Необычный

Под знаменем джихада: корни исламского радикализма


Террор — радикальный способ действия самых разнообразных экстремистов, вне зависимости от их национальности и религии. Но где-то с конца прошлого века имидж самых жестоких и опасных террористов прочно утвердился за исламскими фундаменталистами, которые требуют, чтобы мусульмане всегда следовали принципам, заложенным на заре ислама. На чём основаны убеждения этих жестоких экстремистов? Попробуем разобраться в прошлом и настоящем исламского радикализма, не обойдя вниманием историю ислама в целом. Читать дальше>>

Автор: Admin | 2016-03-20 | Все обо всем

Космонавтика: рациональная концепция развития структуры мировой энергетики. Часть II

Вы не астрофизик, а специалист по отделке интерьеров, поэтому вас гораздо больше интересует не космонавтика, а где можно приобрести ламинат недорого. Именно поэтому настоятельно советую вам заглянуть на сайт praktik-pol.ru. Здесь вы найдете широчайший ассортимент высококлассного ламината по максимально низким ценам!



Кривые и области, указанные на рис. выше, дают не столько количественные величины мощностей составляющих мировой энергетики, сколько состав и ранжировку по возлагаемой «нагрузке» на рассматриваемые виды энергетики или по другому — степень их востребованности на разных временных этапах. Чем большим будет отличие реальной картины развития энергетики от рассматриваемой концепции из-за ограниченности ресурсов и производственных мощностей, слабой организации международных взаимодействий, преобладания корпоративных интересов над общечеловеческими, тем глубже будут захвачены Природа и Цивилизация проблемами экологии, негативных межгосударственных и социальных взаимоотношений.

 

Предварительный этап с начала текущего века до 2030-2050 г. характеризуется необходимостью резкого ограничения использования углеродных и углеводородных топлив с целью уменьшения вероятности изменения климата, связанного с увеличением парникового эффекта, а также в связи с ограниченностью ресурсов и неэффективностью их использования в качестве источника энергии (область 1). Основная цель такого ограничения — предотвратить начало необратимых изменений в Природе. По оценкам без принятия мер по ограничению выбросов парниковых газов начало необратимых процессов возможно в 2020-2030 гг.. В это время основную нагрузку по обеспечению возрастающих энергетических потребностей Цивилизации придется нести возобновляемым земным источникам энергии (Солнце, ветер, реки, приливы и др.) и атомной энергетике (области 2 и 3 соответственно) при активном поиске и внедрении энергосберегающих технологий.

 


Возобновляемые источники энергии являются экологически чистыми в части выбросов парниковых газов. Однако по ряду причин (большие капитальные затраты, локальное влияние на местные климатические условия, отчуждение больших площадей, приводящее к сокращению пахотных земель, пастбищ, лесов и др.) возобновляемые источники энергии смогут компенсировать лишь незначительную часть требуемого уменьшения доли углеродной и углеводородной энергетики. Суммарный глобальный потенциал возможного использования возобновляемых источников энергии составляет 16-19 ТВт..

 

Атомные электростанции выбрасывают в атмосферу количество вредных веществ в двадцать раз меньше, чем работающие на нефти и мазуте, и в тысячу раз меньше, чем угольные электростанции. Поэтому, с точки зрения предотвращения возможности необратимых процессов в биосфере из-за увеличения парникового эффекта на предварительном этапе, не остается ничего другого, кроме достаточно быстрой замены углеродной и углеводородной энергетики возобновляемыми источниками энергии и атомной энергетикой. Под атомной энергетикой подразумеваются не только атомные электростанции, но и атомные станции теплоснабжения, а также атомно-водородная энергетика, которая позволит перевести транспорт, а также многие производства на экологически чистое водородное топливо.

 


В предложенной концепции для выполнения поставленных целей требуется рост атомной энергетики с тем, чтобы начиная примерно с 2030 г. доля мировой атомной энергетики превышала долю углеродной и углеводородной. Близкий к этому вывод содержится в прогнозе развития мировой энергетики для перехода к устойчивому развитию, разработанным в Институте систем энергетики СО РАН. Рассматриваемые обычно в качестве проблемных вопросы ограниченных запасов природного урана, безопасности и утилизации большого количества радиоактивных отходов решаются, и современный уровень развития науки и техники, в том числе космической, позволит использовать новые технологии. Так, проблему особо опасных отходов предлагается решить кардинальным способом — их захоронением в космосе.

Автор: Admin | 2016-02-23 |

Космонавтика: рациональная концепция развития структуры мировой энергетики. Часть I

Разрабатываете передовую модель мировой энергетики, в основе которой заложена космонавтика, и боитесь за сохранность своих трудов? Тогда вам определенно точно потребуется панорамная ip камера 360 градусов, которую вы легко сможете установить возле своего рабочего места и отслеживать все происходящее в режиме реального времени. Подробности на arecontvision.ru.


Понимание необходимости создания космической энергетики, огромности затрат труда и финансов при ограниченности отпущенного Человечеству времени для выхода из наступающей кризисной ситуации привели авторов работы к формулировке концепции рационального развития структуры мировой энергетики в обеспечение мировых энергетических потребностей в XXI в. Предложенная концепция — не прогноз развития мировой энергетики, а попытка оценки ее востребованности с представлением оптимального (по мнению авторов работы) пути для возможного выхода из надвигающихся кризисов.

 


Основа предлагаемой концепции заключается в преобразовании структуры мировой энергетики таким образом, чтобы в конце XXI века ее значительную часть представляла космическая энергетика. Размещение электростанций в космосе позволит резко снизить тепловую нагрузку на Землю, т.к. на поверхность Земли из космоса будет доставляться лишь высокопотенциальная энергия (электромагнитное излучение, превращаемое затем на Земле в электроэнергию), в то время как при использовании для производства электроэнергии наземных тепловых и атомных станций не преобразованное тепло термодинамического цикла остается под атмосферой, а это даже в перспективе вряд ли составит менее 50%. Таким образом космическая электроэнергетика будет обеспечивать Землю экологически чистой энергией под атмосферой с максимальным коэффициентом преобразования в полезную работу, и одновременно откроет новые горизонты использования энергетических и материальных ресурсов Космоса. Но для создания космической энергетики необходимо выиграть время.

 


Концепция развития структуры мировой энергетики в XXI в.:

1 — углеродная и углеводородная энергетики; 2 — энергетика на возобновляемых источниках; 3 — наземная ядерная энергетика; 4 — наземная термоядерная энергетика; 5 — космическая энергетика для Земли из земных материалов; 6 — космическая энергетика для Земли из лунных материалов; 7 — космическая энергетика для обеспечения внеземного производства; 8 — начало функционирования лунного производства; 9 — начало функционирования энергоемкого производства в космосе; 10-земная энергетика при неуправляемом производстве (по потребности); 11 — потребности в земной энергетике при использовании энергосберегающих технологий; 12-энергетика, используемая под атмосферой

 

 

Ход преобразования общей структуры в процессе формирования космической энергетики можно представить в виде нескольких этапов (рис. выше), которые определяются наличием нескольких «реперных точек» с условной временной привязкой. Реперные точки определяют только начало этапов, с течением времени этапы могут совмещаться.

 

Состав мировой энергетики, представленный на рис. выше, дан на уровне первичных видов энергии, поскольку они напрямую характеризуют тепловой нагрев атмосферы. Качество жизни в большей степени отражают конечные виды энергии. При соответствующем технологическом уровне мирового производства и учете условий естественного обитания между первичными и конечными видами энергии существует линейная корреляция.

Автор: Admin | 2016-02-23 |

Концепция космической системы энергоснабжения в микроволновом или оптическом диапазоне частот. Продолжение

Вы используете исключительно ресурсы нашей планеты, поэтому вам малоинтересны концепции добычи энергии из космоса. И правда, зачем преодолевать земную гравитацию и выходить на орбиту, когда можно отправиться порыбачить, лодки ротан. Это и быстрее и дешевле! Подробности на flotilion.ru.



Энергия на выведение массы КСЭС с поверхности Луны в выбранную точку либрации с помощью электромагнитных ускорителей будет представлять собой одну из основных затратных энергетических составляющих для лунной промышленной инфраструктуры. При предварительной ее оценке принималась во внимание необходимость получения на Земле заданной величины мощности в 20 ТВт. Учитывая перспективное значение КПД тракта передачи энергии в космосе для микроволнового диапазона, равного 0,7 и КПД прохождения атмосферы 0,9, мощность КСЭС в точке либрации должна составлять 32 ТВт.

 

При удельной массе источников ИК-излучения и солнечных батарей в сумме 5 кг/кВт, масса КСЭС составит около 160 млн т. Для выведения с поверхности Луны в сферу ее действия необходимо этой массе сообщить скорость 2,4 км/с, затратив при этом 4,6х1017 Дж. Если на создание КСЭС потребуется 30 лет, то для решения этой задачи требуемая мощность энергетики в точке либрации с учетом КПД преобразования электричества в механическую энергию, принятого 0,9 и указанного выше КПД передачи энергии в космосе, будет иметь значение 730 МВт. Даже увеличенная вдвое, для учета деградации солнечных батарей и ограниченного срока эксплуатации аппаратуры, новая величина будет составлять ~5×10-5 от мощности КСЭС.

 


Изготовление элементов спутников-ретрансляторов предполагается производить на Луне, а сборку конструкции диаметром ~1000 м и массой ~100 т для каждого спутника, после выведения электромагнитной катапультой с Луны, осуществлять в точке либрации, где размещается КСЭС. После сборки спутник посредством буксира с ЭРДУ, доставляется к месту функционирования на орбите, близкой к ГСО. При этом затраты характеристической скорости будут составлять 2,34 км/с. Общая масса спутников-ретрансляторов составит около 500 тысяч т. В качестве рабочего тела ЭРДУ буксиров могут быть использованы металлические магний или кальций, добываемые на Луне и содержащиеся в лунном грунте в достаточном количестве (магний — 89 кг/м3 грунта, кальций — 150 кг/м3 грунта). Обычно в качестве рабочего тела в ЭРДУ используется ксенон, висмут, можно использовать ртуть, т.е. вещества, с большой атомной массой. Испытания ЭРДУ с литиевым рабочим телом мощностью 500 кВт показали вполне удовлетворительные характеристики, поэтому замена лития на магний или кальций, добываемые на лунной базе, не приведет к заметному ухудшению тяговых и энергетических характеристик, так как потенциалы ионизации этих металлов близки.

 


По предварительной оценке многоразовый буксир, совершающий циклический рейс L — орбита, близкая к ГСО — L за полгода с полезным грузом в 200 т (масса двух спутников-ретрансляторов), затратит 14 т рабочего тела. Сухая масса буксира будет составлять около 15 т. Чтобы построить КСЭС за 30 лет и поддерживать ее во время эксплуатации, необходимо иметь флотилию из 42 буксиров. Для их обеспечения лунная промышленность должна будет производить до 600 т рабочего тела в год, перерабатывая 4xl03÷7xl03 м3 лунного грунта (карьер глубиной 10 м и площадью 20×20÷27×27 м2). Приведенные цифры, несмотря на свою кажущуюся масштабность, показывают принципиальную возможность реализации данной концепции, при условии выполнения ее в рамках международного проекта.

Автор: Admin | 2016-02-23 |

Анализ систем энергоснабжения Земли из космоса с учетом обеспечения безопасности

Вас заботит проблема энергосбережения, но не в масштабах целой Земли, а отдельно взятой постройки — вашего дома. Именно поэтому вы планируете заменить тэны в вашем бойлере на более экономичные. Так что обязательно загляните на aldentrade.com.ua, где вы сможете приобрести их на максимально выгодных для себя условиях.


Все проекты космических энергетических систем рассматривают передачу энергии из космоса на Землю в диапазоне СВЧ-излучения, поскольку этот диапазон позволяет с минимальными потерями энергии проходить земную атмосферу. Однако, как было показано выше, уровень безопасной энергии на ректеннах ограничивает суммарную масштабность подобных энергосистем до 2,5-3 ТВт.

 

Плотность СВЧ-излучения должна быть достаточно низкой для обеспечения безопасности людей, Природы и сохранности ионосферы Земли. Поэтому площадь ректенн на Земле получается очень большой. Для примера в табл. ниже указаны характеристики двух вариантов ректенн при длине волны 12,24 см.

 


Технические характеристики ректенн

 

По нормам, действующим в разных странах, допустимая мощность СВЧ- излучения при кратковременном воздействии (до 2-3 ч в сутки) не более 10-50 Вт/м2 и при длительном — не более 1-10 Вт/м2. Следовательно, даже «безопасные» ректенны должны размещаться вдали от густонаселенных мест.

 


Помимо отчуждения больших площадей на Земле в ближнем околоземном пространстве для круглосуточного энергоснабжения должны быть расположены спутники-ретрансляторы с такой же площадью и с соответствующей массой. Уменьшение площади спутников повлечет за собой увеличение энергетических потерь.

 

Указанные недостатки могут быть исключены при передаче энергии в микроволновом и оптическом диапазонах излучения. Использование этих диапазонов дает возможность обеспечить энергетический поток высокой плотности в узконаправленном луче, уменьшить размеры ректенн на Земле и спутников-ретрансляторов на околоземной орбите по сравнению с этими же элементами энергетической системы, работающей в СВЧ-диапазоне, либо при прочих равных условиях на порядок увеличить передаваемую мощность.

 

Основным препятствием для видимого и микроволнового диапазонов излучения служит облачный покров земной атмосферы. Главным направлением в преодолении этого препятствия в течение многих лет был поиск окон прозрачности атмосферы. Исследования показывают, что лазер, работающий с длиной волны 1064 нм, проникает сквозь земную атмосферу, теряя не больше 10% своей интенсивности. При такой частоте плотность потока энергии в 5 кВт/м2 безвредна для человека. Это больше чем на два порядка превышает «безопасную» плотность энергии на ректене при СВЧ-излучении.

 


Другим многообещающим направлением может стать разработка способов локального управления погодой. Один из таких способов запатентован в России. Разработка способов локального управления погодой позволит обеспечить прохождение лазерного луча видимого и микроволнового диапазонов через земную атмосферу в районе ректенны с высоким КПД.

Автор: Admin | 2016-02-16 |

Анализ систем энергоснабжения Земли из космоса на основе лунных ресурсов с передачей энергии в СВЧ-диапазоне в свете развития наземной энергетики

Ваш автомобиль перестал подавать всякие признаки жизни, поэтому вас мало интересуют лунные ресурсы и возможность их использования на благо человечества. Именно поэтому рекомендую вам закончить чтение данной статьи и отправиться в
автосервис 24 часа, где опытные механики вернут ваше авто к жизни. Подробности на автосервис-ювао.рф.


Для оценки целесообразности создания систем энергоснабжения Земли из космоса в Институте систем энергетики им. Л.А. Мелентьева Сибирского отделении РАН было составлено около двадцати прогнозных сценариев внешних условий развития мировой энергетики в XXI в.. Различия в сценариях отражали неопределенность таких наиболее важных факторов, как уровень энергопотребления (высокий, средний, низкий), возможных ограничений на глобальные выбросы CO2 (жесткие, умеренные, мягкие или их отсутствие), возможных ограничений на развитие ядерной энергетики (мораторий, умеренные или отсутствие), политики стран-экспортеров относительно темпов расходования (исчерпания) дешевых ресурсов нефти, природного газа и др. Для этих сценариев была подготовлена необходимая информация по энергетическим ресурсам, потребностям, технологиям и другим параметрам, включая системы энергоснабжения Земли из космоса, для 10 регионов мира. При разработке сценариев и выполнении анализа технические и экономические характеристики элементов оборудования космических и лунных энергостанций и систем космического транспорта были приняты по материалам работ.

 

Главные выводы из анализа возможных сценариев развития мировой энергетики (на 2004 г.) с точки зрения возможности и целесообразности создания и использования систем энергоснабжения Земли из космоса на основе СВЧ-каналов передачи энергии кратко состоят в следующем:

  1. Энергия от космических энергетических систем (ЛЭС и КСЭС) может потребоваться (оказаться экономически эффективной) лишь при наиболее неблагоприятных условиях, а именно — при жестких ограничениях на выбросы С02 (примерно на уровне 1990 г.) и одновременном ограничении на развитие ядерной энергетики. В связи с этим реальная необходимость в создании ЛЭС или КСЭС прояснится по мере получения уверенных результатов исследований проблем потепления и изменения климата планеты, а также в части обеспечения безопасности и конкурентоспособности ядерной энергетики.
  2. Наиболее перспективными для дальнейших исследований и разработок можно считать две концепции космических систем, обеспечивающие непрерывное энергоснабжение Земли: КСЭС на геостационарной орбите (ГСО) и лунную энергетическую систему с дополнительными коллекторами на обратной стороне Луны и СВЧ-отражателями на ГСО.
  3. Для обеих концепций первые стадии НИОКР (особенно в части освоения Луны) практически совпадают. Обоснованный выбор одной из них можно сделать позднее по мере проведения исследований и создания опытных образцов. Целесообразно учитывать возможность развития этих систем (технологий) в рамках других программ по освоению Космоса.

  4. ЛЭС и КСЭС на основе СВЧ-каналов передачи энергии уступают по экономичности наземным солнечным электростанциям в регионах с повышенной инсоляцией — на Ближнем Востоке, в Африке, Северной и Латинской Америке. Энергия от космических систем экономична (при указанных неблагоприятных условиях) в регионах с пониженной солнечной радиацией (Европа) или в регионах с продолжительными сезонами дождей (Япония, Юго-Восточная Азия, Китай).


     

Автор: Admin | 2016-02-14 |

Система энергоснабжения Земли из космоса на базе лунных ресурсов: концепция Крисвелла. Продолжение


Главный недостаток этой концепции — нереалистичность обеспечения постоянного освещения коллекторов лунных баз с помощью зеркал на лунной орбите, так как зеркала должны постоянно вращаться, направляя солнечный «зайчик» на коллектор. Учитывая площадь солнечных коллекторов (десятки тысяч квадратных километров) и необходимое число зеркал на одной орбите для постоянного освещения одной и той же площадки коллектора, потребуется около 1 млн зеркал на орбите Луны (при мощности 20 ТВт и размере зеркал примерно 1 км в диаметре). Это представляется нереалистичным даже только с точки зрения загрязнения окололунного пространства.

 


Более реалистичной видится вторая концепция с сооружением дополнительных солнечных коллекторов на обратной стороне Луны. Фактически это означает строительство трех баз, из которых хотя бы одна всегда освещена Солнцем (кроме случаев полных лунных затмений). Это увеличивает необходимую площадь солнечных коллекторов (фотоэлементов) и требует сооружения линий электропередач от баз на обратной стороне Луны к передающим антеннам. Однако эти дополнительные работы на Луне гораздо менее трудоемки, чем создание и запуск зеркал на лунные орбиты (с последующим их удалением оттуда). Между тем, в этой концепции сохраняются СВЧ-ретрансляторы на орбитах вокруг Земли, что требует специального рассмотрения. В принципе, возможны два способа размещения ретрансляторов: на геостационарной и средневысотных полярных орбитах. Первый способ представляется достаточно практичным, хотя и требует специального исследования возможных схем и алгоритмов переключения СВЧ-лучей от разных антенн на Луне на спутники-ретрансляторы или непосредственно на приемные ректенны. Принимая во внимание стационарное положение ретрансляторов на ГСО, такие схемы и алгоритмы будут не слишком сложными. Однако в этом случае проявятся ограничения на общее число ретрансляторов и широтное расположение ректенн. Общая мощность системы при такой схеме будет, по-видимому, не такой огромной (менее 1 ТВт). Эту разновидность лунной энергосистемы следует сопоставить по трудностям реализации и экономической эффективности с КСЭС (в частности КСЭС такой же мощности потребует в три раза меньшую площадь фотоэлементов).

 

Однако возможность реализации второго способа размещения СВЧ-ретрансляторов вызывает серьезные сомнения. При их расположении на средневысотных орбитах потребуются десятки таких спутников для обслуживания каждой ректенны. Объясняется это тем, что спутник, пролетая над ректенной, будет лишь относительно короткое время находиться в пределах ее видимости и для обеспечения непрерывного облучения ректенны необходима последовательность из многих спутников на одной и той же орбите. Потребуются десятки или даже сотни тысяч ретрансляторов на земных орбитах в зависимости от единичной мощности и числа ректенн. Маловероятно, чтобы это оказалось технически и экономически приемлемым и допустимым по условиям загрязнения околоземного пространства. Кроме того, потребовалась бы чрезвычайно сложная система управления для переключения СВЧ-лучей с одного спутника на другой или непосредственно на ректенну. Поэтому данную разновидность следует либо совсем исключить из рассмотрения, либо изучать при ограниченных параметрах (по числу ректенн).

 


Наиболее проста и легче реализуема третья концепция — без све-тоотражателей на лунных орбитах и СВЧ-ретрансляторов на орбитах вокруг Земли, но с дополнительными базами фотоэлементов на обратной стороне Луны. В этом случае СВЧ-лучи передаются с лунных антенн непосредственно на ректенны Земли. Естественно, при этом будут продолжительные перерывы в энергоснабжении. Кроме того, они не могут располагаться в полярных зонах Земли, где Луна не поднимается достаточно высоко над горизонтом. При данной концепции ежедневно будут иметься 14-18-часовые перерывы в СВЧ-облучении ректенн. Это означает необходимость либо дублирования мощности лунной энергосистемы другими видами электростанций, либо применения накопителей энергии. В случае дублирования энергия из Космоса будет обеспечивать только экономию топлива (как и многие другие возобновляемые источники энергии). При использовании же накопителей потребуется увеличение мощности (и площади) ректенн (и лунных баз) в 4-5 раз по сравнению со среднедневной выравненной мощностью (с учетом КПД накопителей). Это, конечно, увеличит стоимость энергии.

Автор: Admin | 2016-02-09 |

Системы передачи энергии космос-космос как этап отработки лазерного канала передачи энергии для КСЭС. Продолжение 1

Обязательно приступите к изучению системы передачи энергии космос-космос, но только после того, как закончите делать ремонт в своем доме. Тем более, что вам всего-то и осталось, что оценить качество современных деревянных окон и принять решение по их усстановке. Такие окна не только обладают отличными эксплуатационными и шумоизоляционными характеристиками, но и отлично вписываются в любое дизайнерское решение.



Возможно также создание энергетической системы, включающей одну, либо несколько энергостанций, обеспечивающих электропитанием (полностью или в период пиковых нагрузок) группировок КА. Так, мощная солнечная или ядерная космическая энергостанция, размещенная на относительно низкой орбите, могла бы снабжать электроэнергией группировку КА, размещенных, например, на ГСО. При этом КА должны быть оснащены буферными аккумуляторными батареями и приемниками излучения от системы беспроводной передачи энергии. Суммарная масса и габариты данного оборудования могут оказаться существенно меньше масс и габаритов автономных энергоустановок КА. При этом снижаются затраты на выведение КА и их эксплуатацию.

 

Однако наиболее ярко преимущества систем с беспроводной передачей энергии могут проявиться в космических транспортных системах. Энергетические установки большой мощности востребованы для создания космических транспортных аппаратов — межорбитальных буксиров (МБ), оснащенных ЭРДУ Важной характеристикой МБ является их удельная масса (отношение массы МБ к электрической мощности ЭРДУ), от которой зависит эффективность выполнения транспортных операций (от данного параметра зависит масса полезного груза, доставляемая на целевую орбиту и оперативность доставки). Удельная масса МБ определится в первую очередь удельной массой его энергетической установки. Использование в транспортной системе элементов беспроводной передачи энергии позволяет снизить удельную массу МБ за счет отсутствия в его составе собственно автономной энергетической установки — масса приемника-преобразователя электромагнитного излучения канала передачи энергии должна быть существенно меньше. Кроме того, располагая сравнительно маломощными энергетическими установками в составе энергостанций, можно получить большую мощность в ЭРДУ буксира за счет приема энергии поочередно от нескольких станций (в период, когда энергостанция не излучает мощность, идет процесс ее накопления). В этом случае удельная масса МБ также снижается за счет отнесения массы элементов конструкции и служебных систем МБ к большему значению электрической мощности, подводимой к ЭРДУ

 


В случае использования ЯЭУ система беспроводной передачи энергии позволяет осуществлять стыковки многоразового МБ с модулями полезной нагрузки непосредственно на низкой околоземной орбите, куда они выводятся PH. Отпадает необходимость доставки полезной нагрузки на радиационно-безопасную орбиту (РБО) межорбитального буксира (высотой 800-1000 км), что сопряжено с дополнительными затратами.

 

Использование принципа беспроводной передачи энергии накладывает также значительно меньшие ограничения на энергомассовые и ресурсные характеристики энергоустановки: космическая энергостанция выводится на рабочую орбиту один раз, что допускает существенно худшие значения удельной массы. Имеется также возможность повысить ресурс энергетической установки за счет массы (многократное резервирование, меньшая энергонапряженность реактора в случае использования ЯЭУ, дополнительная радиационная защита электронного оборудования и т.п.). В принципе возможно техническое обслуживание энергетических станций на их рабочей орбите с заменой критически важных элементов.

 


В РКК «Энергия» была исследована межорбитальная транспортная система на базе технологии беспроводной передачи энергии применительно к задаче доставки грузов на ГСО. Для данной задачи предварительные оценки требуемой дальности передачи энергии позволяют оценить ее максимальное значение в 47000 км. В этом случае для СВЧ-диапазона при частоте излучения 2,45 ГГц диаметр апертуры излучателя может составить 1500 м, а апертуры приемника — 95 м. Для инфракрасного диапазона с длиной волны 0,8 мкм диаметр апертуры излучателя — 4 м, а апертуры приемника — 23 м. Исходя из полученных оценок размеров, предпочтительно использование ИК-диапазона.

 


Характерные значения КПД всего тракта передачи энергии составляют 30-50%, поэтому необходимо включение в состав передающей энергетической станции системы теплоотвода. Рабочий диапазон температур для элементов системы передачи энергии в инфракрасном диапазоне составляет 10-20°С для лазерных диодов и до 60°С для ФЭП. С учетом величины передаваемой мощности (100-1000 кВт) относительно невысокие уровни рабочей температуры приводят к довольно большим требуемым площадям холодильника-излучателя и росту массы системы охлаждения.

Автор: Admin | 2016-01-30 |

На неверном пути: не подтвердившиеся научные гипотезы


По мнению сайнсфриков, главное, а может, и единственное занятие представителей так называемой «официальной науки» — замалчивание сенсационных открытий. В реальности учёные не меньше простых смертных склонны из всех возможных объяснений предпочитать наиболее интригующие. Однако лишь до тех пор, пока речь идёт о предположениях — гипотезах. И экспериментальная проверка регулярно подрезает крылья фантазии… Но бывает очень трудно доказать, что в тёмной комнате нет чёрной кошки. Читать дальше>>

Автор: Admin | 2016-01-01 | Все обо всем, Космос

Космические солнечные электростанции на базе лазерного канала передачи энергии. Продолжение 4

Планируете вырастить из своего сына второго Гагарина? В этом случае обязательно обязательно прикупите детские книги, затрагивающие тему космоса. Найти такие книги вы сможете, к примеру, на colibribookstore.com.



КСЭС на базе солнечных батарей с кремниевыми фотоэлектрическими преобразователями с КПД 12-15% и электроразрядными лазерами с длиной волны излучения 10,6 мкм и с дозвуковым потоком активной среды (CO2) в резонаторе с КПД лазерного контура 18% будет иметь полный системный КПД 2,4%. Удельная масса КСЭС при мощности 45-75 МВт оценивается в 25 кг/кВт, причем 49% приходится на холодильники-излучатели системы охлаждения лазерного контура. При использовании рабочих тел электроразрядного лазера на основе СО достижимы КПД лазерного контура в 29-30 %, при этом, однако, требуются большие мощности для привода компрессора, так как используется сверхзвуковая прокачка рабочего тела в контуре. Однако общий системный КПД может быть увеличен до 4-6%.

 

Достигнут большой прогресс в повышении характеристик полупроводниковых лазеров с электрической накачкой. Для ИК-диапазона промышленностью освоен выпуск источников излучения в ближнем инфракрасном диапазоне с КПД 50%, а для экспериментальных образцов получены значения КПД до 70%. Удельные массы источников ИК-излучения большой мощности (без остронаправленной оптической системы) могут составлять 2-4 кг/кВт. Поэтому энергоизлучающие системы на основе полупроводниковых лазерных диодов представляют большой интерес, так как при использовании совместно с пленочными ФЭП на основе Si или алмазоподобных структур с КПД 15-20% способны обеспечить полный КПД КСЭС 7-14% даже с учетом потерь в оптических элементах. Это существенно выше, чем у систем с оптической и тепловой накачкой, а также у систем с электроразрядными лазерами. Одновременно такая система будет отличаться относительной конструкционной простотой.

 


Недостатком полупроводниковых диодов является относительно низкая рабочая температура (до 40°С), ведущая к большим потребным площадям холодильников-излучателей системы теплоотвода лазера. Однако, учитывая высокий КПД по сравнению с электроразрядными системами (50-70% против 18-30%) и сравнительную близость их рабочих температурных режимов, можно предполагать, что полупроводниковые лазеры окажутся конкурентоспособными по данному критерию.

 

Другой недостаток энергоизлучающих систем на базе полупроводниковых диодов — необходимость суммирования излучения, генерируемого большим количеством отдельных лазерных диодов (их оптическая мощность не превосходит десятков ватт), а также низкое качество (высокая расходимость и асимметрия пучков) излучения диодов, что требует использования специальных оптических систем. Тем не менее, указанные проблемы могут быть преодолены, например, с использованием индивидуальных корректирующих оптических элементов для лазерных диодов.

 

При рассмотрении возможности использования в составе КСЭС лазеров на базе полупроводниковых диодов нельзя не учитывать вопросы стоимости и доступности соответствующих материалов. Большинство полупроводниковых лазерных диодов с высоким КПД созданы на основе GaAs. Учитывая ограниченность запасов галлия и его относительно высокую стоимость, надо полагать, что использование соответствующих диодов возможно для систем передачи энергии космос-космос и пилотных вариантов КСЭС относительно небольшой мощности (десятки — сотни мегаватт), но вряд ли возможно для полномасштабной системы энергоснабжения Земли из космоса отдаленной перспективы суммарной мощностью до единиц и десятков ТВт. В этом случае необходимо использование альтернативных материалов для лазерных диодов.

 

Таким образом, полупроводниковые лазеры с электрической накачкой являются перспективными кандидатами на использование в составе энергоизлучающих систем КСЭС, а также в системах беспроводной передачи энергии космос — космос, в которых принципиальное значение имеет полный КПД тракта передачи энергии.

 


В настоящий момент проекты экспериментальных геостационарных КСЭС мощностью до 1 ГВт, использующих лазерный канал передачи энергии, рассматриваются Японским космическим агентством (JAXA) в рамках программы SSPS [6.52], а также компанией EADS-ST (Германия) в рамках проекта SPI («Космическая энергетическая инфраструктура»).

Автор: Admin | 2015-11-13 |
8 страница из 62« Первая...456789101112...203040...Последняя »

GIF
Видео
Видео
Все обо всем
Забавно!
Иллюстрированные факты
Искусство
Истории
Все размещенные на сайте материалы без указания первоисточника являются авторскими. Любая перепечатка информации с данного сайта должна сопровождаться ссылкой, ведущей на www.unnatural.ru.