Необычный

Марс. Часть I

Вы просто обожаете йогурты и хотите научиться готовить этот полезный кисломолочный продукт у себя дома. В этом вам поможет йогуртница Dex 107, приобретение которой благоприятно скажется не только на работе вашего пищеварительного тракта, но и на семейном бюджете, т.к. стоимость готового продукта в несколько раз ниже магазинного!

Купить йогуртницу и закваски к ней Вы сможете на сайте www.zakvaski.com.


Рассмотрим некоторые особенности состава и строения Марса. В свете выявленной нами магнитной сепарации элементов, мы действительно можем определить особенности состава этой планеты. Для этого сначала определим изначальную распространенность элементов в зоне пояса астероидов. По характеру распределения элементов на рисунке 4 мы можем провести тренд этой самой изначальной распространенности и на этот тренд помещаем химические элементы, согласно их потенциалам ионизации. Данная процедура выявляет изначальную распространенность элементов, т.е. обилие или дефицит элементов в зоне пояса астероидов относительно их содержания на Земле. Зона формирования Марса находится между Землей и поясом астероидов, и согласно магнитной сепарации тренд распространенности элементов в этой промежуточной зоне должен идти с меньшим наклоном (рис. 54) по сравнению с трендом астероидов. Так мы определяем, каких элементов на Марсе больше, каких меньше, а каких примерно одинаково в сравнении с Землей.

 


Рис. 54. Тренды относительной распространенности элементов в зависимости от их потенциалов ионизации.

Из этих различий в составе Земли и Марса вытекают многочисленные следствия. Прежде всего, доля кислорода на Марсе примерно на порядок больше, чем на Земле. Следовательно, там доля литосферы в объеме планеты значительно больше, ее средняя мощность должна быть порядка 350 км (радиус Марса — 3386 км). И, разумеется, на Марсе должно быть много воды. Толща гидросферы к концу активной стадии развития, видимо, измерялась километрами. Однако из-за малых масштабов расширения планеты океанических впадин не было, и, следовательно, в активную стадию Марс практически весь был покрыт водой и лишь кое-где торчали горные вершины.

 

Содержание углерода на Красной планете в несколько раз больше, чем на Земле. Стало быть, в активную стадию развития Марса в его атмосфере (ныне утерянной) присутствовало много углекислого газа. Это должно было вызвать парниковый эффект. Соответственно, в те теплые времена могли быть моря жидкой воды. Затем, в связи с исчерпанием водорода, планета умерла, отключилось магнитное поле, плотная атмосфера без эндогенной подпитки быстро сошла на нет, стало холодать, и наступило великое оледенение. Времени было достаточно, чтобы вся гидросфера промерзла и покрылась одеялом из марсианской пыли.

 

Эксцентриситет орбиты Марса определяет смену времен года, и в летний период температуры в экваториальной зоне могут превышать 0 0С, тогда как за пределами этой зоны они могут опускаться ниже минус 100 0С (такой разброс температур наблюдается в настоящее время). При малой плотности атмосферы водяной лед в теплой зоне не столько плавится, сколько возгоняется, и эти возгоны частично теряются, а частично конденсируются в зонах низких температур. По всей вероятности, такая ситуация после смерти планеты существовала весьма длительное время и обусловила перепады высот на некогда ровной поверхности замороженной гидросферы. Это, в свою очередь, обусловило течение льда и появление характерных форм ледникового рельефа. Следует отметить: как только появились хорошие фотографии поверхности Марса, специалисты сразу стали говорить именно о таком (ледниковом) характере рельефа.

 

На Луне излияния базальтов в Океане Бурь начались 3,2 миллиарда лет назад. Если считать этот рубеж началом «трупного магматизма», то активная стадия Луны продолжалась 1,3 миллиарда лет (4,5 — 3,2 = 1,3). Марс по массе в несколько раз больше Луны и во столько же раз меньше Земли, все еще активной. По всей видимости, продолжительность активной стадии Красной планеты была где-то между земной и лунной, т.е. порядка 2 — 2,5 миллиардов лет. Можно предположить, что в последнюю треть этого срока на Марсе существовали теплые моря и богатая кислородом атмосфера. На это указывает красновато-бурый цвет марсианской пыли, который свидетельствует о резком преобладании окисного железа над закисным. Временами такое бывало и на Земле, когда случались эпохи накопления красноцветов из-за повышения парциального давления кислорода в атмосфере.

 

Таким образом, плюсовая температура, теплые моря и атмосфера с кислородом существовали на Марсе достаточно длительное время, не менее полумиллиарда лет. А до этого периода, на этапе формирования силикатно-окисной оболочки, атмосфера состояла (как и на Земле на таком же этапе) преимущественно из метана, аммиака и сероводорода, (CH4, NH3, H2S,); к которым затем добавился угарный газ (CO). С точки зрения специалистов — это идеальные условия для зарождения жизни. Но случилось ли это на Марсе, а если случилось, то насколько преуспела эволюция? Ответы на эти вопросы могут дать только непосредственные исследования Красной планеты.

 

Дорогой читатель, при помощи тренда относительной распространенности элементов на Марсе (рис. 54) вы можете сами определить согласно своим интересам, что там может быть и чего не может быть. К примеру, калий, натрий и алюминий имеют малые потенциалы ионизации, и поэтому их должно быть в несколько раз меньше на Марсе (относительно Земли). По этой причине на нем мы вряд ли увидим обилие гранитов. На Марсе высокое содержание углерода, соответственно, там должно быть гораздо больше карбонатных пород. При этом будут преобладать карбонаты на основе магния, тогда как на Земле преобладающими являются карбонатные породы на основе кальция.

 

Несколько лет назад по средствам массовой информации прошла научная сенсация: оказывается, серы на Марсе в несколько раз больше, чем на Земле! Однако о том, что именно так и должно быть, я упоминал в своих предыдущих статьях задолго до появления этой «сенсации». И догадаться об этом было совсем просто, если знаешь о магнитной сепарации элементов, которая определила составы планет при образовании протопланетного диска.

 

Пониженные концентрации урана и калия на Марсе должны приводить к меньшей генерации радиогенного тепла. Вместе с тем если удастся замерить там тепловой поток, то он окажется науровне среднего Земли или даже немного выше! В рамках бытующих представлений этого не может быть никогда! Согласно нашей концепции, этот парадокс (пока еще не обнаруженный) объясняется тем, что Земля активно развивается, и девять десятых радиогенного тепла, генерируемого в теле планеты, расходуется на ее внутренние процессы, в основном на расширение. Марс давно закончил свою активную стадию развития, и все его радиогенное тепло должно выходить наружу.

Автор: Admin | 2012-02-13 |

Преимущественно о Луне. Часть II

Вы начинающий или уже достаточно известный кинорежиссер и для съемок вашего нового блокбастера Вам позарез нужен хромакейный павильон, тогда советую Вам немедленно посетить сайт 2mint.ru, где Вы сможете совершить виртуальную прогулку по павильону и ознакомится с условиями его аренды.


Но, разумеется, «море» может быть без спрятанного под ним «маскона», и «маскон» может быть без «моря». Такой вроде бы есть на обратной стороне Луны, и его назвали «скрытым масконом» (рис. 52). Дорогой читатель, причины этих вариаций вы вполне можете додумать сами.

 

Морфология структур и внутренняя динамика тектонических процессов, с нашей точки зрения, зависит от размеров планеты. Если мощность литосферы на Луне не превышает 100 км, а сила тяжести составляет 0,16 (от земной), то давление в устье тектоногена должно быть порядка 3 — 5 килобар (тогда как на Земле оно в десятки раз больше). Такого давления явно недостаточно для уплотнения «наводороженных» металлов лунных тектоногенов, и по этой причине «зон заглатыгвания» на Луне не было. Этим объясняется полное отсутствие складчатости на Луне. На Марсе (его масса в 9,35 раза меньше земной) зоны заглатывания если и были, то сильно редуцированные, и складчатые структуры на Красной планете (в сравнении с земными) должны быть проявлены в значительно меньшем объеме. На Венере складчатость могла проявляться столь же интенсивно, как и на Земле. Однако из-за парникового эффекта, повышающего температуру поверхности на 500 0С, венерианская литосфера имеет высокую пластичность, и там мы наверняка не увидим шарьяжи альпийского типа.

 


Рис. 52. Модели строения Луны: а — в свете традиционных представлений (Taylor, 1975), б — согласно нашим построениям (пунктиром показан уровень, ниже которого в литосфере Луны образуется гранат). Заштрихованные зоны — «высокоскоростные масконы», «заливка черным» — лунные моря.

 

Пассивная стадия в развитии планет земного типа должна характеризоваться одним примечательным явлением — обильным плавлением. Согласно нашим представлениям, на Луне исходные концентрации радиоактивных элементов одинаковы с земными. Однако когда планета мертва в тектоническом отношении, не расходует тепло на расширение и не теряет его с уходом водорода-теплоносителя, то генерация радиогенного тепла должна вызывать разогрев недр и переплавление обширных объемов планеты. Практически полное отсутствие летучих, которые играют важную роль в дифференциации магматических расплавов, приводит к гомогенизации переплавляемых объемов. При значительных масштабах этого процесса, очевидно, уничтожается и внешний структурно-тектонический облик планеты, созданный на активном этапе ее развития. Таким образом, все ранее созданное на активной стадии (руды, породы, структуры, зоны…), все это затем уходит в переплавку и подвергается гомогенизации. Мы предлагаем называть этот процесс «трупным магматизмом», и он поражает, прежде всего малые планеты, которые быстро заканчивают активную стадию и рано умирают, когда генерация радиогенного тепла была в несколько раз больше. С точки зрения термодинамики «трупный магматизм» — это следствие перехода планеты после исчерпания водорода в закрытое состояние, в котором при росте температуры происходит увеличение энтропии системы.

 

По всей вероятности, Океан Бурь и некоторые другие бесструктурные темные области возникли в результате «трупного магматизма». И если мы правы, то в этих областях возможно выявление наиболее молодых лунных магматитов, которые будут отличаться слабой степенью дифференцированности (петрохимической, геохимической) и не должны нести следов остаточной намагниченности, поскольку магнитное поле отключается в момент тектонической смерти планеты.

 

Плавление в недрах Луны, возможно, продолжается и в настоящее время, но в значительно меньших масштабах, поскольку «в разы» уменьшилась генерация радиогенного тепла. Кроме того, температурный режим планеты сильно зависит от состояния ее силикатно-окисной оболочки, которая является термоизолирующей сферой. Если она в значительной мере нарушена, например, в связи с образованием крупных ударно-взрывных кратеров, то внутреннее тепло планеты может стекать через эти пробои-отдушины и плавление будет сильно сокращено.

Несколько слов о тепловом потоке. Традиционно было принято считать, что Луна имеет хондритовые концентрации урана, тория и калия, и согласно этому тепловой поток предполагался порядка 10 мВт/м2. Непосредственные измерения выявили гораздо более высокие значения (31 мВт/м2 — Аполлон 15, 28 мВт/м2 — Аполлон 17), что явилось большим конфузом для традиционной точки зрения и поставило под сомнение хондритовую модель. В рамках наших построений на Луне (по сравнению с хондритами) урана и калия больше на порядок, тория примерно в два раза. На тектонически мертвой планете должно быть примерное соответствие между тем, что генерируется в недрах, с тем, что выходит на поверхность. По нашим прикидкам, средний тепловой поток на Луне должен быть в пределах 60 мВт/м2. Таким образом, для нашей концепции обнаруженные значения недостаточно велики. Однако необходимо учитывать возможность резкой дифференцированности теплового потока на Луне.

 

Теплопроводность интерметаллических силицидов на порядок выше, чем у силикатов. Поэтому величина теплового потока на поверхности Луны должна варьировать в зависимости от мощности теплозапорного слоя силикатов. Если мы будем измерять температурные градиенты над масконами (где силикатный слой самый мощный), то они будут ниже среднего, а в местах с утоненной литосферой — гораздо выше. К тому же пробои-отдушины от крупных ударновзрывных кратеров могут пробивать всю толщу литосферы вплоть до интерметаллических силицидов. Выше мы говорили, что средняя мощность силикатно-окисной оболочки на Луне должна быть в пределах 25—30 км. Но где-то она может быть тоньше. Экспериментальные и теоретические исследования взрывного образования кратеров показали, что глубина кумулятивной воронки при взрыве достигает 1/3—1/4 диаметра кратера (она сразу же засыпается взорванным материалом). Диаметр кратера Тихо — 86 км, следовательно, его взрывная воронка могла пробить литосферу и углубиться в силициды. Будучи засыпанной смесью из силикатов и силицидов, она (воронка) будет иметь повышенную теплопроводность, и весьма вероятно, что в таком кратере тепловой поток будет достигать 100 мВт/м2 и даже более.

 

Лучевые выбросы кратера Тихо прослеживаются в некоторых направлениях на тысячи километров (рис. 53), и они являются самыми светлыми на поверхности Луны. Их повышенная отражательная способность, по всей видимости, обусловлена примесью интерметаллических силицидов, имеющих высокое альбедо. Еще в 60-х годах прошлого века поверхность нашего спутника зондировали с Земли радиоимпульсами и обнаружили, что в кратере Тихо и на его лучах отражение радиолокационных сигналов резко повышается, что свойственно металлам. Я надеюсь, при дальнейших исследованиях кратеру Тихо будет уделено достойное внимание, всетаки это наиболее яркая деталь видимой стороны Луны.

 


Рис. 53. Кратер Тихо и его лучевые выбросы — самые яркие детали Луны.

 

Для такого внимания есть и сугубо практическая цель. Рано или поздно на Луне появятся станции постоянного обитания, и будущих обитателей может подстерегать опасность необычного рода. Силициды, вырванные взрывами и выброшенные на поверхность, в результате метеоритной обработки перемешиваются с лунным реголитом, состоящим из частиц силикатов и окислов. Но такая смесь огнеопасна, как термит. Силициды (содержащие — Si, Mg, Ca, Al и др.) способны отбирать кислород у окислов железа (а также у Mn, Ni и др.) с выделением большого количества энергии. На роль «фитиля» подходят микрометеориты, они ничего не разбрасывают, но могут поднять температуру «в нужной точке» и запалить форменный пожар. В данной связи обращают на себя внимание сообщения астрономов-любителей о загадочном явлении «красного свечения». На ночной стороне Луны вдруг появляется «красная точка», свечение в течение нескольких часов усиливается и расширяется, затем начинает угасать и пропадает совсем. При этом не наблюдается никакого изменения рельефа. Всем этим предсказаниям трудно поверить даже мне — автору, но вместе с тем я бы предпочел селиться за пределами светлых лучевых выбросов «от греха подальше», пока не будет выяснена их природа.

Автор: Admin | 2012-02-10 |

ПЛАНЕТЫ ЗЕМНОЙ ГРУППЫ

Попытать свою удачу и заработать первый миллион Вы сможете в казино william hill азартные игры онлайн, где представлены самые популярные азартные игры. Самую полную информацию по данному казино Вы найдете на сайте www.casino-player.ru.


В эволюции изначально гидридной планеты можно выделить две основные стадии: активного развития и пассивного старения. Активное развитие связано с дегазацией водорода, когда происходит изменение внутренней структуры планеты и формируются основные черты ее геологического строения. Стадия пассивного старения наступает по мере исчерпания водородных запасов, в результате чего умирает тектоническая активность планеты, исчезает магнитное поле, постепенно теряются атмосфера и гидросфера (если они были, разумеется). Современное разнообразие планет земной группы (табл. 7) зависит от их исходных размеров, а также удаленности от Солнца.

 

Таблица 7. Физические характеристики внутренних планет.

Характеристики 

Меркурий 

Венера 

Земля 

Луна 

Марс 

Масса, от массы Земли 

0,055 

0,816 

1,000 

0,012 

0,107 

Средняя плотность, г/см3

5,5 

5,2 

5,5 

3,34 

3,9 

Скорость убегания, км/с 

4,3 

10,4 

11,2 

2,37 

5,0 

Период

вращения, сутки 

58,65 

243,2 

1,00

27,32 

1,025 

Магнитосфера (внешняя) 

 

+ 

 

 

Гидросфера 

 

+ 

?

           

Расстояние от Солнца, а.е.

0,387 

0,723 

1,000 

1,000 

1,524 

 

Внутреннее строение планет, еще не исчерпавших водородные запасы, соответствует структуре Земли, т.е. они имеют плотные гидридные ядра и, соответственно, высокую среднюю плотность, тогда как полностью дегазированные планеты обладают значительно меньшей плотностью. В этой связи становятся понятными высокие плотности крупных планет — Земли и Венеры и значительно меньшие плотности малых планет — Луны и Марса. Последние израсходовали свои водородные запасы и в настоящее время представляют собой сферы из интерметаллических силицидов, покрытые силикатно-окисной оболочкой (рис. 50).

 


Рис. 50. Внутреннее строение Земли на различных этапах ее развития и особенности внутреннего строения планет земного типа на современном этапе (в свете их изначально гибридного состава). 1 — внешние силикатно-окисные оболочки, 2 — бескислородные интерметаллические соединения (преимущественно силициды), 3 — металлы с растворенным в них водородом, 4 — гидриды металлов.

 

Исключительность небольшого Меркурия (5,5% от массы Земли), имеющего высокую плотность и, следовательно, непропорционально большое ядро, связана с его статусом ближайшей планеты к Солнцу. Согласно магнитной сепарации он получил наименьшую долю кислорода и, соответственно, должен иметь самую тонкую силикатно-окисную оболочку. Последняя, по всей видимости, столь маломощна (и так сильно нарушена ударно-взрывными кратерами), что не в состоянии обеспечить термоизоляцию недр. Темпы развития такой планеты должны быть резко замедлены и в ней длительное время может сохраняться гидридное ядро в связи с тем, что потеря тепла идет весьма эффективно и разогрев недр не достигает температурного предела устойчивости гидридов.

 

С наших позиций, магнитное поле могут иметь только те планеты, которые еще не исчерпали запасы гидридов и которые достаточно быстро вращаются. Поэтому у Луны и Марса (они исчерпали свои запасы водорода) магнитного поля в настоящее время нет. Однако в прошлом, на активной стадии развития этих планет, магнитное поле у них было, поскольку скорость вращения Марса близка земной и Луна раньше вращалась значительно быстрее, но затем затормозилась приливным трением. В будущем по «записи» магнитного поля (по остаточной намагниченности) можно будет установить продолжительность активной стадии их развития, так как время тектонической смерти фиксируется отключением магнитосферы. Отсутствие магнитных полей у Венеры и Меркурия обусловлено малыми скоростями их вращения, к тому же Меркурий застыл в своем развитии.

 

Венера находится ближе к Солнцу, чем Земля, и в этом причина столь разительных отличий в условиях на поверхности соседних планет, хотя их внутреннее строение, по сути, одинаково (рис. 50). При образовании протопланетного диска, в зоне формирования нашей соседки, исходная доля кислорода оказалась меньше земной (из-за магнитной сепарации). На Земле кислорода оказалось достаточно и на литосферу, и на гидросферу. По всей видимости, на Венере его не хватило для своевременного образования гидросферы. В результате углекислый газ не имел возможности «садиться» в виде карбонатов, а накапливался в атмосфере, что спровоцировало мощнейший парниковый эффект, температура атмосферы пополз -ла вверх и в настоящее время составляет порядка 500 0С.

 

Отсутствие гидросферы на Меркурии также можно объяснить дефицитом кислорода. Кроме того, эволюция этой планеты заторможена, и даже та самая малая относительная доля кислорода, отмеренная магнитной сепарацией, практически вся остается в теле планеты, поскольку нет водородной продувки. К тому же Меркурий очень энергично обдувается «солнечным ветром», который (при отсутствии магнитной защиты) сдувает все газообразное. По этой причине атмосфера там не может удерживаться.

 

Масса Луны слишком мала для удержания газов, и поэтому на ней никогда не было ни атмосферы, ни гидросферы даже на активной стадии ее развития, когда происходила дегазация водорода и существовало дипольное магнитное поле.

 

С наших позиций, характер тектонических структур планеты также определяется размерами планеты. Расширение планеты обусловлено степенью уплотнения гидридов во внутренних зонах, но уплотнение зависит от давления, т.е. от массы планеты. Чем больше масса космического тела, тем выше в его недрах давления, тем значительней уплотнение и, соответственно, тем больше возможный масштаб расширения планеты на стадии активного развития, и, наоборот, на малых планетах увеличение объема должно быть гораздо меньшим или будет вообще отсутствовать. Расширение планеты сопровождается заложением протяженных поясов тектономагматической активности. Если же планета мала и ее расширение сильно редуцировано, то тектоно-гены будут «трубообразными», а тектономагматические структуры овально-кольцевыми.

 

По нашему мнению, именно в этом отличие лунного лика (с его кольцевыми структурами) от Земли, для которой характерны протяженные системы горных цепей и еще более протяженные зоны рифтогенеза. Марс по размерам занимает промежуточное положение, и, как выяснилось, на его поверхности есть и кольцевые, и линейные структуры, но масштабы расширения этой планеты во много раз меньше земных. Понятно, что на Венере текто-номагматических поясов должно быть больше, чем на Марсе. Вместе с тем если изотерма в 500 0С в венерианской литосфере находится на поверхности, то наверняка такая литосфера имеет гораздо большую пластичность по сравнению с земной. По этой причине зоны спрединга на Венере должны маскироваться пластичной литосферой, способной растягиваться, тогда как на Земле рифтогенез проявляется гораздо более четко из-за преобладания в коре хрупких деформаций. Специалисты, однако, разглядели на Венере обширные зоны «мягкого спрединга», осуществляемого в пластичной среде, что свидетельствует о расширении планеты.

 

Любопытно обратить внимание на многочисленные свидетельства древнейших народов Земли о необычном облике Венеры в прошлом: оказывается, она была яркой, «как Солнце, и с хвостом». В те времена поэтически настроенные летописцы редко упоминали Луну, но восторгались исключительно Венерой. Об этих свидетельствах с удивлением писал А.Гумбольдт. Мощная корона из водорода, сдуваемая солнечным ветром, вполне могла создать столь необычный для нас облик этой планеты. В рамках нашего понимания, в этом нет ничего необычного, просто письменность на Земле появилась прежде, чем на Венере закончился очередной этап дегазации. К тому же столь резкие изменения Венеры (на протяжении исторического времени) могли быть обусловлены только водородом, обладающим высокой скоростью диссипации в космическое пространство.

Автор: Admin | 2012-02-10 |

ПЕРВЫЕ ЭКОСИСТЕМЫ НА ЗЕМЛЕ. Часть II

<<- ПЕРВЫЕ ЭКОСИСТЕМЫ НА ЗЕМЛЕ. Часть I


Начало жизни на Земле может быть представлено в виде двух альтернатив:

1) Появление первых организмов — бактерий

или

2) Появление первых экосистем, включающих организмы и среду их обитания.

 

В такой постановке вопроса ложным является союз «или». По умолчанию обычно подразумевают появление первых организмов. Но они не могут существовать вне среды своего обитания, с которой они находятся в состоянии обмена веществом и энергией. Поэтому с самого начала следует рассматривать экосистему, а не организм в отдельности, как это обычно пытаются делать, отвлекая от сути проблемы детализирующими вопросами о составе организма и происхождении его частей-компонентов. Отсюда следует другой вопрос:

 

Что предшествует: условия обитания или же биота? На него нужно дать однозначный ответ:

обитаемость предшествует обитанию.

Условия обитания представлены географической оболочкой планеты. Географическая оболочка вмещает биосферу. Географическая оболочка есть порождение геосферы.

Начало жизни связано с бесконечными малопродуктивными спорами об определении жизни. Очевидно, что жизнь существует, когда есть первые организмы. Можно ли назвать жизнью то, что было до того, относится к области неопределенности. Если есть организмы, то есть и жизнь. Но попытка ограничить проблему такой постановкой явно несостоятельна, хотя и излюблена экспериментаторами. Организм в принципе способен существовать только в рамках экосистемы. Эти два понятия связаны между собой в единство и одно немыслимо без другого. Организм и экосистема связаны между собой обменом, без которого нет жизнедеятельности. Экосистема появляется с появлением жизнеспособного организма. Абстрагирование от экосистемы полностью лишает смысла все построения о природе первичных живых существ. Их можно сразу же откладывать в сторону как недостаточные.

Происхождение жизни имеет два аспекта. Для начала жизни на Земле можно построить дилемму, описывающую наблюдаемые или предполагаемые события: возникновение или появление жизни? Оба варианта дают в свою очередь ряд возможностей, которые следует обсуждать.

1. Возникновение жизни.

1.1. Возникновение жизни на Земле.

1.2. Возникновение жизни на ином космическом теле — «parent body» — молчаливо предполагающее всеобщность жизни во Вселенной.

1.2.1. Возникновение жизни в пределах Солнечной системы.

1.2.2. Возникновение жизни вне Солнечной системы.

2. Появление жизни на Земле.

2.1. Панспермия — перенос жизни из космического пространства на Землю.

2.1.1. Средство транспорта — космическая пыль, метеориты, кометы.

2.1.2. Время транспорта на астрономические расстояния.

2.1.3. Способ существования во время транспорта.

2.2. Совместимость условий на ином космическом теле («parent body») с условиями на примитивной Земле.

Появление жизни на Земле есть эмпирический факт, для которого установлено приблизительное время этого события не позже 3.5 млрд. лет назад. Очевидно, что появление жизни не рассматривает возникновения жизни вообще. Более того, возникновение жизни на ином космическом теле, возможно, при иных условиях, с необходимостью требует переноса на Землю и описания его возможностей. В течение XX столетия строились разные умозрительные гипотезы возникновения жизни на Земле, иллюстрируемые лабораторными моделями. В настоящее время эти гипотезы встречают две трудности. Во-первых, краткость времени для возникновения жизни от периода аккреции до появления первых экосистем с микроорганизмами. Период, в который можно поместить происхождение жизни, сокращается от 500 млн. лет до 200 млн. лет по разным оценкам. Достаточно ли это время для появления первых организмов? Во-вторых, представление о существовании внеземной жизни сейчас приобретает силу молчаливого консенсуса, и не только для оправдания дорогостоящих поисков жизни вне Земли с помощью космических аппаратов. Оно получает поддержку в находках бактериоморфных микрофоссилий в определенной группе метеоритов. Отрицать их существование невозможно, это факт, но интерпретации могут быть разными. Сходство микрофоссилий в метеоритах с заведомо биогенными микрофоссилиями, хорошо изученными в бактериальной палеонтологии, очень велико. Абиогенное происхождение бактерио-морфных минеральных образований требует -экспериментального обоснования, а не общих слов и субъективного нежелания признать их биогенную природу.

Биологами географическая оболочка Земли как открытая в космос не рассматривается. «Пришельцы из космоса» для эволюции макроорганизмов не относятся к числу рассматриваемых возможностей. Это справедливо и для прокариотной биосферы вплоть до ее возникновения. Биогеохимическая сукцессия представляется достаточным обоснованием для объяснения крупномасштабных явлений в биосфере и изучается на фактическом материале. Привнос извне микроорганизмов другого рода, чем существующие, например, архей в бактериальную биосферу, не относится к числу всерьез рассматриваемых. Исключение составляет гипотеза панспермии, касающаяся прокариот, прежде всего на стадии их появления. Она становится альтернативой земной форме биопоэза — происхождения организмов саморазвитием химической системы.

Основанием для нового всплеска интереса к космическим источникам служат:

— установление присутствия на космических телах органических веществ, согласующихся до известной степени с биохимией современных организмов;

— установление наличия морфологически распознаваемых микрофоссилий или минеральных псевдоморфоз по телам микроорганизмов на космических телах — метеоритах;

— выявление разнообразия космических тел с особым вниманием к ледяным телам. Предположение о вечности жизни во Вселенной допускает возможность ее появления

на Земле уже на стадии аккреции. По времени такое предположение проходит, поскольку жизнь регистрируется к концу метеоритной бомбардировки. Для аккреции, которая происходит очень быстро, с набором массы в течение около 100 млн. лет, есть разные варианты (рис. 1), которые можно интерпретировать и как гипотетические стадии от пылевого облака до планетезималей, в число которых с все большей убежденностью включают кометы как крупные глыбы «грязного льда». Из представленных схем в нашем рассмотрении наибольший интерес имеет последняя. Основным источником летучих на планетах-гигантах и их регулярных спутниках предполагаются ледяные планетезимали, образовавшиеся в околосолнечном протопланетном диске в зоне питания этих планет и содержавшие в своем составе конденсаты и клатраты различных газов. Эта гипотеза противопоставляется традиционной картине тепловой дегазации, которая имеет место на более поздних стадиях и наблюдается как факт. «Грязный лед», а затем не испарившаяся гидросфера предоставляют возможное место изначального поступления микробиоты.

 


Рис. 1. Варианты (или стадии) аккреции, ведущие к образованию гидросферы как условию развития биосферы. Гидросфера образуется либо при ударной дегазации, либо при привносе крупных ледяных тел. Условия для развития биосферы отсутствуют (а). Заключительная стадия аккреции с формированием в результате дифференциации атмосферы, гидросферы, поверхностных слоев литосферы, входящих в географическую оболочку планеты как вместилища биосферы (б).

 

Рис. 2. Коридор обитаемости для планет земной группы, определяемый возможностью фотосинтеза (Franck S., Zavarzin G.A., 2004. What are the necessary conditions for origin of life and subsequent planetary life support system? // Dahlem Konferezien 91. Earth System Analysis for Sustainability / Eds. H.J. Schellenhuber. P.J. Crutzen, W.C. Clark. M. Claussen, H. Held. MIT Press. S. 73-90).

 

 

В последнем случае гидросфера как часть географической оболочки появляется с самого начала существования планеты Земля. Отсюда возможность изначального поступления на Землю зародышей микроорганизмов более не представляется полностью исключенной. С такой последовательностью событий не согласуется предполагаемая термическая история Земли с ее стерилизующим разогревом около 4 млрд. лет назад. Впрочем, этот эпизод, введенный геологами для формирования коры, для географической оболочки Земли нельзя рассматривать как непротиворечивую картину; одним из осложнений служит неизбежный «убегающий парниковый эффект» из-за состава атмосферы. Чтобы избавиться от СО2, предполагается быстрая реакция с силикатами кальция и магния, возможная при высокой температуре, но при этом не рассматриваются пары воды в атмосфере. СН4 как существенный компонент атмосферы в пересчете на молекулу в 20 раз увеличивает парниковые проблемы. Кроме того, термический эпизод значительно сокращает время для возникновения жизни, оставляя слишком короткое окно для ее появления. Для Земли на основе парникового эффекта и светимости Солнца был рассчитан предполагаемый «коридор обитаемости» (рис. 2), из которого следует, что Марс вышел из этого коридора, а Венера не находилась в нем.

Как бы то ни было, после аккреции появляется гетерогенная земная система (рис. 3), подвергающаяся дальнейшей дифференцировке. Географическая оболочка этой системы представляет слоеный пирог между атмосферой и литосферой. Атмосфера получает энергию от Солнца в виде солнечного излучения. Кроме тепловых реакций, ведущих к циркуляции, в ней происходят фотохимические реакции. Поскольку химический состав примитивной атмосферы неизвестен, то моделировать происходившие в ней реакции очень трудно. Заведомо предполагается присутствие паров воды. Под действием солнечного излучения она должна была диссоциировать, и продукты ее фотохимической диссоциации давали окислительные и восстановительные эквиваленты. Водород диссипировал в космическое пространство, оставляя окислительные эквиваленты. На этом факте основано представление об «окислительной смерти планет». Гипотеза поддерживается сдвигом отношения D/H в атмосфере Венеры в пользу дейтерия.


<<- ПЕРВЫЕ ЭКОСИСТЕМЫ НА ЗЕМЛЕ. Часть III

Автор: Admin | 2011-12-24 |

Дискуссия по пленарному докладу А.В. Витязева, Г.В. Печерниковой «РАННЯЯ ЗЕМЛЯ В ТЕСНОМ ОКРУЖЕНИИ МОЛОДЫХ ЗВЕЗД»

Дискуссия

по пленарному докладу А.В. Витязева, Г.В. Печерниковой «РАННЯЯ ЗЕМЛЯ В ТЕСНОМ ОКРУЖЕНИИ МОЛОДЫХ ЗВЕЗД»

Председательствующий А.С. Спирин

 

М.Я. Маров: Число Нуссельта, для сравнения с обычной теплопроводностью, считалась для какой глубины?

А.В.В.: Естественно, это порядковая оценка в среднем на всю мантию, включая нижнюю.

М.Я. Маров: Второй вопрос более серьезный. Вы солидаризируетесь со Львом Михайловичем Мухиным в отношении раннего океана. Вы говорите, что океан и гидросфера существовали в первые 150 миллионов лет.

А.В.В.: Присоединяюсь ко Льву Михайловичу, Уайльду, Пеку и так далее. На основании цирконов и ксенона.

М.Я. Маров: Тогда возникает такой вопрос. До выхода Солнца на Главную последовательность его светимость была существенно меньше (~ 0.75 от современной) и, следовательно, равновесная температураранней Земли была ниже ~ 240 К, отвечающей полной светимости. Чтобы появилась жидкая вода, необходимо повысить начальную температуру примерно на 30°, что можно обеспечить за счет обычно привлекаемого парникового эффекта, но сомнительно, что такой механизм мог компенсировать еще большую разницу в температурах и обеспечить существование океана на этой стадии. А обращение к еще более раннему этапу эволюции Солнца, включающего высокую светимость на цикле Хаяши, нереалистично, поскольку еще не аккумулировались планетные тела в диске.

А.В.В.: Нужно просить астрофизиков рассказать нам о раннем Солнце. Дополнительный источник тепла — падающие планетезимали, но это, конечно, только «горячие пятна».

Л.М. Мухин: Цифры 3.8-3.9 млрд. лет относительно бомбардировки означают время ее окончания?

А.В.В.: Тяжелый вопрос. Половина исследователей считают, что в это время был ее пик, другая половина полагает, что она к этому времени заканчивается. Я полагаю, что не заканчивается. Надо честно сказать, в архее мы имеем семь-восемь слоев, дающих указания на мегаимпакты. В остальном мы судим об этом косвенно, по Луне.

Л.М. Мухин: Относительно температуры поверхности и первичных океанах. Атмосфера образовывалась не только за счет импактов, была же и обычная дегазация, поэтому вполне мог работать парниковый эффект.

A. В.В.: Согласен. Хочу добавить про импакты. Пока планета не превысила радиуса нескольких лунных, скорости ударов были меньше пяти километров в секунду — это вызывало просто дробление и нагрев на первую сотню градусов. А вот когда планета уже размером с Марс, тогда, в нулевом приближении, упавшее тело плавит свой объем. Будет дегазация.

М.Я. Маров: Но дело в том, что будет мало удерживаться легколетучих атмофильных элементов. Вот в чем проблема.

B. Н. Снытников: Среди источников тепла Вы указали распад радиоактивных элементов. Хорошо известно то, что даже на поверхности Земли существовал ядерный реактор — реактор Окло (в Габоне). Кроме того, примерно 7-10 лет назад командой Титова из Новосибирска был проделан ряд работ, которые показали возможность функционирования ядерного реактора на границе ядра и мантии. Не могли бы Вы это прокомментировать?

А.В.В.: Речь идет о том, возможны ли были на планетах или, может быть, даже на планетезималях, процессы самопроизвольной концентрации минералов, богатых ураном, торием и калием? И тогда были бы локальные очаги… Ну, гипотезы выдвигать можно… Подождем геонейтрино, они нам точно все это покажут…

А.В. Тутуков: Отмечается периодичность развития живого на Земле — периоды расцвета, угасания. Что могло бы быть внешней причиной этой периодичности, в том числе массовых вымираний?

А.В.В.: Мы сейчас закончили такую работу, где проанализировали магматическую -коровую и мантийную — активность, массовые вымирания и импактные кратеры. Некоторые вымирания совпадают с ними, другие — нет. Моя сегодняшняя оценка — массовые вымирания на 20 процентов обусловлены экзогенными факторами (в основном импактами, про сверхновые и гамма-всплески пока не хотелось бы говорить) и на 80 процентов — геологической активностью Земли.

Б.М. Шустов: Мой вопрос о возможных земных метеоритах на Луне.

А.В.В.: Земные метеориты следовало бы поискать на Луне (по изотопии), такая вероятность есть, хотя и небольшая.

СВ. Рожнов: Каков минимальный размер падающего на Землю космического тела, способного полностью стерилизовать Землю, уничтожить все живое?

А.В.В.: Когда есть океан, достаточно тела порядка 100-150 километров для испарения его верхних слоев, чтобы уничтожить весь океан — тела 400-500 километров. В гадее такие тела падали на Землю.


Визитной карточкой вашего предприятия станет качественная спецодежда от «Шатурской швейной мануфактуры». Ознакомиться с каталогом предлагаемой спецодежды Вы сможете на сайте www.profroba.ru.

Автор: Admin | 2011-12-15 |

Мастера маскировки: сливающийся с листвой геккон и другие эксперты по природному камуфляжу

Если Вы приглядитесь к этим фотографиям, то возможно сможете увидеть на них существ, играющих в прятки с самой Матушкой Природой.

Например, этот сатанинский листохвостый геккон (фото ниже), обитающий в Национальном Парке Andasibe-Mantadia на Мадагаскаре, едва заметен на фоне листвы.

Эти удивительные животные были вынуждены стать мастерами маскировки для того чтобы выжить во враждебной среде. Некоторые из них слишком слабы и вынуждены прятаться, чтобы не стать легкой добычей, другие же наоборот – настоящие хищники, которые в силу своей природной одаренности способны сливаться с окружающей средой, терпеливо выжидая, пока жертва сама не соизволит подойти к ним на достаточно близкое расстояние.




1. В своей неуклюжей попытке спрятаться от хищников, сатанинский листохвостый геккон с Мадагаскара притворился листом.
Читать дальше>>

Автор: Admin | 2011-12-14 | Необычные животные

Первичные атмосфера и гидросфера Земли

Первичные атмосфера и гидросфера Земли

 

Состоянию первичных атмосферы и гидросферы, столь интересующих специалистов по происхождению биосферы, в последние полстолетия посвящены тысячи работ. Поддерживаемое фактически большинством астрофизиков мнение о меньшей (на 20-25 %) светимости молодого (в первые сотни млн лет) Солнца привело к обсуждению вероятных составов первичной атмосферы, вызывающих парниковый эффект. Это известные работы Карла Сагана, его ученика Чайбы и др. Так как этим вопросам, вероятно, будет посвящена статья в этом сборнике нашего классика профессора Л.М. Мухина, мы опускаем обсуждение этой проблемы. Считаем важным отметить следующий выдающийся результат работ международного коллектива по австралийским цирконам — гидросфера и атмосфера Земли существовали уже в первые 150 млн. лет.

 

Согласно интерпретации данных по изотопии кислорода (|60/170/180) в цирконах Jack Hills (Peck et al., 2001), 4.2, 4.3 и 4.4 млрд. лет назад на Земле была вода в жидкой фазе. Объемы ее пока оценить не удается (ручейки, озера в кратерах, мелкие моря?). Согласно работам французской школы (1960-1980 гг.) и известного специалиста по изотопии ксенона Р. Озимы, ксенон в атмосфере Земли имеет возраст порядка 4.0 и более млрд. лет. Наша интерпретация содержаний изотопов инертных газов, в частности, изотопной плеяды Хе (Pechernikova et al., 2003; Vityazev et al., 2005) указывает на то, что примитивная атмосфера сформировалась в ходе заключительных стадий образования Земли. Оценка ее массы и состава пока представляет проблему. Однако в сочетании с данными по австралийским цирконам можно уверенно говорить о том, что давление на поверхности ранней Земли было выше необходимого для существования примитивной гидросферы (тройная точка для Н2O), т. е. порядка и выше современного для Марса.

На стадии аккумуляции Земли, когда поток падающих тел был достаточно велик, параметры ранней атмосферы в значительной степени определялись ударной дегазацией и эрозией. В.В. Светцовым (2007) путем численного моделирования ударов астероидов и комет с размерами от 100 м до 10 км были оценены потери атмосферы на Земле с ее современной атмосферой и Марсе с более плотной атмосферой из углекислого газа, которая могла быть на ранних стадиях его эволюции. Численное моделирование вертикальных ударов проводилось путем решения двумерных уравнений газовой динамики в цилиндрических координатах, начиная со стадии входа тела в атмосферу. Получены приближенные аппроксимирующие выражения потерь массы атмосферы и ударника в зависимости от их параметров и силы тяжести на планете. Характерные величины уносимой массы атмосферы при ударах астероидов (километровых и более размеров) оказываются порядка 0.01-0.1 от массы ударника, а при ударах долгопериодических комет — порядка 0.1-1 от массы кометы.

Согласно расчетам, параметры ранней атмосферы после окончания роста планеты существенно зависят от того периода аккумуляции, когда масса планеты составляет более 99 % от ее конечной величины. Более ранний период забывается, а в более поздний интенсивность притока массы недостаточна для существенного изменения массы образовавшейся до этого атмосферы.

Отметим, что результаты вычислений зависят от таких точно не известных входных параметров, как содержание атмофильных элементов в падающих телах, распределение по массам и скоростям падающих тел, размеры наибольших ударников. При вариации входных данных в допустимых пределах установившиеся к концу аккумуляции (99.9 % массы планеты) атмосферы имеют давление более 1 бар. Более совершенные модели должны учитывать взаимодействие выделяющихся при ударах газов с атмосферой и породами верхнего слоя планеты, физико-химическое состояние ранних атмосфер, сток газов в водные бассейны и учет глубинной дегазации примитивной части вещества, полученного планетой на ранних стадиях аккумуляции.

 

 

ЗАКЛЮЧЕНИЕ

1. Обнаружение протопланетных дисков, экзопланет и планетных систем около молодых звезд и их исследования позволяют надеяться на уточнение условий на поверхности ранней Земли и других планет.

Луна хранит следы «поздней бомбардировки» (Late bombardment) 3.7-3.9 млрд. лет назад. Чем она была вызвана? Наше предположение — это выброс Солнечной системы из звездного скопления. Это предположение должно быть либо опровергнуто, либо поддержано динамическими расчетами и другими данными.

2. Новые технологии обнаружения остатков короткоживущих радиоактивных элементов 26Al, 60Fe, 182Hf и т.д.) позволяют хронометрировать отдельные стадии формирования и ранней эволюции планет с точностью до 1 млн. лет. Данные по австралийским цирконам и по плеяде изотопов Хе свидетельствуют о наличии атмосферы и гидросферы, начиная с 4.4 млрд. лет назад.

Но масса первичной гидросферы, состав и масса первичной атмосферы пока не установлены. Вероятно, проблему формирования атмосфер надо решать одновременно для Марса, Земли и Венеры. В частности, необходимо решить проблему выхода Венеры на парниковый режим. И понять, почему Земля избежала этого исхода. Это задача ближайшего десятилетия.

В работе использованы результаты исследований сотрудников ИДГ РАН, выполненных по проекту «Процессы на завершающей стадии аккумуляции Земли» (руководитель акад. В.В. Адушкин) в рамках программы Президиума РАН «Проблемы зарождения биосферы Земли и ее эволюции». Авторы благодарны проф. Л.М. Мухину и акад. РАН А.Ю. Розанову за приглашение к участию в рабочем совещании «Проблемы происхождения жизни».

 


На сайте www.100diet.org Вы найдете эффективные диеты для похудения, благодаря которым Вы сможете встретить новогодние праздники обновленным человеком – оставив в 2011 году столь ненавистные Вам лишние килограммы.

Автор: Admin | 2011-12-09 |

Спектр масс и скоростей падающих тел, состав тел и его вариации

Спектр масс и скоростей падающих тел, состав тел и его вариации

 

В наших расчетах по стандартному сценарию формирования Земли получены спектр масс и скоростей тел, формировавших планету, и оценен темп роста планеты. Достаточно наглядное представление о массах тел в зоне растущей планеты и частоты их падений дает рис. 9.

Осредненный состав тел в зоне планет земной группы, включая пояс астероидов, согласно современной парадигме близок к составу хондритов. В то же время давно показано, что ни из одного отдельного класса углистых (CI, CM, CV, СО), обыкновенных (Н, L, LL), энстатитовых (EH, EL) и других хондритов и ахондритов Землю построить нельзя. Можно подобрать смесь из известных классов метеоритов, представленных в земных коллекциях, удовлетворяющую одновременно изотопным, геохимическим и геофизическим критериям (Витязев, Печерникова, 1989; Печерникова, Витязев, 1989), но нет гарантии, что существенная доля вещества была привнесена планетезималями в среднем хондритового, но в остальном (содержание железа, степень окисленности и т.д.) весьма вариабельного состава, которые либо полностью выпали на планеты, либо еще не обнаружены, например, в поясе астероидов.

 


Рис. 9. Уменьшение со временем частоты столкновений растущей Земли с планетезималями в интервале диаметров: 1- 0.5 ÷ 1 км, 2 — 1 ÷ 2 км, 3 — 2 ÷ 4 км, 4 — 4 ÷ 8 км, 5 — 8 ÷ 16 км, 6 — 16 ÷ 32 км, 7 — 32 ÷ 64 км, 8 — 64 ÷ 128 км, 9 — 128 ÷ 256 км.

 

 

Сводка данных по массовым расчетам ударов падающих тел

 

Диапазон размеров тел, падавших на растущую планету, огромен — от субмикронных размеров для межпланетной и межзвездной пыли до сотен км в поперечнике для крупнейших тел, т. е. составлял 13 порядков. Физика ударных процессов для падающих тел в диапазоне 1-10 км изучалась в последние годы многими исследователями в связи с проблемой формирования кратеров на поверхностях Земли и других планет. Для заключительных стадий растущей Земли необходимо важны оценки последствий падений достаточно крупных — 10-100 км -тел, так как именно они определяли в основном характер процессов на этой стадии. Понятно, что процесс носит вероятностный характер, средняя частота падений показана на рис. 9.

 


Рис. 9. Уменьшение со временем частоты столкновений растущей Земли с планетезималями в интервале диаметров: 1 — 0.5 ÷ 1 км, 2 — 1 ÷ 2 км, 3 — 2 ÷ 4 км, 4 — 4 ÷ 8 км, 5 — 8 ÷ 16 км, 6 — 16 ÷ 32 км, 7 — 32 ÷ 64 км, 8 — 64 ÷ 128 км, 9 — 128 ÷ 256 км.

 

На основании наших оценок присутствия крупных тел в зонах формирования планет было предложено провести в ИДГ РАН рассчеты последствий падений тел диаметром от 1 км до сотен км, оценить размеры формирующихся кратеров, количество испаренного и расплавленного вещества ударника, океанической воды, коры и мантии, выброшенного испарившегося и выпавшего сконденсированного на поверхность планеты вещества (Печерникова, Витязев, 2005).

В ИДГ РАН ведутся массовые расчеты процессов, сопровождающих падения тел, в достаточно широких диапазонах масс и размеров тел, скоростей падения, углов вхождения в атмосферу, состава тел. Расчеты ведутся для различных вариаций свойств мишени, толщины и состава коры, присутствия океана той или иной глубины, различных вариантов теплового профиля и реологических свойств верхней оболочки. Для ранних стадий эволюции Земли существенна относительно высокая частота падений, т. е. кумулятивные эффекты множественных ударов. Поэтому нами была поставлена цель — получение параметризованных формул для интегральных оценок количества ударных расплавов, доли испаренного вещества и вещества, выбрасываемого на высотные орбиты, эрозии атмосферы и т.п. при падении множества тел.

 


Рис. 10. Отношение расплавленной массы мантии (кружки) и коры (квадраты) к массе ударника при ударах астероидов со скоростью 20 км/с (тонкие линии) и комет со скоростью 50 км/с (толстые линии) (Светцов, 2007).

 


Рис. 11. Отношение испаренной массы мантии (кружки) и коры (квадраты) к массе ударника при ударах астероидов со скоростью 20 км/с (тонкие линии) и комет со скоростью 50 км/с (толстые линии) (Светцов, 2007).

 

Согласно численным расчетам (Shuvalov, Dypvik, 2004; Svetsov, 2006; Светцов, 2007, 2008), испаренная масса верхней оболочки в единичном ударе составляет 0.07—0.1 от массы ударника для 50-км тел (для астероидных тел, имеющих скорости около 15-20 км/с). Испаренное породообразующее вещество быстро (сутки) остывает, конденсируется и выпадает на планету. Очень малая доля его (порядка первых процентов) может уходить в межпланетное пространство. Отношение массы расплавленной мантии к массе ударника для тех же тел составляет от 10 для 50-км тел до 100 для 400-км. Результаты этих расчетов подтверждают вывод, полученный нами ранее (Витязев и др., 1990; Печерникова, Витязев, 2005). При падении меньших тел объемы расплавов быстро уменьшаются с уменьшением размера ударника, и выпадение части вещества в виде пыли и мелких обломков на растущую планету не приводит к существенному нагреву и плавлению. На основной стадии роста планеты, когда были достигнуты скорости падения больше 3-5 км/с и в то же время доля крупных тел по массе составляла более половины, верхняя оболочка планеты в местах ударов крупных тел претерпевала неоднократное плавление.

 


Если Вы ищите сайт, который предлагает качественные и недорогие будки и металлические вольеры для собак, тогда я советую Вам обратить внимание на сайт www.dogcatdog.ru, опытные специалисты которого сделаю для Вашего четвероногого любимца уютный домик.

Автор: Admin | 2011-12-09 |

ФАКТОРЫ, ОГРАНИЧИВАЮЩИЕ ВОЗНИКНОВЕНИЕ, СУЩЕСТВОВАНИЕ И ЭВОЛЮЦИЮ ЖИЗНИ НА ПЛАНЕТАХ, ПОДОБНЫХ ЗЕМЛЕ

ФАКТОРЫ, ОГРАНИЧИВАЮЩИЕ ВОЗНИКНОВЕНИЕ, СУЩЕСТВОВАНИЕ И ЭВОЛЮЦИЮ ЖИЗНИ НА ПЛАНЕТАХ, ПОДОБНЫХ ЗЕМЛЕ

 

В марте 2009 г. на орбиту спутника Земли выведен аппарат «Кер1ег» (США), предназначенный для поиска экзопланет, обладающих комфортными для возникновения жизни условиями. «Комфортность» физических условий понимается применительно именно к нашей, амино-нуклеино-кислотной форме жизни. В качестве вероятной среды обитания приняты гипотетические планеты, аналогичные группе Земли. Планеты-гиганты (газо-жидкой природы), если не принимать всерьез некоторые фантастические гипотезы, требованиям земной биосферы не удовлетворяют. Однако таким требованиям могут отвечать спутники планет-гигантов.

В литературе обычно приводятся следующие ограничения: с одной стороны, существование жидкой воды, с другой — конденсация углекислого газа (что в подавляющем большинстве случаев не позволяет развиться парниковому эффекту). С учетом последнего, такая зона охватывает интервал планетных орбит от уровня «саморазгоняющегося» парникового эффекта (для Солнечной системы это случай Венеры), до, примерно, орбиты Марса. Оба ограничения, по существу, температурные. Коагуляция белков происходит при температурах >65 °С; следовательно в комфортных зонах температурный интервал должен быть 273<Т<340 К.

Можно напомнить, что в моих работах (Ксанфомалити, 1995, 2008; Ksanfomality, 2002) были сформулированы наиболее очевидные факторы, ограничивающие возникновение, существование и эволюцию жизни на планетах земного типа. Масса планеты или спутника накладывает дополнительные ограничения при переходе к многоклеточным формам. Это ограничения энергетического характера, зависящие от уровня гравитации. Энергетически выгодны небольшие размеры организмов, так как их энерговооруженность обратно пропорциональна примерно квадрату характерных линейных размеров. С другой стороны, достаточно сложные животные не могут быть маленькими. Но слишком крупные виды вынуждены существовать в эволюционном тупике, образуемом положительной обратной связью энергетика-масса-пища. Ограничения очевидны, и о них природа ясно говорит зоологией: животных, больших, чем синие киты и гигантские рептилии, на Земле не было.

Уровень гравитации планеты должен быть умеренным, а период вращения не слишком длительным; слишком долгая ночь приведет к глубокому падению температуры окружающей среды. По тем же причинам эксцентриситет орбиты должен быть умеренным, а наклон экватора к плоскости орбиты не слишком большим.

Эволюция жизни земного типа требует, чтобы атмосфера планеты обладала способностью отфильтровывать внешнюю жесткую радиацию. Вместе с тем, атмосфера должна пропускать к поверхности фотоны с энергией Е = 1-3 эВ, а плотность лучистой энергии должна быть достаточной, например, для поддержания фотосинтеза. Для поддержания жизни земного типа, планета, наряду с притоком лучистой энергии, должна обладать наличием других (химических) источников энергии, например, окислительной среды и окисляемых материалов.

Если исходить из гипотезы возникновения жизни в водоемах, необходимы открытые водные пространства и наличие континентов или крупных островов. В атмосфере должен присутствовать водяной пар.

Для развития жизни земного типа планета должна обладать достаточно близким и массивным спутником, который вызывает приливы и побуждает морские организмы осваивать сушу.

Планета должна обладать вулканизмом и/или тектоникой плит. В районах активного вулканизма значительно увеличивается концентрация в водных растворах веществ, необходимых для существования жизни.

История планеты должна включать эпохи интенсивного выпадения крупных метеоритов или другие космические катастрофы, которые стимулируют обновление видов и появление среди них наиболее приспособленных.

 

 

ЗАКЛЮЧЕНИЕ

Планета Земля представляет собой уникальное сочетание физических свойств, необходимых для возникновения, существования и эволюции жизни. Возможно ли подобное сочетание на планетных системах других звезд — станет ясным не раньше, чем планеты земной группы будут там реально обнаружены. Перечисленные выше требования образуют странный многомерный лабиринт, причем лишь узкие интервалы многих параметров и их сочетания могут обеспечить условия, необходимые для возникновения амино-нуклеино-кислотной формы жизни и ее эволюции в разумные формы. Анализ условий на других телах Солнечной системы показывает, что Земля действительно обладает свойствами, не повторяющимися ни на одной из других планет земной группы.


Самым действенным двигателем интернет торговли праву считается контекстная реклама, благодаря которой о предлагаемой вашим предприятием продукции узнают тысячи потенциальных покупателей. Более подробно о плюсах и минусах контекстной рекламы Вы сможете узнать, посетив сайт компании AD|LABS-Украина, который находится по адресу adlabs.com.ua.

Автор: Admin | 2011-11-29 |

ОТ МАРСА К ЕВРОПЕ: ПОИСК БИОСФЕРЫ НА СПУТНИКАХ

ОТ МАРСА К ЕВРОПЕ: ПОИСК БИОСФЕРЫ НА СПУТНИКАХ ПЛАНЕТ-ГИГАНТОВ    

 

© 2009 г. Л.В. Ксанфомалити

Институт космических исследований РАИ ksanf@iki.rssi.ru

Почти 50 лет длятся исследования планеты Марс с помощью космических аппаратов. К главным задачам исследований относится поиск признаков возможного существования на планете жизни. В предлагаемой статье рассматриваются некоторые результаты экспедиций к Марсу и научные задачи будущих исследований Европы, одного из четырех галилеевых спутников Юпитера, возможная обитаемость которой также обсуждается в новых проектах. Физические условия на Марсе и Европе сравниваются с условиями на Земле.

 

 

1. МАРС

 

Среди кандидатов на обитаемость планет земной группы на первом месте всегда оставался Марс, благодаря некоторому сходству физических условий и относительной близости планеты к Земле. Марс — удобный объект для астрономических наблюдений, при которых легко различаются крупные детали его поверхности. Так, существование полярных шапок Марса отмечал еще В. Гершель в XVI11 в. В конце XIX в. П. Ловелл сообщил о своем открытии «каналов» на Марсе и вероятном существовании обитателей планеты, что вызвало небывалый интерес общественности. В 1897 г. в русском переводе вышла книга французского популяризатора науки К. Фламмариона «Живописная астрономия». В главе, посвященной планете Марс, говорилось: «Человеческий мир Марса, вероятно, значительно опередил нас во всем и достиг большого совершенства… они построили города и научились всяким искусствам». Работы Ловелла немало способствовали огромному интересу публики к Марсу. Вскоре было показано, что результаты Ловелла связаны с оптической иллюзией. Но, несмотря на это, гипотеза обитаемости Марса сохранилась надолго.

 

 

1.1. Результаты экспериментов на Марсе

 

В последней трети XX в. и в первом десятилетии XXI в. к Марсу были отправлены многочисленные экспедиции автоматов, главной задачей которых был поиск признаков жизни. Сегодня, спустя 44 года после первых снимков Марса, сделанных с космического аппарата, единственным полученным ответом остается «признаков жизни не обнаружено», хотя оптимисты продолжают предлагать все новые места и новые методы поисков. Сами методы становятся более изощренными и вместо поиска жизни обращаются к поиску следов жизни, возможно, давно исчезнувшей. Отметим наиболее существенные результаты проведенных экспериментов.

Два аппарата «Викинг» («Viking». США), опустившиеся на поверхность Марса в 1976 г.. доставили туда великолепные биохимические лаборатории, ориентированные на поиск признаков метаболизма микроорганизмов, подобных земным. Несмотря на то, что жизнь амино-нуклеино-кислотного (земного) типа в экспериментах на «Викингах» на Марсе найти не удалось (Klein et al., 1992), полученные результаты стали основой для последующих миссий. Эксперименты в биолабораториях аппаратов «Викинг», направленные на поиск микроорганизмов на Марсе, должны были ответить на три вопроса:

 

1. Есть ли процессы усвоения углекислого газа на свету (фотосинтез);

2. Обнаруживается ли метаболизм микроорганизмов (обмен веществ);

3. Происходит ли газообмен с атмосферой.

 

Вероятность обнаружения микроорганизмов, аналогичных земным, оценивалась в 40 %. Результаты были неоднозначными и, скорее всего, отражали сложный химизм грунта Марса, активируемого солнечной ультрафиолетовой радиацией. Только эксперимент с меченым газообменом дал результаты, которые можно было бы считать частично положительными. При первом обогащении грунта водой и питательным веществами с меченым углеродом 14С было зарегистрировано выделение меченого углекислого газа 14СО2. Но при новом эксперименте эффект не повторился. Более однозначными и решающими оказались результаты пиролитического эксперимента, где проба грунта постепенно разогревалась до высокой температуры, а отходившие газовые продукты анализировались масс-спектрометром и газовым хроматографом. Любая известная форма жизни (или ее следы) при пиролизе выделяет органические летучие вещества. Исследовались образцы, взятые с глубины грунта от 4 до 6 см. Чувствительность приборов к органическим составляющим достигала 10-10. Для сравнения с экспериментом, авторы указывали, что при анализе 0.1 г антарктического (земного) грунта обнаруживалось более 20 органических соединений.

Рис. 1. Поверхность Марса в районе долины Арес.

 

 

Рис. 2. В миссии «Mars Exploration Rover» самоходные аппараты искали следы древних водоемов на поверхности Марса. Кратер Бигль на пути аппарата «Opportunity».

 

 

Однако никаких органических соединений в эксперименте обнаружено не было. В целом, по итогам трех экспериментов по метаболизму и эксперимента по пиролизу результаты поиска микроорганизмов были признаны отрицательными.

Позже в литературе высказывалась мысль, что этот отрицательный результат нельзя относить ко всей планете, что он может быть локальным. Г. Левин, один из авторов экспериментов на «Викингах», полагал, что его результаты все же говорят в пользу жизни на Марсе (Kein et al., 1976). Однако эти результаты широко обсуждались специалистами, которые считают, что суперокислители, содержащиеся в грунте Марса, могли дать такой эффект без метаболизма каких-либо микроорганизмов.

Давление углекислотной атмосферы Марса у поверхности примерно в 150 раз меньше земного. Такая атмосфера и отсутствие магнитного поля не в состоянии защитить поверхность планеты от радиации. Несильное магнитное поле Марса исчезло около 4 млрд. лет назад. Расчеты показывают, что радиация проникает в грунт и стерилизует его на большую глубину, вплоть до нескольких метров.

С другой стороны, если бы на Марсе жизнь однажды все же возникла, уничтожить ее было бы очень непросто. Жизнь не только приспосабливается к окружающей среде, но и приспосабливает ее к себе. Поэтому многие высказывают мнение, что возникшая когда-то жизнь на Марсе могла бы исчезнуть лишь под действием каких-то совершенно катастрофических обстоятельств. Поэтому, если бы она сейчас существовала, ее было бы трудно не обнаружить.

Дальнейшие эксперименты, проведенные в последние десятилетия, были не столь прямолинейными и касались, главным образом, физико-химических свойств грунта. В 1997 г. в районе долины Арес совершил посадку аппарат «Pathfinder», включавший подвижный модуль, который мог передвигаться по поверхности, удаляясь примерно на 10 м от посадочного аппарата.


Рис. 3. Мелкие глобулы (конкреции) образовались в соленой воде древнего водоема на Марсе. Район посадки аппарата «Opportunity».

 

Выбор места посадки был связан с тем, что поиск следов жизни целесообразно вести в районах, где присутствуют следы потоков воды. Долина Арес была широкой рекой или водоемом около 2 млрд. лет назад. Современный вид поверхности в месте посадки показан на рис. I. Песок, пыль и камни разных размеров повторяют вид поверхности в районах посадки «Викингов», но крупномасштабные детали указывают на следы мощных потоков и даже острова, существовавшие в ту эпоху. Аппарат исследовал химический состав камней. Никаких выводов о существовании древних форм жизни сделано не было (Lakdawalla, 2008).

После аппаратов «Викинг» прямых поисков жизни больше не проводилось. Миссия НАСА в 2004 г. «Mars Exploration Rovers» была посвящена другой проблеме: существовали ли обширные водоемы или океаны на поверхности Марс в далеком прошлом. Многие специалисты считали, что сами очертания рельефа ясно указывают на древние берега таких океанов, но другие предлагали иные объяснения, как ветровую эрозию или что-либо другое. В ходе миссии были обнаружены овраги со следами недавних потоков (Malin, Edgett, 2000). Два самоходных аппарата (ровера), названные «Opportunity» и «Spirit», опустились на поверхность Марса и начали длительную работу в 2004 г., путешествуя на значительные расстояния и передавая изображения поверхности (рис. 2) и сведения о проведенных исследованиях (Kerr, 2006). Роверы проработали уже 5 лет; они представили, в частности, достаточно убедительные доказательства того, что в ранние эпохи своей истории на Марсе действительно существовали обширные водоемы. Аппараты нашли минерал гематит, который формируется в присутствии воды. Поверхность в районе работы «Opportunity» включает множество мелких круглых зерен (глобул) размерами менее сантиметра (рис. 3), которые напоминают конкреции на дне земных океанов и однозначно указывают на некогда существовавший здесь большой водоем или даже океан. При необходимости аппараты могли специальным инструментом срезать участок камня (круг на рис. 3) и провести его химический анализ.

Подробное исследование свойств грунта показало, что вода в древних водоемах содержала много растворенных солей. Было высказано предположение, что, как было установлено ровером «Opportunity», высокие концентрации растворенных веществ во влажной среде раннего Марса, вероятно, исключали возникновение и эволюцию любых микроорганизмов. Как известно, высокая концентрация растворенных солей может использоваться как консервант.

Аппарат «Phoenix» (США, 2008 г.) проводил исследования в полярном районе Марса. Исследовался реголит на небольшой глубине, в частности, исследовались типы и концентрация антиоксидантов. Километровые слои льда воды и пыли образуют северную полярную шапку Марса (рис. 4), на границе которой опустился аппарат. В отличие от южной полярной шапки, примесей льда СО, здесь практически нет. При посадке аппарата струя газа из тормозного двигателя сдула тонкий слой пыли. Под ним находилась значительная масса льда. В числе экспериментов было микроскопирование, но подробности исследований не сообщались. Было установлено содержание в грунте перхлоратов, которые, наряду с высокой соленостью влаги в грунте, также могут быть серьезной помехой для возникновения и развития жизни (Johnson, 2008).

Считается, что возникновение земной жизни связано с обширными водоемами. Орбитальный аппарат «Mars Express» Европейского космического агентства вышел на орбиту спутника Марса в 2003 г. Спутник оснащен камерами высокого разрешения, что позволяет видеть на поверхности образования 10-метровых размеров. В частности, камеры даже зарегистрировали положение на Марсе аппаратов, доставленных туда в прошлые годы.

Аппаратом «Mars Express» проводилось минералогическое картирование значительной части планеты (Fletcher, 2008), и, при существенном разнообразии минерального состава, карбонаты (соли угольной кислоты), широко распространенные на Земле, все же найдены не были. Это важный результат, поскольку на нашей планете именно в их залежах сосредоточено основное количество углерода. Более того, аппарат «Mars Express» не подтверждает больших запасов углекислого газа (например, в конденсированном виде), достаточных для существенных изменений массы атмосферы планеты, и соответственно, преобразования климата планеты благодаря парниковому эффекту.

 

Рис. 4. Северная полярная шапка Марса образована толстыми слоями льда воды и пыли. Аппарат «Phoenix» исследовал физико-химические свойства грунта в полярном районе.

 


Рис. 5. Аппарат «Mars Express» передал изображение обширной равнины, которая могла быть ледяной поверхностью древнего океана. Пыль, покрывающая всю поверхность планеты, придает ей типичный красноватый цвет.

 

Этот результат остается в противоречии с постоянно упоминаемой в литературе гипотезе о теплой эпохе раннего Марса, когда возникновение жизни, как предполагается, было возможно.

Астрогеология подразделяет историю Марса на три эпохи: нойскую, гесперийскую и амазонскую, продолжающуюся в наши дни. Нойская соответствует насыщенному рельефу (пик образования 3.8-3.9 млрд. лет назад, тяжелая метеоритная бомбардировка, 700 млн. лет после образования Марса и вообще всей Солнечной системы). Гесперийская эпоха характеризуется невысокой плотностью метеоритной бомбардировки. Ее завершение очень осторожно можно датировать 2-3 млрд. лет назад. Амазонская эпоха — это низкая плотность метеоритных кратеров, разительные отличия южного и северного полушарий и формирование современного климата Марса (Head et al., 1999).

На одном из снимков аппарата «Mars Express» видна обширная гладкая равнина с немногочисленными метеоритными кратерами (рис. 5), что указывает на сравнительно позднее ее появление. Верхний окрашенный слой это, конечно, пыль. Но под ней просматриваются плоские блоки протяженностью в десятки и даже в сотню километров. Из сравнения с видом ледовых полей Арктики авторы сделали вывод, что это — поверхность замерзшего моря или небольшого океана, возникших, все же, в эпоху более мягкого климата Марса, вероятно, в начале амазонской эпохи. Если эти результаты подтвердятся, а условия для возникновения жизни на Марсе действительно существовали, то именно такие водоемы могли быть обитаемыми, хотя бы на уровне микроорганизмов.

Обнаруженное аппаратом «Mars Express» ничтожное количество метана в атмосфере Марса (около 10 ppb) могло бы свидетельствовать о наличии жизни на планете. Дело в том, что метан в атмосфере непрерывно разрушается за счет фотодиссоциации. Поэтому его запасы в марсианской атмосфере должны непрерывно пополняться, либо в результате жизнедеятельности микроорганизмов, либо в процессах геологической активности, например, в реакциях серпентинизации.

 

Для поддержания концентрации 10 ppb в атмосфере на Марсе должен присутствовать источник мощностью около 3*10x г метана в год. Таким источником могла бы быть тектоническая деятельность, остаточный вулканизм, геотермальная активность.

 


Рис. 6. Странные отверстия площадью в тысячи квадратных метров обнаружены на древних вулканических склонах Марса в районе Фарсида.

 

Как известно, большая масса земных микроорганизмов обитает в глубоких слоях грунта. Высказывалось предположение, что такой же может быть среда обитания жизни на Марсе. В этой связи большой интерес вызвало открытие в 2006-2007 гг. странных образований на склонах древних вулканических конусов в районе Фарсида. Район Фарсида, характеризующийся огромной массой вулканических выбросов, возник, по-видимому, в амазонскую эпоху. Высота вулканических конусов превышает 20 км. На их склонах обнаружены загадочные отверстия (рис. 6) диаметром несколько сотен метров, неустановленной глубины. Тепловое излучение из отверстий (исходящее, по-видимому, от их дна) соответствует усредненному суточному излучению окружающей поверхности. Появившиеся в околонаучной литературе сообщения о «теплой среде» на дне полостей и их возможной связи с обитаемостью Марса были вскоре опровергнуты. Происхождение полостей остается неизвестным. Не исключено, что это результат вытаивания или испарения грунтовых льдов.

Автор: Admin | 2011-11-25 |
8 страница из 12« Первая...456789101112

GIF
Видео
Видео
Все обо всем
Забавно!
Иллюстрированные факты
Искусство
Истории
Все размещенные на сайте материалы без указания первоисточника являются авторскими. Любая перепечатка информации с данного сайта должна сопровождаться ссылкой, ведущей на www.unnatural.ru.