (см., напр., Бочкарёв, 2009). Все это позволяет подробно исследовать области звездообразования и изучать процессы, приводящие к рождению звезд.

В табл. 4 приведен список надежно отождествленных к концу 2000 г. 126 различных молекул и молекулярных ионов в межзвездном газе, в околозвездных оболочках и кометах. Видно, что преобладают углеродосодержащие, предбиологические соединения. В основном наблюдаются линейные молекулы, хотя есть и кольцевые типа С3. Самые длинные из обнаруженных молекул — цианополиины до HC11N, включительно.

 


Рис. 2. Характерный вид спектра излучения молекулярного облака в коротковолновой части радиодиапазона. Показан участок спектра от 1.14 мм до 1.45 мм (207-263 ГГц), содержащий около 900 молекулярных линий, в основном соответствующих вращательным переходам тяжелых молекул. Такие спектры дают возможность разнообразной диагностики молекулярных облаков: распределения внутри облака содержания молекул, кинематики движений, температуры и плотности газа.

 

После 2000 г. была открыта группа отрицательных молекулярных ионов: С4Н, С6Н, С8Н. Обнаружены новые сложные молекулы, в том числе CH2CCHCN, CH3CCCN, CH3C5N, CH3C6N и ряд более простых молекул.

Как и цианополиины, эти молекулы говорят о том, что в межзвездной среде имеются длинные углеродные цепочки. Однако обнаружить их можно только тогда, когда к одному концу углеродной цепочки прикрепляется какой-нибудь атом или ион, либо к обоим концам присоединяются разные атомы, как в цианополиинах. В этих случаях дипольные моменты молекул становятся отличными от нуля и молекулы оказываются способны интенсивно излучать в радиолиниях.

Двухатомные симметричные молекулы, такие как Н2, N2 , O2, образуются в молекулярных облаках в большом количестве, но наблюдать их очень трудно. Нулевой дипольный момент приводит к отсутствию у них разрешенных спектральных линий. Это исключает их изучения методами радиоастрономии. Другая возможность — это поиск в спектрах звезд, наблюдаемых сквозь молекулярные облака, межзвездных линий поглощения таких молекул, возникающих при электронных переходах. Однако холодный газ молекулярных облаков способен создать только слабые линии поглощения, лежащие за редким исключением в далекой части ультрафиолетового (УФ) диапазона (длины волн около 1000 А), там, где очень велико поглощения света межзвездной пылью. Реально провести такие наблюдения удалось в основном для молекулярного водорода и для молекул С2. Последние имеют подходящий электронный переход вблизи 1 мкм, где пыль поглощает слабо.

Из вышесказанного следует, что, если какая-либо молекула не наблюдается, еще не означает, что она не образуется или отсутствует в МЗС. Надо проверять возможность ее наблюдать. Во многих случаях целесообразно привлекать численное моделирование химических процессов в меж-

 

Таблица 4. Список 126 молекул, обнаруженных к ноябрю 2000 г. в газовой фазе в межзвездном, околозвездном и кометном веществе

2

AlF 

 

АlСl

 

C2

CH 

 

CH+ 

 

CN 

 

CN+ 

 

СО 

 

CO+ 

CP 

 

CS 

 

CSi 

 

Н2

 

НСl

 

HF 

KCl 

 

LiH 

 

N2+

 

NH 

 

NO 

 

NS 

NaCl 

 

OH 

 

OH+ 

                     
 

PN 

 

S2

 

SH 

SO 

 

SO+ 

 

SiN 

 

SiO 

 

SiS 

             

3 

С3

 

C2H

 

C2O

C2S

 

CH2

 

CO2

                     
 

HCN 

 

HCO 

 

HCO+ 

HCS+ 

 

H3
+

 

HOC+ 

 

Н20

 

H2S

 

HNC

HNO 

 

MgCN 

 

MgNC 

 

NH2

 

N2H+

 

N20

NaCN 

 

OCS 

 

SO2

 

c-SiC2

                 

4 

с-С3Н

 

l-C3H

 

C3N

C3O

 

C3S

 

C2H2

 

СН3

 

HCCN 

 

HCNH+ 

HNCO 

 

HNCS 

 

HOCO+ 

                     
 

Н2СО

 

H2CN

 

H2CS

H3O+ 

 

NH3

 

SiC3

5 

C5

 

C4H

 

C4Si

l-C3H2

 

c-C3H2

 

CH2CN

 

CH4

 

HC3N

 

HC2NC

HCOOH 

 

H2CHN

 

H2COH+

 

H2C2O

 

H2NCN

 

HNC3

SiH4

       

6 

С5Н

 

с2нц

 

CH3CN

CH3NC

 

CH3OH


 

CH3SH

 

НС4Н

 

hc3nh+

 

HC3HO

HCONH2


 

l-H2C4

 

C5N

7 

C6H

 

CH2CHCN

 

CH3C2H

HC5N

 

HCOCH5


 

NH2CH3

 

С2Н4O

                 

8 

СН2ОНСНО

 

CH3COOH 


 

CH3C3N 

HCOOCH3 


 

C7H

 

HC6H

 

H2C6

                 
                     

9 

CH3C4H

 

CH3CH2CN


 

(CH3)2O

CH3CH2OH HC7N

HC7N

 

C8H

10 

(СН3)2 СО

                 

11 

HC9N

                 

13 

HC11N

                 

В левой колонке указано число атомов в молекуле. Буквой «с» отмечены циклические молекулы, буквой «l» — линейные.

 

При таком моделировании также возникает немало проблем. Обсуждение вопросов, связанных с межзвездной химией, можно найти в работах автора (Бочкарёв, 2009) и других исследователей (Каплан, Пикельнер, 1979; Далгарно, 1979, 1986; Tielens, 2005; Lemaire, Combes, 2007).

Многие молекулы обнаружены в сотнях и тысячах различных объектов, хотя большинство других удалось пока наблюдать лишь в нескольких наиболее изученных молекулярных облаках. Чувствительность современных радиоастрономических измерений позволяет изучать молекулы не только в нашей Галактике, но и в других галактиках. В настоящее время в других галактиках найдено около 50 различных молекул. Наша Галактика не уникальна по количеству межзвездного вещества в молекулярной форме. Есть галактики, у которых доля массы, приходящаяся на молекулы, как заметно больше, так и значительно меньше, чем в Галактике.

На рис. 3 приведена схема строения молекулярного облака. Показано, что УФ излучение звезд проникает в облако и постепенно ослабляется (UV на рис. 3).

 


Рис. 3. Схема строения молекулярного облака

 


Рис. 4. Относительные содержания молекул в молекулярных облаках.

Для каждой из молекул, перечисленных в нижней части рисунка, приведены десятичные логарифмы содержаний молекул относительно Н2 (по числу молекул) в четырех хорошо изученных молекулярных облаках. Названия облаков указаны в правой верхней части рисунка.

 

По мере ослабления этого излучения по направлению к центру облака падает температура и растет плотность вещества. Положительно заряженные атомарные и молекулярные ионы постепенно сменяются нейтральными атомами и молекулами. От гравитационного коллапса облако удерживают внутренние движения и магнитные поля. Тем не менее, отдельные сгустки молекулярного облака способны превращаться в звезды. Молодые маломассивные звезды типа Т Тельца (схематически показаны в центре рисунка) своим излучением вызывают подогрев внутренних частей молекулярного облака, поддерживают «энергетику» химических реакций и сбрасывают часть молекул, намерзших на пылинки, в газовую фазу.

Относительные содержания молекул в четырех молекулярных облаках показано на рис. 4. Они сравнительно мало меняются от облака к облаку. Естественно, наиболее велико содержание молекулярного водорода Н2. Но эта молекула трудна для наблюдения, поскольку не имеет дипольного момента и, соответственно, сильных спектральных линий. Второе место занимают молекулы угарного газа СО. С точностью до ошибок измерений во всех облаках количество молекул СО составляет – 10-4 числа молекул Н2. Молекула СО легко наблюдается по сильным и удобным для измерений эмиссионным (реже абсорбционным) вращательным радиолиниям λ = 2.6 мм и λ = 1.3 мм, принадлежащим 5 изотопическим вариантам этой молекулы. Содержание более сложных молекул мало зависит от их сложности и колеблется в пределах 10-7 – 10-9 количества молекул Н2.


Рис. 5. ИК полосы — источник информации о молекулах, из которых состоят межзвездные пылинки. По горизонтальной оси — длины волн в микронах; по вертикальной оси — спектральные плотности потоков излучения в янских (1 Ян = 10-23 Вт/м2 Гц) от области звездообразования W33A. Указаны отождествления полос поглощения. Символом X обозначен неоднозначно определяемый фрагмент молекулы.

Таблица 5. Инфракрасные полосы в спектрах межзвездной пыли и образующие их вещества

 

Тугоплавкие составляющие

Вещества 

Полосы 

Аморфные силикаты Аморфный углерод Кристаллические силикаты 

9.7 и 18 мкм 0.218 мкм много 

 

Льды

Вещества 

Полосы 

Вещества 

Полосы 

Н20

3.0 μm stretch

CH3OH

3.54 μm С-Н stretch

Н20

6.0 μm

CH3OH

3.9 μm combination

Н20

10 μm libration

CH3OH

2.4 μm overtone

Н20

44 μm

СН3ОН

9.7 μm C-O stretch

HDO 

4.1 μm stretch

CH3OH

8.9 μm CH3-rocking

СО 

4.67 μm polar

CH5OH

6.8 μm CH and OH deformation 

СО 

4.67 μm apolar

XCN 

4.62 μm

С02

4.27 μm stretch

Н2

2.415 μm

со2

15.3 μm bend

NH3

9.009 μm inversion

DCS 

4.9 μm

NH3

6.158 μm NH deformation

СП, 

7.67 μm

Н2СО

5.81 μm v2

   

HCOOH 

7.24 μm

Приведены длины волн полос в микронах. Для льдов также указаны типы колебаний молекул, ответственных за образование полос. Символом X обозначен неоднозначно определяемый фрагмент молекулы.


На сайте ca.skbkontur.ru Вы сможете заказать нескольких типов электронных цифровых подписей, которые позволят вам принимать участие в: торгах по продаже имущества банкротов, госзаказах, имущественных торгах или самостоятельно торговать на всех доступных площадках.

Автор: Admin | 2011-12-04 |

Космологическая эволюция и космическая распространенность химических элементов

Космологическая эволюция и космическая распространенность химических элементов

 

Вопрос о том, какие молекулы могут образовываться, определяется не только физическими условиями и химическими свойствами веществ, но и тем, какое их количество содержится в космическом веществе. Содержание химических элементов в космосе определяется эволюцией окружающего нас мира — Вселенной, и несет в себе информацию об этой эволюции.

Вселенная образовалась около 15 млрд. лет назад в результате Большого взрыва. Ядра атомов водорода и гелия возникли в первые минуты расширения Вселенной. Сотни тысяч лет спустя вещество остыло до температуры, когда атомы Н и Не стали нейтральными. Углеродом и следующими за ним в периодической системе химическими элементами (часто называемыми в отличие от Н и Не тяжелыми элементами или металлами) космическое вещество начало обогащаться на миллиард лет позже, когда во Вселенной сформировались первые звезды. Они были массивными, короткоживущими (<10 млн. лет) и до наших дней не сохранились. В конце своей эволюции они выбросили в окружающий газ продукты происходившего внутри них термоядерного горения — углерод и более тяжелые элементы.

Около 12-13 млрд. лет назад, когда содержание тяжелых элементов достигло уровня ~10-4-10-5 от современного, образовались самые старые из наблюдаемых сейчас звезд и содержащие их галактики (включая нашу Галактику). По мере завершения своей эволюции эти звезды продолжали обогащать межзвездный газ внутри галактик тяжелыми элементами. Чем меньше масса звезды, тем медленнее она эволюционирует и тем дольше живет.

Последующие поколения звезд формировались из межзвездного вещества с все большим содержанием тяжелых элементов по отношению к водороду и гелию. Солнце родилось около 5 млрд. лет назад из межзвездного вещества, 2 % массы которого составляли химические элементы тяжелее гелия. Сейчас межзвездное вещество, сосредоточенное в основном в диске нашей Галактики (наблюдаемом как Млечный путь), содержит около 4 % тяжелых элементов, т. е. вдвое больше, чем при образовании Солнца.

В межзвездной среде Галактики наблюдаются сравнительно небольшие вариации содержания углерода и более тяжелых элементов, по-видимому, не превышающие примерно 3-4 раз. Основная доля объема Галактики и других галактик, как и большинство астрономических объектов в галактиках (кроме старых звезд), а также вне галактик, имеют более или менее универсальное содержание элементов, характерное для атмосферы Солнца. Относительное содержание наиболее распространенных элементов (по числу атомов, а не в долях массы) представлено в табл. 1. Содержание элементов тяжелее железа мало, < 10-5 по числу атомов.

Из старых звезд к настоящему времени не успели завершить эволюцию лишь звезды с массами менее ~0.8 массы Солнца. Элементный состав их атмосфер не изменился, т. е. содержание углерода, кислорода и других элементов в атмосферах старых звезд очень мало.

Исследование экзосолнечных планет указывает, что для образования планет необходимо достаточно высокое содержание тяжелых элементов. У звезд, содержащих примерно втрое меньше тяжелых элементов, чем на Солнце, пока планеты не обнаружены. Заметим, что в атмосферах небольшой части звезд, более горячих, чем Солнце, имеются сильные отклонения содержания отдельных элементов от средней космической распространенности, прежде всего, избытки редких элементов — бария, ртути, лантанидов. Хотя эти избытки могут достигать 5 и даже иногда 6 порядков величины, они, по-видимому, не представляют интереса для темы данного обзора. После исчерпания ядерного топлива звезды сбрасывают значительную часть своей массы либо плавно, создавая околозвездные оболочки и так называемые планетарные туманности (название историческое, к планетам отношения не имеет), либо при взрыве звезды, наблюдаемой как явление сверхновой звезды. Центральная часть заканчивающей свою эволюцию звезды превращается в очень плотный объект: белый карлик, нейтронную звезду или черную дыру. Сброшенное вещество содержит продукты ядерной переработки, т. е. обогащено тяжелыми элементами, и пополняет ими межзвездную среду в галактиках. Обогащение элементами группы железа и более тяжелыми происходит практически только при взрывах сверхновых.

Звезды около 90 % времени своей эволюции проводят на стадии главной последовательности, когда в их недрах идут ядерные реакции горения водорода и образования гелия. После исчерпания в ядре звезды водородного топлива ядро сжимается, а внешние части звезды расширяются. Диаметр звезды возрастает во много раз, а температура поверхности падает — звезда становится красным гигантом или сверхгигантом с температурой поверхности Т < 4000 К. Этот этап занимает около 10 % всего времени активной жизни звезды — пока в ее недрах происходят экзотермические ядерные реакции (ядерная эволюция). В ядрах красных гигантов и сверхгигантов гелий превращается в углерод и более тяжелые элементы (иногда вплоть до железа). Преимущественно образуются четно-четные изотопы (см. примечание к табл. 1).

Тем временем внешние части звезды медленно (со скоростью ~10-50 км/с) разлетаются, создавая охлаждающуюся при расширении околозвездную оболочку — идеальное место для интенсивного образования как сложных молекул (в том числе, вероятно, фуллеренов С60 и др.), а также формирования наночастиц — тугоплавких зерен размером примерно до 100 нм.

 

Таблица 1. «Нормальное» содержание элементов в космическом веществе по числу атомов относительно водорода, соответствующее составу атмосферы Солнца

Атомный 

Элемент 

Распростра- 

Атомный 

Элемент 

Распростра- 

номер 

 

ненность 

номер 

 

ненность 

1 

Н 

1 

12 

Mg 

2.6 х 10-5

2 

Не 

0.1 

14 

Si 

3.3 х 10-5

6 

С 

3.3 х 10-4

16 

S 

1.6 х 10-5

7 

N 

0.9 х 10-4

18 

Аr

0.6 х 10-5

8 

О 

6.6 х 10-4

20 

Ca 

0.2 х 10-5

10 

Ne 

0.8 х 10-4

26 

Fe 

4.0 х 10-5

В природе преобладают четно-четные изотопы четных элементов: 12С, 16O,20Ne, 24Mg, 28Si, 32S, …, 56Fe …

 

Расширение околозвездных оболочек приводит к выносу молекул и пылинок в окружающую межзвездную среду.

При догорании гелия ядро одиночной звезды (не являющейся компонентом тесной двойной звездной системы) с массой меньше ~10 масс Солнца сжимается, превращаясь в горячий белый карлик. Часть образованных в ядре тяжелых элементов выносится расширяющейся оболочкой в межзвездную среду.

Эволюция более массивных звезд и некоторых маломассивных двойных звездных систем завершается мощным взрывом и образованием нейтронных звезд и черных дыр. Взрыв, наблюдаемый как явление сверхновой звезды, сопровождается образованием всех элементов тяжелее железа вплоть до трансурановых и выносом их ударной волной наружу в межзвездное пространство.

Из обогащенного тяжелыми элементами межзвездного газа рождается новое поколение звезд. Такой круговорот вещества в галактиках приводит к постепенному обогащению Вселенной элементами тяжелее гелия.

Поскольку звезды образуются не поодиночке, а группами (скоплениями, ассоциациями, комплексами) в так называемых очагах звездообразования, наиболее массивные из родившихся совместно звезд успевают взорваться как сверхновые и «запачкать продуктами своей жизнедеятельности» протопланетные диски близлежащих звезд солнечной массы и менее массивных. Вероятно, такому воздействию подверглась на ранних этапах своего развития Солнечная система.

Обсуждавшаяся на совещании интенсивная астероидная бомбардировка «молодой» Земли могла произойти в результате прохождения одной из звезд вблизи Солнечной системы. Вероятно, это была одна из звезд, родившихся одновременно с Солнцем в том же очаге звездообразования.

Автор: Admin | 2011-12-03 |

МОЛЕКУЛЫ И ИХ МИГРАЦИЯ ВО ВСЕЛЕННОЙ

МОЛЕКУЛЫ И ИХ МИГРАЦИЯ ВО ВСЕЛЕННОЙ

©2009 г. Н.Г. Бочкарёв

Государственный астрономический институт им. П.К. Штернберга МГУ

 

В статье кратко описан набор молекул, наблюдаемых в различных астрономических объектах (исключая планеты Солнечной системы и их спутники), главным образом, в межзвездной среде. Рассмотрены различные механизмы пространственной миграции молекул с переносом молекулярных соединений от одной планетной (протопланетной) системы к другой. Показано, что за космологическое время перенос молекул возможен на расстояния до 100 млн. световых лет. Кратко обсуждена гипотеза Ф. Хойла и Ч. Викрамасинга о биологической природе некоторых межзвездных пылинок.

 

ВВЕДЕНИЕ

 

Астрономы обычно рассматривают научные проблемы с самых широких позиций. Проблема происхождения жизни — не исключение. Оказалось, что многие особенности строения Вселенной и физических законов, которые в ней реализуются, могут быть объяснены так называемым «антропным принципом», согласно которому мы видим Вселенную именно такой, какая она есть, потому что будь она другой, ее, возможно, некому было бы видеть. И это не просто слова, а достаточно подробные исследования того, каковы должны быть физические законы, чтобы смогли сформироваться и быть устойчивыми атомы, молекулы, звезды и другие структуры во Вселенной, необходимые для появления и развития жизни [см., напр., книгу И.Л. Розенталя (1984)]. Для этого, например, нужно, чтобы пространство было трехмерным, а время одномерным. Жизнь на углеродной основе была бы невозможна, если бы энергия резонанса ядерной реакции образования углерода путем слияния трех альфа-частиц (3х4Не → 12С) отличалась от существующего значения всего на миллиардные доли своей величины. В этом случае в природе практически не было бы углерода.

В междисциплинарной кооперации с самых широких позиций обсуждаются возможности существования иных форм жизни, вопросы о том, на каких астрономических объектах могут быть условия, подходящие для жизни вообще и для образования высших форм жизни. Рассматриваются возможные пути эволюции внеземных цивилизаций, их поиска (SETI — Search for Extraterrestrial Intelligence) и связи с ними (CETI — Communication with Extraterrestrial Intelligence), см. монографии И.С. Шкловского (1987), Д. Голдсмита и Т. Оуэна (1983), Л.М. Гиндилиса (2004). Для обсуждения этого круга вопросов в Международном астрономическом союзе, объединяющем около половины всех профессиональных астрономов мира, была создана комиссия № 51 по биоастрономии. В мире работают несколько научных учреждений этого профиля. Однако в целом эта тематика пока составляет очень малую часть астрономических исследований.

Совещание «Проблемы происхождения жизни» рассматривало более узкую проблему -происхождение земной жизни. Успехи палеонтологии показывают, что одноклеточные организмы появились на Земле около 4 млрд. лет назад, по-видимому, в течение всего ~100 млн. лет, что может оказаться недостаточным для возникновения столь сложных образований. Это привело к возрождению интереса к гипотезе панспермии — занесения на Землю жизни из космоса. Хотя эта гипотеза не решает проблемы происхождения жизни, она облегчает ее, увеличивая количество потенциальных мест зарождения жизни во много раз. Из каких мест и как возможен перенос жизни — это вопрос в основном к астрономам. В настоящее время еще невозможно делать надежные оценки и приходится ограничиваться в основном качественными суждениями.

Оргкомитет совещания просил рассказать о молекулах в космосе и возможных путях миграции сложных молекул во Вселенной. Ниже эта проблема освещена максимально широко, хотя, возможно, не все излагаемые вопросы будут немедленно востребованы участниками совещания. Мы не будем касаться образования и миграции молекул в пределах Солнечной системы, в том числе во время ее формирования из протопланетного диска, так как эти вопросы освещены в других докладах.

 

 

МОЛЕКУЛЫ В КОСМОСЕ: космические объекты, в которых обнаружены или могут существовать молекулы

 

В табл. 1 приведен набор космических объектов и типы среды, в которых изучаются молекулы. Знаком «+» указано, что молекулы изучаются (наблюдаются или хотя бы предсказаны теоретически); «(+)» — можно ожидать молекулы. Здесь границы фаз — это преимущественно поверхности пылевых частиц, а также границы между твердой (или жидкой) поверхностью небесного тела и его атмосферой. Твердое тело — тело планеты или иного космического объекта, включая кору нейтронных звезд, а также пылевые частицы.

Жидкая фаза известна лишь на Земле и нескольких спутниках планет. Марс также хранит следы жидкой фазы, но там она, по-видимому, исчезла, по крайней мере, 2-3 млрд. лет назад. Не исключена возможность того, что жидкая вода могла или даже может сейчас присутствовать во внутренних частях наиболее крупных кометных ядер (Цицин, Чепурова, 2003), а также ледяных астероидов, найденных во внешнем поясе астероидов — поясе Койпера. Предполагается, источником нагрева служит распад радиоактивных изотопов.

За пределами Земли, ее атмосферы, Луны, а также метеоритов пока не удалось отождествить молекулы, содержащие более 13 атомов, хотя имеются косвенные признаки существования более сложных соединений, содержащих примерно от 20 до 60, а возможно, и больше атомов.

 

Таблица 1. Объекты и типы среды, в которых изучаются молекулы (Бочкарёв, 2006)

Типы среды 

Планеты

н их спутники 

Кометы; межпланетная среда 

Солнце холодн. звезды (G,K,M…BD)

Нейтронные звезды 

Околозв. обол.: М, Of,WRJ4,SN

мзс 

Межгалактическая среда

AGN OSO 

Ранняя Вселенная 

Плазма 

+ 

+ 

+ 

 

(+) 

+ 

(+) 

(+) 

+ 

Нейтр. газ 

+ 

+ 

± 

 

+ 

+ 

+ 

+ 

+ 

Граница фаз 

+ 

(+) 

 

(+) 

(+) 

+ 

(+) 

(«) 

 

Жидкость 

+ 

 

 

 

 

 

 

 

 

Твердое тело 

+ 

+ 

 

(+) 

+ 

+ 

(+) 

+ 

(-)

BD — коричневые карлики; МЗС — межзвездная среда; AGN, QSO — активные ядра галактик, квазары; WR — звезды Вольфа-Райе; N — новые звезды; SN — сверхновые звезды; Of — горячие звезды высокой светимости с сильным истечением вещества (звездным ветром); G, К, М — спектральные классы звезд.

 

 

Где можно ожидать присутствие сложных молекул?

 

Ниже перечислены виды объектов, на которых обнаружено или может ожидаться присутствие сложных молекул (в том числе углеродосодержащих). Планеты и их спутники, имеющие атмосферу;

• Ядра комет и ледяные астероиды;

• Астероиды и метеоритные тела типа углистых хондритов;

• Протозвездные, околозвездные и протопланетные диски; Околозвездные оболочки вокруг холодных звезд с интенсивным истечением вещества;

• Газовая и конденсированная (пылевая) компоненты молекулярных облаков; Межзвездные пылинки;

• Атмосферы наиболее холодных звезд:

— остывших до Т = 300-500 К белых карликов;

— холодных нейтронных звезд (?).

Белые карлики и нейтронные звезды являются заключительными этапами ядерной эволюции звезд. Они рождаются горячими, но не имеют источников нагрева и со временем остывают, становясь трудно обнаружимыми. Поэтому компактные звезды этих типов, достаточно холодные для образования на них сложных молекул, пока не найдены, хотя их должно быть много.


Не хотите отнимать у своего ребенка веру в чудеса, тогда заказ деда мороза на дом на сайте www.red-nose.ru и будьте уверены, что эти новогодние праздники станут для вашего малыша настоящим путешествием в мир сказки.

Автор: Admin | 2011-12-03 |

ФАКТОРЫ, ОГРАНИЧИВАЮЩИЕ ВОЗНИКНОВЕНИЕ, СУЩЕСТВОВАНИЕ И ЭВОЛЮЦИЮ ЖИЗНИ НА ПЛАНЕТАХ, ПОДОБНЫХ ЗЕМЛЕ

ФАКТОРЫ, ОГРАНИЧИВАЮЩИЕ ВОЗНИКНОВЕНИЕ, СУЩЕСТВОВАНИЕ И ЭВОЛЮЦИЮ ЖИЗНИ НА ПЛАНЕТАХ, ПОДОБНЫХ ЗЕМЛЕ

 

В марте 2009 г. на орбиту спутника Земли выведен аппарат «Кер1ег» (США), предназначенный для поиска экзопланет, обладающих комфортными для возникновения жизни условиями. «Комфортность» физических условий понимается применительно именно к нашей, амино-нуклеино-кислотной форме жизни. В качестве вероятной среды обитания приняты гипотетические планеты, аналогичные группе Земли. Планеты-гиганты (газо-жидкой природы), если не принимать всерьез некоторые фантастические гипотезы, требованиям земной биосферы не удовлетворяют. Однако таким требованиям могут отвечать спутники планет-гигантов.

В литературе обычно приводятся следующие ограничения: с одной стороны, существование жидкой воды, с другой — конденсация углекислого газа (что в подавляющем большинстве случаев не позволяет развиться парниковому эффекту). С учетом последнего, такая зона охватывает интервал планетных орбит от уровня «саморазгоняющегося» парникового эффекта (для Солнечной системы это случай Венеры), до, примерно, орбиты Марса. Оба ограничения, по существу, температурные. Коагуляция белков происходит при температурах >65 °С; следовательно в комфортных зонах температурный интервал должен быть 273<Т<340 К.

Можно напомнить, что в моих работах (Ксанфомалити, 1995, 2008; Ksanfomality, 2002) были сформулированы наиболее очевидные факторы, ограничивающие возникновение, существование и эволюцию жизни на планетах земного типа. Масса планеты или спутника накладывает дополнительные ограничения при переходе к многоклеточным формам. Это ограничения энергетического характера, зависящие от уровня гравитации. Энергетически выгодны небольшие размеры организмов, так как их энерговооруженность обратно пропорциональна примерно квадрату характерных линейных размеров. С другой стороны, достаточно сложные животные не могут быть маленькими. Но слишком крупные виды вынуждены существовать в эволюционном тупике, образуемом положительной обратной связью энергетика-масса-пища. Ограничения очевидны, и о них природа ясно говорит зоологией: животных, больших, чем синие киты и гигантские рептилии, на Земле не было.

Уровень гравитации планеты должен быть умеренным, а период вращения не слишком длительным; слишком долгая ночь приведет к глубокому падению температуры окружающей среды. По тем же причинам эксцентриситет орбиты должен быть умеренным, а наклон экватора к плоскости орбиты не слишком большим.

Эволюция жизни земного типа требует, чтобы атмосфера планеты обладала способностью отфильтровывать внешнюю жесткую радиацию. Вместе с тем, атмосфера должна пропускать к поверхности фотоны с энергией Е = 1-3 эВ, а плотность лучистой энергии должна быть достаточной, например, для поддержания фотосинтеза. Для поддержания жизни земного типа, планета, наряду с притоком лучистой энергии, должна обладать наличием других (химических) источников энергии, например, окислительной среды и окисляемых материалов.

Если исходить из гипотезы возникновения жизни в водоемах, необходимы открытые водные пространства и наличие континентов или крупных островов. В атмосфере должен присутствовать водяной пар.

Для развития жизни земного типа планета должна обладать достаточно близким и массивным спутником, который вызывает приливы и побуждает морские организмы осваивать сушу.

Планета должна обладать вулканизмом и/или тектоникой плит. В районах активного вулканизма значительно увеличивается концентрация в водных растворах веществ, необходимых для существования жизни.

История планеты должна включать эпохи интенсивного выпадения крупных метеоритов или другие космические катастрофы, которые стимулируют обновление видов и появление среди них наиболее приспособленных.

 

 

ЗАКЛЮЧЕНИЕ

Планета Земля представляет собой уникальное сочетание физических свойств, необходимых для возникновения, существования и эволюции жизни. Возможно ли подобное сочетание на планетных системах других звезд — станет ясным не раньше, чем планеты земной группы будут там реально обнаружены. Перечисленные выше требования образуют странный многомерный лабиринт, причем лишь узкие интервалы многих параметров и их сочетания могут обеспечить условия, необходимые для возникновения амино-нуклеино-кислотной формы жизни и ее эволюции в разумные формы. Анализ условий на других телах Солнечной системы показывает, что Земля действительно обладает свойствами, не повторяющимися ни на одной из других планет земной группы.


Самым действенным двигателем интернет торговли праву считается контекстная реклама, благодаря которой о предлагаемой вашим предприятием продукции узнают тысячи потенциальных покупателей. Более подробно о плюсах и минусах контекстной рекламы Вы сможете узнать, посетив сайт компании AD|LABS-Украина, который находится по адресу adlabs.com.ua.

Автор: Admin | 2011-11-29 |

Подледный океан Европы

Подледный океан Европы

 

Говорить о возможности существования каких-то форм жизни можно только в подледном океане Европы. Ледяная кора спутника, по разным гипотезам, может быть толщиной минимум 1 км, максимум — до дна. Несмотря на популярность всех трех моделей строения Европы (относительно тонкая, 10-30 км, ледяная оболочка; частично промерзший вглубь океан; и полностью промерзшая среда; рис. 12), модель с относительно тонкой ледяной оболочкой представляется наиболее реалистичной. Она объясняет и фрагментированные ледяные поля, и трещины, и рассеяние мощного притока энергии, возникающей в приливных взаимодействиях системы спутников Европа-Ио и Европа-Юпитер. Если глубина океана 50-60 км, давление на дне должно быть 600 кг/см2.

Сильным аргументом в пользу существования океана говорит и необычное магнитное поле Европы. Напряженность поля Европы имеет переменный характер, причем магнитные полюса расположены вблизи экватора спутника и постоянно перемещаются, а изменения напряженности и ориентации магнитного поля синхронизированы с прохождением Европы через магнитное поле Юпитера (Kivelson, 1995). Это можно объяснить лишь наличием токопроводящей жидкости под поверхностью спутника: его движение в сильном магнитном поле Юпитера вызывает электрические токи в соленом океане Европы, что и создает необычное магнитное поле спутника. Если бы поле было связано с ядром спутника, оно было бы стабильным и имело бы меньшую напряженность.

Существование подповерхностного океана подтверждается также структурой крупномасштабных трещин глубиной около 1 км, имеющих глобальную протяженность. Было показано (Schenk et al., 2008), что трещины глубиной от 300 м до 1.5 км возникли при перемещении (повороте) полюсов спутника примерно на 80°, причем ледяная оболочка двигалась независимо от ядра.

Достаточно высокая температура в глубоких слоях Европы объясняется рассеянием приливной энергии в орбитальной соизмеримости со спутником Ио, и в меньшей степени -приливным воздействием Юпитера. Приливное рассеяние-мощный источник энергии; основная ее часть рассеивается в Ио, но и на Европу приходится ее существенная часть. Полный период Т повторения приливных эффектов определяется известным соотношением 1/Т(1о)— 1/Т(E), и составляет, благодаря соизмеримостям, почти точно орбитальный период Европы. Кроме приливных эффектов определенный вклад энергии создает процесс серпентинизации, химическое связывание воды с горными породами в верхнем слое ядра спутника. Серпентинизация увеличивает объем горных пород и выделяет тепло. Наконец, какое-то рассеяние энергии происходит и в упоминавшихся выше магнитных взаимодействиях. Во всяком случае, Европа располагает достаточными источниками энергии, чтобы поддерживать хотя бы часть своих запасов воды в жидком состоянии, подобно тому, как это происходит на других ледяных спутниках (McKay, Matson, 2008).

 


Рис. 12. Существующие модели строения Европы.

 

По составу воды ее выходы на поверхность из трещин и разломов неоднородны. По данным спектроскопии, окрашенные участки поверхности предположительно включают примеси серной кислоты, а также других сернистых и железистых веществ. Спектральный анализ линейных образований и пятен на поверхности показал наличие в них солей, в частности, сульфата магния, который содержится и в земных океанах. Обнаружены также следы перекиси водорода и сильных кислот. Таким образом, массы воды, проникающие на поверхность из разломов, неоднородны по составу. Не исключено, что подледный океан не имеет глобальной протяженности.

 

 

Возможная обитаемость подледного океана Европы

 

В подледном океане Европы, куда не попадает солнечный свет, где невозможен фотосинтез и отсутствует кислород, может существовать микрофлора. На Земле можно найти примеры таких экзотических экосистем. Роль гидротермальных глубоководных источников в возникновении жизни можно отнести и к Европе, где также могут присутствовать глубоководные гидротермальные источники. В гипотезе о происхождении жизни в районах глубоководных термальных источников жизнь на Земле возникла, когда химически обогащенные жидкости какими-то механизмами апвеллинга стали подниматься с нижних морских этажей. Химическую энергию могли доставлять реакции восстанавливающих газов, например, водорода или сульфида водорода, которые выделялись из придонных источников, в контакте с подходящим окислителем, например, углекислым газом.

Гипотетический океан Европы должен близко напоминать условия жизни в глубинах земных океанов, где населенность различными видами живых существ очень высока. В земных океанах их концентрация наблюдается у гидротермальных придонных океанических источников, от которых поднимается обогащенная растворенными минеральными солями горячая вода. В такой среде обитает не только микрофлора, но и достаточно крупные животные.

На Земле найдены три экосистемы, на аналогах которых могла бы базироваться жизнь на спутнике Юпитера Европе. Две системы основаны на метаногенезисе и принадлежат к древней группе бактерий Archaea, которые живут в бескислородных условиях. В глубоко залегающих вулканических породах в районе р. Колумбия (район водопадов Айдахо-Фолс) существуют две такие экосистемы, которые получают энергию от химических реакций в различных горных породах. Третья экосистема существует за счет энергии, возникающей при радиоактивном распаде горных пород. Она была найдена глубоко под поверхностью в шахтах Южной Африки, на глубине 3 км под поверхностью Земли в зоне разлома (Lin et al., 2006). Микроорганизмы здесь живут без света, без кислорода и без исходных органических веществ.

 

Перечисленными примерами, конечно, не исчерпываются возможности существования форм жизни на Европе. Теорий возникновения жизни на Земле много, но ни одна не объясняет, как воспроизвести зарождение земной жизни в лаборатории и насколько уместно распространять их на Европу, хотя теория «первичного бульона» и теория гидротермальных придонных океанических источников наиболее близки к тому, что нам известно о Европе.

Начиная с античности, у исследователей нет идеи, более популярной, чем поиск жизни в других мирах. Когда развитие технологии позволило осуществить полеты к другим планетам, поиск жизни (или следов жизни) на них стал рабочим разделом национальных научных программ космических исследований. В планах космических агентств уже появляются проекты исследований Европы, рассчитанные на следующее десятилетие XXI в. Исследователям предстоит преодолеть серьезные технические трудности, такие как необходимость проникнуть сквозь многокилометровую толщу льда, при температуре 80 К обладающего прочностью гранита, выполнить исследования и прислать на Землю их результаты. Многие задачи миссии к Европе сегодня кажутся практически невыполнимыми. Но работа уже ведется.

Европейское и Российское космические агентства наметили экспедицию из нескольких космических аппаратов к Юпитеру и Европе. Европейский проект намечает выведение на орбиты Юпитера и Европы двух космических аппаратов, а российский проект предполагает включение в экспедицию еще одного, спускаемого аппарата для посадки в одном из разломов на поверхности Европы. После посадки аппарат начнет поиск следов жизни в колонке полуметрового слоя льда. Проект получил название «Лаплас». Предполагается, что он войдет в программу Европейского космического агентства на период с 2015 по 2025 гг.

Автор: Admin | 2011-11-29 |

Узкие овраги на марсианских склонах

1.3. Узкие овраги на марсианских склонах

 

Перемещение больших масс грунта — по-видимому, тонких фракций песка по склону, происходящее в современную эпоху — доказывает и прекрасно иллюстрирует рис. 8, где в нижней части снимка видны размытые валы осыпавшегося материала. Ширина участка на снимке около 3 км. Валы сыпучего материала огибают остатки прежнего рельефа, оставляя обнаженный склон. Такие же осыпи можно видеть и в других районах Марса; они известны со времен миссии «Viking» (1976 г.).

 

 


Рис. 7. Термодинамические условия существования льда, пара и воды на Марсе. Кружок в центре соответствует давлению 6.1 мб. Условия существования воды в жидком виде на поверхности Марса отражает небольшая центральная часть диаграммы с горизонтальной штриховкой. Структура диаграммы, соотношение шкал давления/глубины и среднегодовые температуры для широт 30° и 70° по: (Stewart, Nimmo, 2002).

 

 

 

Рис. 8. Осыпи грунта и нитевидные овраги (показаны стрелками) на склоне кратера на Марсе (424°S, 158.2°W). Овраги похожи на следы земных горных рек, но в отличие от земных оврагов, они не расширяются, а сужаются вниз по склону (MGS МОС Release No. МОС2-320, NASA/JPL/MSSS).

 

Но наряду с осыпями сыпучего материала, на рис. 8 можно видеть не отмечавшиеся прежде (из-за недостаточного разрешения) образования. Это тонкие нитевидные километровые овраги или борозды, спускающиеся по склону (показаны стрелками на рис. 8). Их ширина в узкой части составляет всего десятки и единицы метров. Овраги очень похожи на промоины земных горных рек или ручьев, но в отличие от земных оврагов, они не расширяются, а сужаются вниз по склону. Поэтому они не могли возникнуть под действием камнепада или крупномасштабного селя. Тем более они не могли образоваться под действием пылевых оползней, которые засыпают все овраги. Зато именно жидкие потоки (воды или какой-то другой жидкости) легко могли бы образовать такие промоины. В работах (Maiin, Carr, 1999; Malin, Edgett, 2000) указывается именно на источники грунтовой воды как среды, формирующей овраги, промоины и другие образования такого рода на Марсе. По их данным, узкие овраги или протоки достаточно часто встречаются в полосе широт 30°N-70°S. Они морфологически подобны склоновым руслам земных рек и не перекрываются более поздними образованиями (такими как песчаные дюны). Ширина (и, вероятно, глубина) оврагов близка к 10-20 м, а протяженность составляет от нескольких сотен метров до километров (Malin, Edgett, 2000). Авторы еще одной работы на ту же тему (Palermo et al., 2001) обработали сотни снимков камеры МОС и также получили доказательства современных следов грунтовых вод. Их источники, согласно обеим работам (Malin, Edgett, 2000; Palermo et al., 2001), находятся на крутых склонах долин и кратеров, на глубине 150-500 м под уровнем окружающей поверхности. Но по данным второй работы (Palermo et al., 2001) широта районов, где в основном сосредоточены источники, лежит в пределах от 30°S до 30°N.

 


Рис. 9. Склон кратера с протоками на Марсе (39°S, I66°W). В правой нижней части снимка бассейн шириной около 600 м (MGS МОС Release No. МОС2-320, NASA/JPL/MSSS)

 

На рис. 9 представлен другой район с подобными оврагами. Их ширина от единиц метров до 10-20 м. Они также не расширяются, а сужаются вниз по склону. На первый взгляд, это кажется парадоксальным, если овраг образован потоком. Но можно предложить простое объяснение: если грунтовая вода действительно образовала ключ и поток вышел на склон и устремился вниз, то в условиях Марса масштаб развивающейся промоины будет зависеть, прежде всего, от температуры поверхности и температуры потока.

Описываемые Э. Палермо и др. (Palermo et al., 2001) объекты обнаружены, в основном, в полосе широт ± 20-30°. Если температура поверхностного слоя составляет типичные для экваториальной зоны Марса 240-260 К или ниже, поток, спускаясь по склону, должен постепенно впитываться в сухой морозный грунт и замерзать. Образуется ложе канала из промерзшего грунта, по которому поток устремляется дальше, впитываясь, наращивая промерзшее ложе и охлаждаясь. Поэтому, в отличие от земных склоновых рек, потоки на Марсе сужаются, спускаясь по склону. При переходе воды с температурой 0 °С в фазу льда выделяется почти 80 ккал/кг. Теплоемкость грунта близка к 0.2, поэтому промерзшее ложе потока может получиться достаточно толстым, если ключ существует достаточно долго. Как ведет себя грунт Марса при увлажнении и сколько при этом поглощается тепла, точно не известно, но баланс отдаваемого тепла должен включать текущие теплопотери в образующемся ледяном ложе канала и более медленные процессы излучения и отдачи тепла в атмосферу. Температура истекающей воды также неизвестна, но она не может быть высокой, и, как показано выше, энтальпия воды не играет существенной роли.

Часто утверждается, что жидкая вода на поверхности Марса немедленно испаряется. Это недоразумение. Роль испарения пренебрежимо мала и ее нетрудно оценить. Пусть давление р в данном районе составляет 8 мб, а температура кипения Т(р) = 4 °С, согласно рис. 7. При температуре TL потока, например, 10 °С, истекающая вода должна кипеть, с уменьшением ее энтальпии. Какая-то доля потока будет потеряна при испарении с понижением его температуры до Тs(р) = 4 °С (или до 0 °С при давлении 6.1 мб) и с прекращением кипения. Поскольку теплота парообразования составляет q = 539 ккал/кг, а теплоемкость сaq = 1 ккал/(кг °С),

 

N =[TL-Ts(p)]caq/qv.

 

 

Роль испарения в этом примере сведется к тому, что потерянная часть N составит 1.1 %. Таким образом, сколько-нибудь значительная часть истекающей воды испариться не может.

Рис. 9 представляет склон кратера, богатого склоновыми протоками. В нижней части снимка находится изрезанной формы бассейн. Внешняя граница бассейна выделяется светлой окантовкой. Вероятно, это ледяная кромка. Поверхность бассейна, по сравнению с примыкающей поверхностью, гладкая; возможно, это лед. В верхней (по снимку) части бассейна видны два-три следа, соответствующие многократному понижению уровня поверхности. Сток воды через края бассейна образовал второй, внешний контур (в нижней части снимка). Два таких же, но меньших по размерам контура можно видеть в левой части снимка. Источников жидкой фазы, пополняющих бассейн, на снимке видно несколько. Вероятно, главный источник находится справа над бассейном. Это вытянутое образование с шестью на-правлеными вниз отростками. По-видимому, вода стекает вдоль отростков. Более мелкие структуры того же вида видны слева над бассейном и, вероятно, связаны с наиболее широким протоком вдоль склона. Форма промоин на рис. 9, соответствующая крутому склону, указывает, что поток должен нести с собой значительное количество грунта. Горизонтальная ось снимка около 1500 м. Размер бассейна около 600 и, а площадь около 0.3 км2.

 


Рис. 10. Протяженность следа потока на склоне Марса (см. рис. 9) достигает 6 км. Для земных грунтов потемнение соответствует увлажнению. Предположительно, темный след относится к более позднему источнику (MGS МОС M0807686b. NASA/JPL/MSSS).

 

Никакие песчаные запруды на Марсе не смогли бы удержать большие массы воды, даже с учетом втрое более низкой силы тяжести на планете. Но если грунт очень холодный, поступающая вода, впитываясь в морозный грунт, могла бы быстро создать чаши изо льда и промерзшего грунта, обладающие определенной прочностью. По существу, это тот же предложенный выше механизм, который объясняет сужение протоков вдоль склона.

Возраст образований на рис. 9 не может быть большим. Вполне вероятно, что комплекс источников и бассейн действуют в наши дни. На это указывает чистая (без отложений пыли), насколько можно судить по снимку, кромка бассейна, примыкающий к нему второй контур и четкие нитевидные протоки на склонах. В ряде случаев наблюдаются следы потоков, уходящие на несколько километров, а также повторно появляющиеся свежие следы, пересекающие прежние истечения (рис. 10). Подобных образований найдено много (Ксанфомалити, 2003). Жидкая вода локально появляется во многих точках планеты, спорадически или даже периодически, хотя в целом бюджет жидкой воды на Марсе весьма ограничен.

 

 

1.4. Поиск следов жизни на Марсе: заключение

 

Итак, длительные поиски обитаемости Марса положительных результатов пока не дали. На какой-то стадии исследований утверждалось, что важным шагом было бы обнаружение на Марсе воды в жидкой фазе. Но и после этого задача осталась столь же далекой от разрешения, а никаких следов жизни найти не удается.

Это следует считать удивительным, так как в последние десятилетия было доказано, что планеты постоянно обмениваются осколочным материалом (Melosh, 1984), образующимся при ударах крупных метеоритов. Результаты поиска следов жизни в марсианских SNC метеоритах широко известны (McKay et al., 1996). Материал с поверхности Земли в эпоху интенсивной метеоритной бомбардировки также выбрасывался в космос в виде вторичных метеоритов и нес в себе элементы земной биосферы. Поэтому метеориты, подобные марсианским SNC, попадали не только с Марса на Землю, но и с Земли на Марс. Если учесть, что присутствие микроорганизмов на земных образцах неизбежно, а на Марсе следы их не находят, уместен вопрос: не обладает ли Земля каким-то исключительным свойством, которое нас окружает, но которого мы не замечаем?

Автор: Admin | 2011-11-27 |

ОТ МАРСА К ЕВРОПЕ: ПОИСК БИОСФЕРЫ НА СПУТНИКАХ

ОТ МАРСА К ЕВРОПЕ: ПОИСК БИОСФЕРЫ НА СПУТНИКАХ ПЛАНЕТ-ГИГАНТОВ    

 

© 2009 г. Л.В. Ксанфомалити

Институт космических исследований РАИ ksanf@iki.rssi.ru

Почти 50 лет длятся исследования планеты Марс с помощью космических аппаратов. К главным задачам исследований относится поиск признаков возможного существования на планете жизни. В предлагаемой статье рассматриваются некоторые результаты экспедиций к Марсу и научные задачи будущих исследований Европы, одного из четырех галилеевых спутников Юпитера, возможная обитаемость которой также обсуждается в новых проектах. Физические условия на Марсе и Европе сравниваются с условиями на Земле.

 

 

1. МАРС

 

Среди кандидатов на обитаемость планет земной группы на первом месте всегда оставался Марс, благодаря некоторому сходству физических условий и относительной близости планеты к Земле. Марс — удобный объект для астрономических наблюдений, при которых легко различаются крупные детали его поверхности. Так, существование полярных шапок Марса отмечал еще В. Гершель в XVI11 в. В конце XIX в. П. Ловелл сообщил о своем открытии «каналов» на Марсе и вероятном существовании обитателей планеты, что вызвало небывалый интерес общественности. В 1897 г. в русском переводе вышла книга французского популяризатора науки К. Фламмариона «Живописная астрономия». В главе, посвященной планете Марс, говорилось: «Человеческий мир Марса, вероятно, значительно опередил нас во всем и достиг большого совершенства… они построили города и научились всяким искусствам». Работы Ловелла немало способствовали огромному интересу публики к Марсу. Вскоре было показано, что результаты Ловелла связаны с оптической иллюзией. Но, несмотря на это, гипотеза обитаемости Марса сохранилась надолго.

 

 

1.1. Результаты экспериментов на Марсе

 

В последней трети XX в. и в первом десятилетии XXI в. к Марсу были отправлены многочисленные экспедиции автоматов, главной задачей которых был поиск признаков жизни. Сегодня, спустя 44 года после первых снимков Марса, сделанных с космического аппарата, единственным полученным ответом остается «признаков жизни не обнаружено», хотя оптимисты продолжают предлагать все новые места и новые методы поисков. Сами методы становятся более изощренными и вместо поиска жизни обращаются к поиску следов жизни, возможно, давно исчезнувшей. Отметим наиболее существенные результаты проведенных экспериментов.

Два аппарата «Викинг» («Viking». США), опустившиеся на поверхность Марса в 1976 г.. доставили туда великолепные биохимические лаборатории, ориентированные на поиск признаков метаболизма микроорганизмов, подобных земным. Несмотря на то, что жизнь амино-нуклеино-кислотного (земного) типа в экспериментах на «Викингах» на Марсе найти не удалось (Klein et al., 1992), полученные результаты стали основой для последующих миссий. Эксперименты в биолабораториях аппаратов «Викинг», направленные на поиск микроорганизмов на Марсе, должны были ответить на три вопроса:

 

1. Есть ли процессы усвоения углекислого газа на свету (фотосинтез);

2. Обнаруживается ли метаболизм микроорганизмов (обмен веществ);

3. Происходит ли газообмен с атмосферой.

 

Вероятность обнаружения микроорганизмов, аналогичных земным, оценивалась в 40 %. Результаты были неоднозначными и, скорее всего, отражали сложный химизм грунта Марса, активируемого солнечной ультрафиолетовой радиацией. Только эксперимент с меченым газообменом дал результаты, которые можно было бы считать частично положительными. При первом обогащении грунта водой и питательным веществами с меченым углеродом 14С было зарегистрировано выделение меченого углекислого газа 14СО2. Но при новом эксперименте эффект не повторился. Более однозначными и решающими оказались результаты пиролитического эксперимента, где проба грунта постепенно разогревалась до высокой температуры, а отходившие газовые продукты анализировались масс-спектрометром и газовым хроматографом. Любая известная форма жизни (или ее следы) при пиролизе выделяет органические летучие вещества. Исследовались образцы, взятые с глубины грунта от 4 до 6 см. Чувствительность приборов к органическим составляющим достигала 10-10. Для сравнения с экспериментом, авторы указывали, что при анализе 0.1 г антарктического (земного) грунта обнаруживалось более 20 органических соединений.

Рис. 1. Поверхность Марса в районе долины Арес.

 

 

Рис. 2. В миссии «Mars Exploration Rover» самоходные аппараты искали следы древних водоемов на поверхности Марса. Кратер Бигль на пути аппарата «Opportunity».

 

 

Однако никаких органических соединений в эксперименте обнаружено не было. В целом, по итогам трех экспериментов по метаболизму и эксперимента по пиролизу результаты поиска микроорганизмов были признаны отрицательными.

Позже в литературе высказывалась мысль, что этот отрицательный результат нельзя относить ко всей планете, что он может быть локальным. Г. Левин, один из авторов экспериментов на «Викингах», полагал, что его результаты все же говорят в пользу жизни на Марсе (Kein et al., 1976). Однако эти результаты широко обсуждались специалистами, которые считают, что суперокислители, содержащиеся в грунте Марса, могли дать такой эффект без метаболизма каких-либо микроорганизмов.

Давление углекислотной атмосферы Марса у поверхности примерно в 150 раз меньше земного. Такая атмосфера и отсутствие магнитного поля не в состоянии защитить поверхность планеты от радиации. Несильное магнитное поле Марса исчезло около 4 млрд. лет назад. Расчеты показывают, что радиация проникает в грунт и стерилизует его на большую глубину, вплоть до нескольких метров.

С другой стороны, если бы на Марсе жизнь однажды все же возникла, уничтожить ее было бы очень непросто. Жизнь не только приспосабливается к окружающей среде, но и приспосабливает ее к себе. Поэтому многие высказывают мнение, что возникшая когда-то жизнь на Марсе могла бы исчезнуть лишь под действием каких-то совершенно катастрофических обстоятельств. Поэтому, если бы она сейчас существовала, ее было бы трудно не обнаружить.

Дальнейшие эксперименты, проведенные в последние десятилетия, были не столь прямолинейными и касались, главным образом, физико-химических свойств грунта. В 1997 г. в районе долины Арес совершил посадку аппарат «Pathfinder», включавший подвижный модуль, который мог передвигаться по поверхности, удаляясь примерно на 10 м от посадочного аппарата.


Рис. 3. Мелкие глобулы (конкреции) образовались в соленой воде древнего водоема на Марсе. Район посадки аппарата «Opportunity».

 

Выбор места посадки был связан с тем, что поиск следов жизни целесообразно вести в районах, где присутствуют следы потоков воды. Долина Арес была широкой рекой или водоемом около 2 млрд. лет назад. Современный вид поверхности в месте посадки показан на рис. I. Песок, пыль и камни разных размеров повторяют вид поверхности в районах посадки «Викингов», но крупномасштабные детали указывают на следы мощных потоков и даже острова, существовавшие в ту эпоху. Аппарат исследовал химический состав камней. Никаких выводов о существовании древних форм жизни сделано не было (Lakdawalla, 2008).

После аппаратов «Викинг» прямых поисков жизни больше не проводилось. Миссия НАСА в 2004 г. «Mars Exploration Rovers» была посвящена другой проблеме: существовали ли обширные водоемы или океаны на поверхности Марс в далеком прошлом. Многие специалисты считали, что сами очертания рельефа ясно указывают на древние берега таких океанов, но другие предлагали иные объяснения, как ветровую эрозию или что-либо другое. В ходе миссии были обнаружены овраги со следами недавних потоков (Malin, Edgett, 2000). Два самоходных аппарата (ровера), названные «Opportunity» и «Spirit», опустились на поверхность Марса и начали длительную работу в 2004 г., путешествуя на значительные расстояния и передавая изображения поверхности (рис. 2) и сведения о проведенных исследованиях (Kerr, 2006). Роверы проработали уже 5 лет; они представили, в частности, достаточно убедительные доказательства того, что в ранние эпохи своей истории на Марсе действительно существовали обширные водоемы. Аппараты нашли минерал гематит, который формируется в присутствии воды. Поверхность в районе работы «Opportunity» включает множество мелких круглых зерен (глобул) размерами менее сантиметра (рис. 3), которые напоминают конкреции на дне земных океанов и однозначно указывают на некогда существовавший здесь большой водоем или даже океан. При необходимости аппараты могли специальным инструментом срезать участок камня (круг на рис. 3) и провести его химический анализ.

Подробное исследование свойств грунта показало, что вода в древних водоемах содержала много растворенных солей. Было высказано предположение, что, как было установлено ровером «Opportunity», высокие концентрации растворенных веществ во влажной среде раннего Марса, вероятно, исключали возникновение и эволюцию любых микроорганизмов. Как известно, высокая концентрация растворенных солей может использоваться как консервант.

Аппарат «Phoenix» (США, 2008 г.) проводил исследования в полярном районе Марса. Исследовался реголит на небольшой глубине, в частности, исследовались типы и концентрация антиоксидантов. Километровые слои льда воды и пыли образуют северную полярную шапку Марса (рис. 4), на границе которой опустился аппарат. В отличие от южной полярной шапки, примесей льда СО, здесь практически нет. При посадке аппарата струя газа из тормозного двигателя сдула тонкий слой пыли. Под ним находилась значительная масса льда. В числе экспериментов было микроскопирование, но подробности исследований не сообщались. Было установлено содержание в грунте перхлоратов, которые, наряду с высокой соленостью влаги в грунте, также могут быть серьезной помехой для возникновения и развития жизни (Johnson, 2008).

Считается, что возникновение земной жизни связано с обширными водоемами. Орбитальный аппарат «Mars Express» Европейского космического агентства вышел на орбиту спутника Марса в 2003 г. Спутник оснащен камерами высокого разрешения, что позволяет видеть на поверхности образования 10-метровых размеров. В частности, камеры даже зарегистрировали положение на Марсе аппаратов, доставленных туда в прошлые годы.

Аппаратом «Mars Express» проводилось минералогическое картирование значительной части планеты (Fletcher, 2008), и, при существенном разнообразии минерального состава, карбонаты (соли угольной кислоты), широко распространенные на Земле, все же найдены не были. Это важный результат, поскольку на нашей планете именно в их залежах сосредоточено основное количество углерода. Более того, аппарат «Mars Express» не подтверждает больших запасов углекислого газа (например, в конденсированном виде), достаточных для существенных изменений массы атмосферы планеты, и соответственно, преобразования климата планеты благодаря парниковому эффекту.

 

Рис. 4. Северная полярная шапка Марса образована толстыми слоями льда воды и пыли. Аппарат «Phoenix» исследовал физико-химические свойства грунта в полярном районе.

 


Рис. 5. Аппарат «Mars Express» передал изображение обширной равнины, которая могла быть ледяной поверхностью древнего океана. Пыль, покрывающая всю поверхность планеты, придает ей типичный красноватый цвет.

 

Этот результат остается в противоречии с постоянно упоминаемой в литературе гипотезе о теплой эпохе раннего Марса, когда возникновение жизни, как предполагается, было возможно.

Астрогеология подразделяет историю Марса на три эпохи: нойскую, гесперийскую и амазонскую, продолжающуюся в наши дни. Нойская соответствует насыщенному рельефу (пик образования 3.8-3.9 млрд. лет назад, тяжелая метеоритная бомбардировка, 700 млн. лет после образования Марса и вообще всей Солнечной системы). Гесперийская эпоха характеризуется невысокой плотностью метеоритной бомбардировки. Ее завершение очень осторожно можно датировать 2-3 млрд. лет назад. Амазонская эпоха — это низкая плотность метеоритных кратеров, разительные отличия южного и северного полушарий и формирование современного климата Марса (Head et al., 1999).

На одном из снимков аппарата «Mars Express» видна обширная гладкая равнина с немногочисленными метеоритными кратерами (рис. 5), что указывает на сравнительно позднее ее появление. Верхний окрашенный слой это, конечно, пыль. Но под ней просматриваются плоские блоки протяженностью в десятки и даже в сотню километров. Из сравнения с видом ледовых полей Арктики авторы сделали вывод, что это — поверхность замерзшего моря или небольшого океана, возникших, все же, в эпоху более мягкого климата Марса, вероятно, в начале амазонской эпохи. Если эти результаты подтвердятся, а условия для возникновения жизни на Марсе действительно существовали, то именно такие водоемы могли быть обитаемыми, хотя бы на уровне микроорганизмов.

Обнаруженное аппаратом «Mars Express» ничтожное количество метана в атмосфере Марса (около 10 ppb) могло бы свидетельствовать о наличии жизни на планете. Дело в том, что метан в атмосфере непрерывно разрушается за счет фотодиссоциации. Поэтому его запасы в марсианской атмосфере должны непрерывно пополняться, либо в результате жизнедеятельности микроорганизмов, либо в процессах геологической активности, например, в реакциях серпентинизации.

 

Для поддержания концентрации 10 ppb в атмосфере на Марсе должен присутствовать источник мощностью около 3*10x г метана в год. Таким источником могла бы быть тектоническая деятельность, остаточный вулканизм, геотермальная активность.

 


Рис. 6. Странные отверстия площадью в тысячи квадратных метров обнаружены на древних вулканических склонах Марса в районе Фарсида.

 

Как известно, большая масса земных микроорганизмов обитает в глубоких слоях грунта. Высказывалось предположение, что такой же может быть среда обитания жизни на Марсе. В этой связи большой интерес вызвало открытие в 2006-2007 гг. странных образований на склонах древних вулканических конусов в районе Фарсида. Район Фарсида, характеризующийся огромной массой вулканических выбросов, возник, по-видимому, в амазонскую эпоху. Высота вулканических конусов превышает 20 км. На их склонах обнаружены загадочные отверстия (рис. 6) диаметром несколько сотен метров, неустановленной глубины. Тепловое излучение из отверстий (исходящее, по-видимому, от их дна) соответствует усредненному суточному излучению окружающей поверхности. Появившиеся в околонаучной литературе сообщения о «теплой среде» на дне полостей и их возможной связи с обитаемостью Марса были вскоре опровергнуты. Происхождение полостей остается неизвестным. Не исключено, что это результат вытаивания или испарения грунтовых льдов.

Автор: Admin | 2011-11-25 |

СТРАТЕГИИ ХРАНЕНИЯ И ЭКСПРЕССИИ ГЕНЕТИЧЕСКОЙ ИНФОРМАЦИИ ВИРУСОВ

СТРАТЕГИИ ХРАНЕНИЯ И ЭКСПРЕССИИ ГЕНЕТИЧЕСКОЙ ИНФОРМАЦИИ ВИРУСОВ

 

Уже на сравнительно ранней стадии изучения молекулярной биологии вирусов стало ясно, что эти биологические объекты использую! непредвиденно разнообразные способы хранения и выражения генетической информации. Как уже упоминалось, вирусные геномы -в отличие от клеточных — могут быть представлены различными формами нуклеиновых кислот. Удобную и сейчас общепринятую — классификацию вирусов, принимающую во внимание это фундаментальное разнообразие, предложил Д. Балтимор в 1971 г. (Baltimore, 1971) (рис. 4). Ключевую позицию в этой классификации занимает вирусная информационная или матричная РНК (мРНК), которой Балтимор приписал положительную (+) полярность. Позитивными стали называть и тс цепи геномных нуклеиновых кислот (РНК и ДНК), у которых полярность соответствует полярности мРНК. Цепочки же РНК или ДНК, которые комплементарны вирусной мРНК, имеют, соответственно, негативную (-) полярность. В итоге, вирусы были разбиты на 6 групп или классов — вирусы с позитивным РНК-геномом, вирусы с негативным РНК-геномом, вирусы с двунитевым РНК-геномом, вирусы с двунитевым ДНК-геномом, вирусы с однонитевым ДНК-геномом (в этом случае полярность цепей не имеет принципиального значения) и ретровирусы, использующие механизм обратной транскрипции (т. е. синтез ДНК на матрице РНК).

Вскоре после публикации классификации Балтимора мы задумались над тем, исчерпывают ли включенные в нее вирусы все возможные способы хранения и выражения генетической информации. На основе достаточно простых молекулярно-биологических постулатов — прежде всего, принципе комплсментарности при синтезе нуклеиновых кислот — была предложена теоретическая система, которая предусматривала возможность существования и некоторых тогда неизвестных классов вирусов (Агол, 1974; Agol, 1974) (рис. 5). Наиболее важными «новичками» были вирусы с ДНК-геномом, цикл репродукции которых должен был включать обратную транскрипцию. Такие предсказанные вирусы действительно вскоре были обнаружены — сейчас их называют ретроидные вирусы или парарстровирусы. К ним относятся такой важный патоген, как вирус гепатита В, а также ряд растительных вирусов, например, вирус мозаики цветной капусты. Вирусы с позитивным РНК-геномом и двунитевым ДНК-геномом были формально разбиты на два класса каждый — в зависимости от того, являются ли промежуточные (образующиеся при репликации) формы геномной нуклеиновой кислоты однонитевыми или двунитевыми. Все эти классы сейчас «заселены».

 

 


Рис. 4. Классификация вирусов, предложенная Д. Балтимором (Baltimore, 1971, модифицировано).

 

 


Рис. 5. Система вирусов (Агол, 1974, модифицировано). Генетические системы вирусов, изображенных на голубом фоне, были предсказаны, а впоследствии обнаружены.

 

Таким образом, у вирусов — в отличие от клеточных организмов — реализуются все теоретические возможные способы хранения и выражения генетической информации. Это важнейшее обстоятельство, несомненно, имеет прямое отношение к проблеме происхождения вирусов.


Стафилокок является частой причиной пищеварительных токсикоинфекций. Лучшим средством борьбы с этим микроорганизмом является современное лекарство нортейк , способное в кратчайшие строки справиться с первопричиной инфекционного заболевания. Ознакомиться с подробной инструкцию к этому препарату и при необходимости купить НОРТЕЙК Вы сможете на сайте http://likitoria.com.

Автор: Admin | 2011-11-20 |

Юрий Марчук — Проникновение. Часть 1

Автор этой книги

Юрий Дорофеевич Марчук — архитектор, один из немногих обладателей официального диплома уфолога в Украине, доктор биоинформатики Ганноверского университета, человек с ветлой души, озаривший жизнь многих людей Добром и Участием, — адресует свою книгу простому, обычному человеку, для которого счастье дороже успеха, право быть самим собой дороже сытости, сострадание — обычное состояние, мечта нижнее расчета. Эти люди способны любить. Они сохранили этот Божественный дар. Они одухотворяют материю и пространство, не подозревая об этом, выполняют единственную, главную космическую миссию на планете.

мзо

Марчук Ю. Д.

Проникновение: Науч.-попул. изд. ISBN 966-642-305-7

К.: Вища шк., 2006. — 190 с: ил.

Проблема аномальных явлений, вызывающая живейший интерес специалистов и широкой общественности, достаточно остро обсуждается уже несколько десятилетий. Книга известного не только в нашей стране, но и за рубежом уфолога и специалиста в области изучения аномальных явлений посвящена проблемам уфологии периода последних пятнадцати лет.

Автор описывает ситуации и события, произошедшие лично с ним и его коллегами в процессе их исследований. Освещаются десятки неизвестных ранее явлений и предлагается их оригинальная интерпретация.

Материалы, собранные в книге, представляют несомненный интерес как для широкого круга читателей, так и для профессиональных исследователей.

УДК 133.5 ББК 39.6

ISBN 966-642-305-7

© Ю. Д. Марчук, 2006

Содержание:

5

ПРЕДИСЛОВИЕ

10

ПРОНИКНОВЕНИЕ

11

ПРОЯВЛЕНИЕ

11

Для тех, кто любит читать книгу с конца

27

Израиль—Палестина

30

Астероид

31

Гравитационные аномалии

35

Эквадор

38

Дсви

40

Третья мировая война

47

Ирак

52

Индия-Пакистан

58

Пророчество — не рок

73

Первые итоги

75

Мелитопольская зона

99

«ПЕРВАЯ ВОЛНА»

102

Шар

105

Визуальные контакты

107

Аномалии на фотографиях

117

Луна и ВЦ

121

Маленькие подсказки

122

Телевизионный прием сигнала ВЦ

124

Место встречи изменить нельзя, на нее можно не явиться

125

Как все начиналось

129

Целительство

163

НАДЕЖДА НЕ УМИРАЕТ ПОСЛЕДНЕЙ — ОНА НИКОГДА НЕ УМИРАЕТ

165

ПРИЛОЖЕНИЯ

В 1947 г. от Рождества Христова человечество серьезно заболело. По крайней мере, так считают официальные правительственные источники разных стран. Вирус психоза контакта с инопланетянами поразил все страны мира и, несмотря на предоставленные «убедительные» доказательства науки и заявления властей, что такого в принципе быть не может, несколько десятков тысяч человек из года в год упорно утверждают, что наблюдали объекты Внеземных Цивилизаций, встречались с их экипажами, летали с ними на их планеты, подвергались исследованиям и экспериментам, являются носителями их чипов, микрочипов и эмбрионов — мутантов «внеземного папы».

Если НЛО наблюдал один человек, то это официально диагностируется как личный психоз, если тысячи человек одновременно в одном месте -массовый психоз. Гражданские летчики, заразившиеся вирусом психоза, описывают объекты НЛО, встречающиеся им в небе, «инфицированные» военные летчики, по приказам своих «инфицированных» начальников гонялись за несуществующими целями, так как «инфицированные» специалисты, наблюдая на «инфицированных» мониторах локаторов несуществующие цели, давали искаженную информацию. Иногда военные открывали огонь на поражение объектов НЛО, забывая, что их не существует. Сами объекты, не подозревая о том, что их не существует, отвечали на огонь и вполне материально, пополняя список погибших при исполнении служебных обязанностей летчиков и бойцов ПВО. Это все продолжалось, пока развитые страны не договорились: по НЛО, которых не существует, не стрелять, так как ответные меры несуществующих могут быть неадекватными и опасными для всего человечества. О «гражданских» и говорить нечего — они никогда и не следили за своим психическим здоровьем.


Если Вы вобьете в поисковую строку Яндекса запрос “Кения туры”, то непременно попадете на сайт orientaltravel.ru, принадлежащий туристической компании «Ориентал Дискавери», которая уже много лет занимается организацией туров по Азии, Африке и США. На сайте туроператора Вы сможете найти наиболее полную информацию о Кении и даже самостоятельно подобрать себе понравившийся отель.

Автор: Admin | 2011-09-17 |

Досье на фундаментальные частицы

Приложение А. Полицейский архив. Досье на фундаментальные частицы

На протяжении всей этой книги мы старались делать все перечни как можно короче. «Стандартная модель» физики частиц поразительно хороша именно потому, что ее перечень частиц (хотя и довольно длинный) крайне прост. «Материя» Вселенной состоит из двух фундаментальных типов частиц — из кварков и лептонов. Каждая группа подразделяется затем на три « поколения », в каждом из которых имеется две частицы, у одной из которых заряд отрицательнее, чем у другой. Мы разбили наш список на поколения, и вы увидите, что у всех частиц много общего. Кроме того, это удобное пособие для интерпретации наших забавных картинок.

Лептоны

 


 

| Название 

Электрон 

Мюон 

Тау-лептон 

Заряд 

-1 

-1 

-1 

Масса 

0,026% протона 

11,3% протона

190% протона 

Первооткрыватель 

Дж.-Дж.

Томсон

(1897) 

Карл Андерсон

(1936) 

Мартин

Перл

(1975) 

 

 

 

 

Это — заряженные лептоны. Они держат заряды в шляпах. Поскольку они заряжены, то взаимодействуют с электромагнитной силой. Кроме того, все лептоны вступают в слабое взаимодействие, и все частицы подвержены гравитации (поэтому в дальнейшем мы не будем об атом упоминать). Электрон — единственный, который мы видим в обычных условиях. Мюон распадается за миллионную долю секунды, а тау-лептон — еще быстрее.

 

Название 

Электронное

Мю-нейтрино

Тау-нейрино

 

нейтрино

   
       

Заряд 

0 

0 

0 

Масса 

? 

? 

? 

Перво- 

Клайд 

Леон 

Группа 

открыва- 

Коуэя 

Ледермаи 

DONUT,

тель 

и др. 

и др. (1962) 

лаборатория

 

(1956) 

 

им. Ферми, 

     

Батавия, 

     

Иллинойс 

     

(2000) 

У этих ребят нет шляп, а значит, нет и электрического заряда. Если они похожи друг на друга, в этом нет ничего удивительного. Разные типы нейтрино превращаются друг в друга без предупреждения (просто меняются галстуками) и даже вроде бы безо всякого взаимодействия. Эта «нейтринная осцилляция» (которая была подтверждена экспериментально на детекторе «КамЛАНД» возле японского города Тояма в 2003 году) означает, что нейтрино должны обладать массой. Но какой? Сказать очень трудно, но верхний предел для электронного нейтрино — меньше чем 0,3% массы электрона. Пределы для остальных двух видов нейтрино, однако, куда выше, и масса тау-нейтрино, согласно последним измерениям, может быть в целых 30 раз больше массы электрона. С другой стороны, она может быть и гораздо меньше.

Названия каждого нейтрино происходят потому, что каждое из них напрямую ассоциируется с распадом или взаимодействием электрона в случае электронного нейтрино, мюона — мю-нейтрино и тау-лептона — тау-нейтрино.

На картинке про распад нейтрона вы, наверное, заметили, что у антинейтрино есть бородка. Это — дань уважения классическому эпизоду «Звездного пути» под названием «Зеркало, зеркало» (сезон 2, серия 33), в котором злой «анти-Спок» щеголял растительностью на лице. Этим же отличаются все наши античастицы.

Кварки

 

Название

u-кварк

c-кварк

t-кварк

Заряд

+2/3

+2/3

+2/3

Масса 

-0,4% массы протона 

-130% массы протона 

-180 масс протона 

Первооткрыватель 

Стэнфордский

линейный

ускоритель,

эксперимент

по «глубоко

неупругому

рассеянию»

(1967) 

Независимо Тинги Рихтер (1974) 

Теватрон в лаборатории

им, Ферми (1995) 

 

 

Все это положительно заряженные кварки. Выглядят они очень похожими за одним исключением —’ каждое следующее поколение становится все более пухленьким. Г-кварк — самая мясистая из известных частиц. Он прямо-таки лопается по швам. Кроме того, это самая последняя из обнаруженных частиц.

Вы были бы вправе обвинить нас в недобросовестности, если бы мы не рассказали вам о некоей загадке, таящейся в нашей таблице. Вы заметили, что u-кварк обладает массой примерно в 0,4% массы протона. Это несколько странно, поскольку протон делают из двух н-кварков и одного d-кварка, а значит, заметите вы, все кварки вместе составляют еле-еле 1-2% массы протона. Откуда же берется вся остальная масса?

Вся остальная масса берется из энергии. Кварки, как и глюоны, летают очень быстро и взаимодействуют очень сильно, и подобно тому, как массу можно превратить в энергию, энергию можно превратить в массу. Если вам показалось странным, что поле Хиггса способно «создавать» массу, считайте это всего лишь очередным случаем, когда Е = тс2 применяется в обратную сторону.

 

 

 

 

 

 

Название 

d-кварк

s-кварк (странный)

Ь-кварк 

Заряд 

1/3

1/3

1/3

Масса 

-0,8% массы протона 

-10% массы протона 

4 1/2 массы протона

Первооткрыватель 

Стэнфордский

линейный

акселератор,

вместе

с и-кварком

(1967) 

Вместе с открытием каона (1947) 

Леон Ледерман и др. (1977) 

 

Это отрицательно заряженные кварки. Самый странный из них — странный кварк. Когда в 1947 году были открыты частицы под названием каоны, сначала показалось, что они совершенно бессмысленны. Они распадались на частицы вроде антимюонов и нейтрино, но были настолько массивны (около половины массы протона), что не согласовывались ни с одной из известных на то время частиц.

Лишь в 1964 году, когда Мюррей Гелл-Манн выдвинул идею кварка, стало ясно, что каоны распадаются на антистранный кварк и либо и-кварк, либо d-кварк. Странные кварки отличаются от прочих тем, что мы их открыли, еще не догадываясь, что они есть.

 

 

Переносчики взаимодействия

 

Изображение недоступно

Название 

Фотон 

Глюон 

Гравитон

Заряд 

0 

0 

0 

Масса 

0

0 

0 

Первооткрыватель 

Альберт

Эйнштейн

(1905) 

Группа

TASSO,

Германский

электронный

синхротрон

(1979) 

Оставайтесь с нами, ждите новостей… 

 

Это частицы-переносчики, лишенные массы,— носители трех из фундаментальных сил. Немного странно вписывать сюда дату открытия фотона — мы «наблюдаем» его постоянно. Однако интерпретация фотоэффекта, которую сделал Эйнштейн в 1905 году,— это момент, когда мы впервые поняли , что свет переносят частицы. Глюоны были обнаружены лишь около 30 лет назад.

Гравитоны, переносчики гравитационного поля, не только не обнаружены, но, согласно общей теории относительности, не очень-то и нужны. Однако есть веские причины предполагать, что гравитация должна быть похожа на остальные фундаментальные силы, а значит, у нее должен быть переносчик.

 

 

Название 

Z0

W+

W

1 Заряд 

0 

+1 

-1

Масса 

97,5 массы протона 

86 масс протона 

86 масс протона 

Первооткрыватель 

ЦЕРН, группа UA1 (1983)

ЦЕРН, группа UA1 (1983)

ЦЕРН, группа UA1 (1983)

 

Эти пухленькие частицы отвечают за перенос слабого взаимодействия. Обратите внимание, что они очень похожи друг на друга, если не считать надписей на шляпах. Это не случайность. На самом деле W+ и W
такие близкие родственники, что являются друг для друга античастицами. Один из величайших триумфов теоретической физики XX века — вычисление отношения масс Z/W, примерно 1,13. Это предсказание было сделано на основе модели Хиггса, а затем подтвердилось экспериментально с поразительной точностью.

 

И наш герой: .

 

Частица Хиггса. Она лишена заряда, но не обаяния. Это единственная частица в стандартной модели, которую еще не открыли, поэтому мы не знаем, какой именно массой она обладает. Скорее всего, это от 120 до 200 масс протона. Поскольку он вступает в сильное взаимодействие с массивными частицами, у него складываются запутанные и сложные отношения с f-кварком.


ПУТЕШЕСТВИЕ ВО ВРЕМЕНИ >>

Автор: Admin | 2011-09-02 |
8 страница из 11« Первая...34567891011

GIF
Видео
Видео
Все обо всем
Забавно!
Иллюстрированные факты
Искусство
Истории
Все размещенные на сайте материалы без указания первоисточника являются авторскими. Любая перепечатка информации с данного сайта должна сопровождаться ссылкой, ведущей на www.unnatural.ru.