Необычный

Пути уменьшения негативных последствий засоренности земной орбиты и снижения самой засоренности. Часть III

Хотите побывать этим летом в славном городе Ставрополь, тогда обязательно занесите в закладки своего браузера сайт http://2stavropol.ru/, по страницам которого Вы совершите электронную экскурсию по этому прекрасному городу. Так что, когда Вы приедете в Ставрополь, то будете знать его как свои пять пальцев и точно не сможете пропустить ни одной достопримечательности.



Рис. 1. Бремя существования переходной ступени вывода КА на ГСО с борта шаттла

 

Слабые гравитационные возмущения влияют на время существования КО на ГСO с высотой перигея меньше 300 км, а выбор ориентации орбиты по отношению к Солнцу и Луне может заставить лунно-солнечные возмущения работать на снижение перигея. На рис. 1 показано, как время существования РН изменяется в зависимости от угла между плоскостью начальной орбиты переходной ступени и Солнцем [Loftus et al., 1992]. Это подсказывает очень дешевый способ ускорения схода с орбиты некоторых КА, но для других может потребоваться существенная коррекция программ запуска, полета, функционирования и согласования с прочими требованиями миссии.

 

На низких орбитах можно использовать приспособления для усиления торможения в атмосфере, например, установку насадок или изменение геометрии поверхности с целью увеличения ее площади. Это могут быть надувные баллоны. Чтобы они не сдувались после перфорации мелким мусором, использовать способы придания им жесткости после надува.

 

Перевод КА и РН на орбиты захоронения в конце их активного существования. Принудительное снятие КО с орбит и сокращение времени их существования обходится сравнительно недорого для НОКО или КО на эллиптических орбитах с низким перигеем. С ростом высоты их стоимость неприемлемо возрастает. Есть более универсальный метод «разредить» переполненные рабочие орбиты — перевод выработавших ресурс КА на орбиты захоронения, где они уже не представляют угрозы для действующих КА. Такие орбиты должны отстоять достаточно далеко от рабочих, чтобы естественные возмущения не вернули их вскоре назад. Перевод КО на орбиты захоронения не может считаться радикальным способом борьбы с засорением космоса, так как не уменьшает общей кинетической энергии в ОКП. Этот способ снижает риск столкновений в исходном районе, но повышает его в районе захоронения. Если там произойдет разрушение КА, то осколки могут достигнуть и его прежней рабочей орбиты. При выборе способа снижения опасности столкновения для действующих КА нужно сопоставлять различные варианты по стоимости и эффективности. Представляется, что в перенаселенной низкоорбитальной области, где трудно найти место для орбиты захоронения, обычно больше подходят методы радикального удаления КО с орбиты. Но для ГСО и полусуточных орбит они слишком дороги.

 


Швейцарцы уже изобрели миниатюрные аппараты, которые научное сообщество прозвало космическими пылесосами. Основная задача этих сверхтехнологичных устройств – очищение орбиты нашей планеты от мусора

 

Методы активного удаления КМ с орбит. Эта идея возникла почти лет 30 назад [Liou, Johnson, 2007b; Orbital___, 1985]. Однако из-за технической сложности и чрезвычайно высокой стоимости подобных проектов их не относили к разряду практически реализуемых. Удаление с орбит крупных КО требует высокозатратного создания специальной космической транспортной техники при сравнительно малой значимости снижения риска столкновений в результате такой операции. Самая оптимистическая оценка стоимости реализации подобного проекта [Petro, Ashley, 1989] — более 15 млн. дол. на каждый КО в нижней орбитальной области, не считая затрат на разработку маневровых систем.

 

События 2007, 2009 гг. (разрушения КА «Фенгюн-1С», «Иридиум-33», «Космос-2251») и последние модельные исследования, подтвердившие явную нестабильность популяции КМ в низкоорбитальной области (ниже 2000 км), дали новый импульс для дискуссий на эту тему. Как уже упоминалось выше, президент США Обама заявил в 2010 г., что национальная космическая политика США предусматривает проведение исследований и развитие технологий удаления КО из ОКП. Были даны соответствующие директивы NASA и Министерству обороны США [Liou, 2011b; President…, 2010].

 

 

Перед планированием операций по активному удалению КО встает ряд вопросов:

• в каком орбитальном районе следует осуществлять такие операции в первую очередь;

• каковы главные цели этих операций;

• какой КМ следует удалять в первую очередь;

• какой будет выигрыш от этого;

• каким образом конкретно осуществлять операцию.

 

В свете последних исследований и событий в космосе ответ на первый вопрос будет однозначен — низкоорбитальная область с наиболее неустойчивой популяцией КМ с признаками начала каскадного процесса. Засорение более высоких орбитальных областей, как мы уже отметили, проходит значительно медленнее. Второй вопрос затрагивает как общие, так и частные цели. Общей вполне может быть максимизация отношения достигаемой выгоды к стоимости операции. Частные цели: управление ростом популяции мусора, ограничение интенсивности столкновений, смягчение последствий столкновений для конкретно выбранных КА, например, пилотируемых, и т. п. Какой КМ удалять прежде всего, во многом зависит от ответа на второй вопрос. Если цель операции — стабилизация роста популяции КМ или снижение числа катастрофических столкновений, то удалять нужно в первую очередь крупные массивные КО. В случае постановки задачи снижения угрозы нарушения функционирования действующих КА, следует настраиваться на удаление КО размером от 5 мм до 1 см. Они самые опасные в этом смысле и составляют 80 % всех КО размером более 5 мм [Liou, 2011b]. Другой вопрос — как это сделать.

 

Идей высказано достаточно много, включая и весьма фантастические предложения: «космические веники», огромные пенные шары, фольговые ловушки, лазерные испарители наземного и космического базирования. Короче, в настоящее время не существует сколько-нибудь эффективных технологий удаления мелкого КМ, а все предлагаемые схемы выглядят очень дорогими.

 

Выбор того или иного метода борьбы с засорением ОКП по сути будет компромиссом между эффективностью его применения и стоимостью реализации.

 

Мы уже говорили, что из-за ошибок прогнозирования движения КО в 159 атмосфере невозможно с достаточной определенностью и, главное, своевременно предсказать место и время падения на Землю крупных обломков, что не позволяет принять необходимые меры защиты.

 

Главная неопределенность связана со «слабым» знанием вариаций плотности верхней атмосферы, и трудностью предсказания изменяющейся во времени площади поперечного сечения НОКО из-за его переменной ориентации в пространстве. Функцией этих двух характеристик будет сила сопротивления атмосферы, как очень важная компонента уравнений движения КО. Из-за плохого знания этих характеристик точность прогнозирования движения НОКО снижается на ±15 %, что составляет несколько, а иногда и десятки километров за сутки. Эти ошибки существенно превосходят все остальные, включая погрешности наблюдения и неоднозначность модели движения. Особенно недопустимы такие ошибки при расчете параметров сближения КО для программирования маневра уклонения от столкновения.

 

Над этой проблемой работают многие ученые, но ее решение пока оказывается им не под силу. Заметно улучшить точность определения этих двух характеристик сейчас нереально. Единственный, по нашему мнению, вариант — увеличение плотности средств наблюдения и рациональное их размещение с целью сокращения «слепых» для СН интервалов движения КО. Положительный эффект в этом случае гарантирован, однако проблема — в высокой стоимости реализации такого варианта. В то же время, если это все-таки будет сделано, то приведет не только к демпфированию проблемы непредсказуемости атмосферы, но и к существенному покрытию слабо контролируемых сегодня областей орбит, т. е. к более быстрому обнаружению КО, причем на большем разнообразии орбит.

 

Обе СККП испытывают множество трудностей в обнаружении и контроле движения БЭКО и других КО в высокоорбитальной области. Одна из причин этих трудностей — несовершенство используемых повсеместно методов поиска и обнаружения малоразмерных и слабоконтрастных КО. В ОКП присутствует гигантская масса элементов КМ с широчайшим разбросом орбитальных, массогабаритных и прочих индивидуальных параметров: по высотам, размерам, яркости и т. п. При этом специалисты испытывают большой дефицит измерительной информации для полноценного исследования проблемы техногенного засорения ОКП. КО различных классов требуют индивидуального подхода к их поиску и обнаружению.


Расшифровку всех приведенных в статье условных сокращений смотреть здесь: «Исследование ближнего космоса: условные сокращения».

Автор: Admin | 2012-06-30 |

Пути уменьшения негативных последствий засоренности земной орбиты и снижения самой засоренности. Часть II

Сайт www.webbazar.ru станет вашим верным другом и незаменимым помощником в поиске товаров в интернете. По сути webbazar — это гигантский Интернет магазин с большой буквы, представляющий сотни более мелких! Благодаря этому Вы сможете найти все, начиная от бумажных полотенец и заканчивая сложной вычислительной техникой, в одном месте, не отходя от своего компьютера!



Самый неудоборешаемый вопрос — это поиск путей реального снижения засоренности ОКП. Есть только один физически осуществимый способ — прекратить всю космическую деятельность на несколько миллионов лет. За это время ОКП, хотя и очень медленно, само очистится без нашей помощи. Но человечество генетически неспособно столько ждать, хотя, на наш взгляд, оно и заслужило такое наказание.

 

Возможные (как реальные, так и пока фантастические) методы снижения и прекращения роста будущей популяции КМ можно разделить на две категории:

• методы, снижающие краткосрочную опасность засорения ОКП;

• методы, позволяющие уменьшить эту опасность в дальней перспективе.

 

Методы первой категории не направлены на снижение общей массы КМ в ОКП, т. е. не уменьшают общую кинетическую энергию на околоземных орбитах — источник долгосрочной опасности столкновений в ОКП [Kessler, Loftus, 1995]. Эти методы не решают проблему коренным образом, т. е. уменьшения общей массы КО на орбитах, хотя и позволяют замедлить рост опасности КМ. Гораздо важнее уменьшить рост количества столкновений, прежде всего, в низкоорбитальной области. Этой цели служат снятие с орбит крупных КО и перевод на орбиты захоронения крупных НОКО и КО на эллиптических орбитах, пересекающих низкоорбитальную область. Это задача методов второй категории.

 

Рассмотрим конкретные методы обеих категорий.

 

Сокращение высвобождения КМ, сопутствующего запуску и функционированию КА. Этот тип КМ составляет порядка 10% от количества каталогизированных КО. Существует также значительная популяция некаталогизированного КМ этого типа. Причем большинство его находится в наиболее «населенных» орбитальных районах. Прекращение выброса в космос такого мусора реализуется довольно легко и без негативного влияния на оперативные свойства КА, хотя достигнутый эффект будет небольшим. Но на низких орбитах находятся ценные действующие КА, поэтому это будет полезно.

 

Сокращение продуктов выхлопа твердотопливных двигателей. Тем самым достигается лишь небольшое облегчение для космической деятельности, поскольку эти мельчайшие частицы имеют очень короткое время существования (менее 5 % их остаются на орбитах более года [Orbital___, 1995]). Здесь нужно либо отказываться от использования твердотопливных двигателей, либо менять тип топлива.

 


Пассивация КА и РН. Цель — сохранение целостности КА и РН и, как следствие, сокращение осколкообразования от взрывов. Так как при взрыве образуется значительное количество крупных и среднеразмерных фрагментов с потенциально длительным временем орбитального существования, то сокращение количества взрывов даст существенный эффект в смысле сдерживания роста популяции КМ. Единой рекомендации по предотвращению случайных взрывов нет. Но существует системный подход, называемый пассивацией, который предполагает:

• определение всех потенциальных источников запасенной энергии, остающейся к концу функционирования КА;

• для каждого такого источника разрабатывается безопасный метод рассеивания запасенной энергии;

• активация этих методов в конце функционального существования КА.

 

Для устранения условий взрыва РН топливо либо выжигается, либо просто стравливается после отделения ступени от КА продувкой баков или испарением.

 

Хотя конструкторы и избегают применять краску и другие материалы покрытий, быстро деградирующие в полете КА, они не требуют, чтобы покрытие оставалось прочным как в ходе, так и после окончания миссии.

 

Недорогой мерой борьбы с образованием км стало бы разделение процессов поверхностной деградации в открытом космосе и превентивных методов противодействия им и их последствиям.

 

Уменьшение осколкообразования вследствие столкновений. В принципе, прямой путь к достижению этой цели — сокращение количества столкновений с помощью маневров уклонения от них или удаление КО, грозящих столкновениями, из переполненных орбитальных областей.

 

Выше уже говорилось, что любые меры ограничения количества КО без сокращения общей массы КМ (и, следовательно, кинетической энергии в ОКП) недостаточны для уменьшения долгосрочной угрозы столкновений. Если даже удастся создать самые совершенные системы предупреждения о грозящем столкновении, их нельзя использовать для предотвращения столкновений неуправляемых КО, поскольку они не способны маневрировать. Что касается удаления КО с густонаселенных орбит, то это достигается принудительным вводом КА в атмосферу замедляющими полет приемами или сокращением орбитального существования (ускорение естественного схода с орбиты), переводом КА на орбиту захоронения в конце активного полета, активным удалением км с орбит.

 

Принудительный ввод в атмосферу КА и РН и сокращение длительности существования КО. Относятся к радикальным методам второй категории. Они предполагают включение двигателя (если, конечно, на борту осталось топливо), использование естественных возмущающих сил и приемы усиления торможения в атмосфере. Для этого можно использовать специальные небольшие реактивные двигатели или выжигание остатков топлива в основных двигателях.

 

Чтобы иметь возможность выполнять такого типа маневры, традиционные проекты КА и РН будут нуждаться в соответствующих модификациях. Многие КА и РН не имеют собственных систем ориентации и коррекции орбит. Могут также понадобиться более мощные системы энергоснабжения, сложные командные системы для длительного сохранения работоспособности и возможности выполнения маневров торможения. И, конечно же, потребуется большее количество топлива. В руководящих документах НАСА по снижению опасности со стороны км предлагается ограничивать время существования КО, пересекающих низкоорбитальную область, 25-ю годами. Но на всякие константы такого рода нужно иметь глубокое и убедительное обоснование.

 

Атмосферное торможение имеет сильнейшее влияние на продолжительность существования НОКО, его имеет смысл использовать с целью ускорения погружения КО в плотные слои атмосферы. Время существования КО на эллиптической орбите можно изменять даже более резко, чем на круговой в зависимости от начальной высоты перигея. РН, запущенная на ГTO с низким перигеем, гораздо быстрее сходит с орбиты, чем запущенная на орбиту с высоким перигеем. Это подсказывает эффективный и дешевый способ сокращения времени существования КО на высокоэллиптической орбите.


Расшифровку всех приведенных в статье условных сокращений смотреть здесь: «Исследование ближнего космоса: условные сокращения».

Автор: Admin | 2012-06-29 |

Пути уменьшения негативных последствий засоренности земной орбиты и снижения самой засоренности. Часть I

Что только не падает из космоса на нашу многострадальную планету! Взять хотя бы космическую пыль, которая составляет более 6% от всей массы Земли! Еще более интересно обстоят дела с падение метеорита, который может принести к нам из далеких галактик новую породу минерала, гигантский алмаз или даже неизвестную форму жизни — именно так, благодаря упавшему миллионы лет назад метеориту, и зародилась жизнь на нашей планете!

Узнать все, что вы хотели, и даже больше, о метеоритах Вы сможете, если прямо сейчас посетите сайт www.spaceon.ru.



Гигантская орбитальная помойка, словно броня, обволакивает подступы к нашей планете

 

В комитете IADC этим вопросом занимается специальная рабочая группа WG-4, причем, в отличие от остальных трех групп, устав IADC требует представительства в ней всех стран-членов комитета. Этим подчеркивается особый статус группы и вверенного ей направления исследований.

 

Одним из коренных вопросов в решении проблемы КМ считается преодоление дилетантского к ней отношения. Школьные программы и программы вузов должны включать соответствующие курсы, содержащие хотя бы минимум знаний по вопросам техногенного засорения космоса. Конструкторы космической техники и менеджеры всех звеньев, связанные с освоением космоса, должны иметь профессиональные знания в этой области, так как от их действий в значительной степени зависит «состояние здоровья» ближайшего к нам космоса и его краткосрочная и долгосрочная эволюция. Необходимо разработать и широко распространить различные руководства в помощь конструкторам и государственным чиновникам. Эти руководства должны включать информацию о текущем состоянии среды, его прогнозировании и последствиях засорения, методики оценки повреждений КА и его компонент от км, методы пассивной, активной и операционной защиты КА. Эти руководства могут также оказаться полезными учебными пособиями для студентов.

 

Разумеется, наступать на проблему засоренности ОКП можно одновременно с разных сторон, особенно, если для этого имеются конструктивные основания. Но самая первая задача по логике вещей — это расширение возможностей всех инструментов и методов мониторинга в интересах наблюдения в первую очередь мелких фракций КМ, крупные мы обнаруживаем и наблюдаем довольно сносно, хотя многие существующие СН сильно устарели. Нужны разработка и ввод новых, специализированных средств обнаружения и наблюдения элементов КМ, привлечение существующих средств к мониторингу засоренности ОКП. км имеет определенные специфические особенности, поэтому желательна специализация этих средств для более эффективного обнаружения и отслеживания.

 

Заметно улучшить мониторинг ОКП могло бы создание более мощных и высокочастотных РЛС, но у этой стратегии тоже есть предел. Мощная РЛС наземного базирования с рабочей частотой 30 ГГц могла бы обнаруживать частицы км размеров 1 мм на низких орбитах. Создание же и эксплуатация такой станции обойдется очень дорого, а дальнейшее увеличение рабочей частоты с целью обнаружения еще более мелких частиц вообще теряет смысл, так как радиоволны короче 1 см сильно поглощаются атмосферой Земли. Правда, это ограничение не относится к СН космического базирования, но финансовые трудности их применения возрастают.

 

Многие существующие наблюдательные средства способны успешно обнаруживать и контролировать движение некоторых классов КМ. В этом отношении мощным резервом представляется российская СККП.

 

Кажется парадоксальным, что приблизительно 95 % крупных КО и в нашем, и в американском каталогах СККП — это КМ. Вместе с тем СККП — по замыслу и назначению чисто военная система, «обслуживает по своему профилю» лишь около 5% КО. При этом она использует для своих целей также измерительную информацию многих гражданских средств наблюдения. Вполне разумно и обратное — использовать по согласованию с МО (Министерство обороны) часть информации военных радиолокационных и оптических (оптикоэлектронных) средств в интересах мониторинга засоренности ОКП (как это делается в США). Это не будет большой нагрузкой для соответствующих подразделений МО, что подтверждается опытом СККП США.

 

Что касается прогресса в изучении популяции самого мелкого КМ, наблюдение которого доступно исключительно бортовым пассивным и активным контактным датчикам (техника in-situ), то здесь можно рассчитывать, пожалуй, только на прорыв в повышении эффективности последних. Необходимо резкое увеличение площади чувствительной поверхности таких детекторов.

 

Целесообразно создание и ведение единого динамического каталога КО всех размеров, накопление измерительной унифицированной базы данных и соответствующего архива наблюдений. Такой каталог и архив должны стать одними из главных продуктов национальной и интернациональной системы мониторинга ОКП. В эту базу данных должна стекаться измерительная информация от СН со всего мира, а ее содержимое быть доступным всем заинтересованным сторонам (прежде всего, широким группам специалистов) пусть даже на определенных условиях. Каталог КО СККП сегодня содержит информацию только о крупных объектах. Для обслуживания исследований проблемы км нужен комплексный каталог, включающий информацию и о мелких КО. Самая мелкая фракция, по-видимому, должна быть представлена в каталоге статистически в терминах распределений. Без достаточно полного каталога, ведущегося в реальном времени с высокой точностью орбитальных и некоординатных параметров КО, невозможно проведение полноценных исследований техногенного засорения ОКП.

 

Очередные кампании наблюдений и расстановку контактных датчиков на борту КА нужно планировать таким образом, чтобы как можно скорее ликвидировать пробелы в знаниях среды. Эти пробелы сильно сдерживают повышение точности и надежности используемых исследователями многочисленных моделей текущей и будущей засоренности ОКП и, следовательно, обоснованности принимаемых и планируемых мер по борьбе с угрозой со стороны КМ.

 

При обязательном продолжении кампаний наблюдения КМ необходимо тщательно архивировать данные измерений, полученные во всех предыдущих кампаниях. Ценность архива пропорциональна продолжительности охватываемого им временного периода. Чем он протяженнее, тем больше анализ соответствующей информации может открыть закономерностей в динамике общей популяции КМ и ее частных категорий, и тем достовернее будут результаты анализа.

 

Важным этапом разрешения проблемы космического мусора должна быть работа с конструкторами космической техники и менеджерами всех уровней. Только профессионализм в этой области позволит до конца осознать угрозу со стороны КМ их собственному делу. Правда, работа в этом направлении может привести лишь к паллиативному решению — обуздать дальнейшее засорение космоса.

 

И все же, в первую очередь нужно сосредоточить усилия на сокращении источников порождения нового КМ. Без этого придется принимать меры по снижению опасности удара более мощным бронированием КА, усложнением (и, естественно, удорожанием) различных видов защиты. Между тем вероятность функциональных отказов все равно будет возрастать, а очищение космоса путем активного увода крупных КО в ближайшем будущем окажется неэкономичным и не будет давать нужного эффекта.


Расшифровку всех приведенных в статье условных сокращений смотреть здесь: «Исследование ближнего космоса: условные сокращения».

Автор: Admin | 2012-06-27 |

Определение степени угрозы со стороны космического мусора для космических аппаратов. Часть II

Только на сайте www.rezina.ua Вы всегда сможете купить качественные шины ведущих мировых производителей. Так, например, комплект зимней резины Debica Frigo обойдет Вам всего в 1 600 грн.



Этот кратер в 5 см броне шаттла, участвовавшего в миссии НАСА Solar Maximum Mission, пробил крошечный обломок орбитального мусора

 

На типичных для низкоорбитальных космических объектов скоростях столкновения атакующая частица обычно расплавляется или даже испаряется, а мельчайшие осколки или расплав либо образуют большой кратер в щите, либо пробивают его насквозь, в зависимости от толщины щита. Чтобы монолитный щит защищал от высокоскоростного удара (от перфорации), его толщина должна быть пропорциональна второй или третьей степени скорости столкновения [Swift, 1982; Cour-Palais, 1985, 1987]. При скоростях удара более 2…3 км/с многослойный щит (например, бампер Уиппла) эффективнее монолитного. Экспериментальные и теоретические данные показывают, что при типовой скорости удара в области низких орбит бампер Уиппла обеспечивает защиту, эквивалентную защите монолитного в 10…20 раз более массивного, чем бампер [Swift, 1982].

 

Когда высокоскоростной снаряд ударяется в бампер многослойного щита Уиппла, их взаимодействие возбуждает обратную ударную волну, разрушающую, расплавляющую и даже испаряющую материал снаряда. Затем мелкие и уже более медленные частицы движутся от бампера к следующему, улавливающему слою (кэтчеру) и, ударяясь в него, распределяют энергию удара (ее оставшуюся часть) по большей площади. При этом каждая мелкая частица обладает малой энергией и создает меньший момент. Поэтому кэтчер может быть более тонким, чем монолитный щит. Многослойный щит защищает не только от высокоскоростных частиц км, но и от медленно летящих, которые просто пробивают бампер и останавливаются более толстым кэтчером.

 

Толщина бампера и кэтчера выбирается с учетом самого быстрого, самого крупного и самого высокоэнергичного из ожидаемых атакующих КО, а промежуток между ними должен оптимизировать распределение энергии КО.

 


Международная космическая станция – настоящая бронированная крепость, которая может устоять под натиском космического мусора диаметром до 25 см

 

Разработано много усовершенствованных вариантов щита Уиппла, снижающих суммарную его массу для защиты КА в конкретной среде и уменьшающих масштабы вторичного осколкообразования при ударе — в том числе и для защиты МКС [Christiansen, 1994; Christiansen, Kerr, 1993; Cour-Palais, Crews, 1990; Lambert, 1994].

 

Системы активной защиты КА включают также средства наблюдения (бортовые или наземные) для предупреждения оператора о грозящем столкновении и механизмы для защиты критических компонент и/или двигатели для выполнения маневра уклонения от столкновения. На сегодняшний день в качестве предупреждающих сенсоров используются наземные средства наблюдения, прежде всего СККП. На основе наблюдений рассчитываются потенциальные сближения КА с каталогизированными КО. В случае превышения вероятности столкновения допустимого уровня риска с помощью маневровых двигателей совершается маневр уклонения. Основы маневров уклонения от столкновения изложены в работе [Foster, Stansbery, 2003] и ряде документов НАСА.

 

Существуют и другие проекты активной защиты. Например, бортовые сенсоры обнаруживают приближение КО, после чего закрываются шторки над чувствительным компонентом КА или он разворачивается, подставляя приближающемуся объекту более защищенную сторону. Могут также выбрасываться особые щиты навстречу атакующему КО, или использоваться оружие направленной энергии (лазер, плазма и т. п.) для отклонения или разрушения приближающегося объекта [Schall, 1993; Settecerri, Beraun, 1993].

 

Проблема всех схем активной защиты в том, что они требуют упрежденного обнаружения опасности столкновения. Из-за высоких скоростей сближения, зачастую свыше 15 км/с, это упреждение должно быть весьма значительным — за сотни километров до встречи. При этом требуется не только обнаружение, но и устойчивое слежение за КО с целью получения точной координатной информации о нем, которая позволила бы однозначно сказать, будет ли в действительности столкновение. В НАСА есть модель SBRAM для предварительной оценки опасности для действующих КА со стороны каких-либо КО через дни, недели и месяцы [Krisko et al., 2005; Matney, 1998, 2000].

 

Казалось бы, естественно разместить все компоненты системы активной защиты (включая сенсоры) на борту защищаемого КА. Но это только на первый взгляд. Требования к системам, способным своевременно обнаружить на достаточном расстоянии и сопровождать среднеразмерный КО, очень высоки и сегодня практически не реализуемы. В частности, бортовой радар должен иметь чрезвычайно высокую мощность, оптика — от десятков до сотен сантиметров в диаметре. Сенсоры должны обладать широким полем зрения для обнаружения набегающих КО со всех ресурсов.

 

В [Orbital., 1995] приводится такой пример и соответствующий расчет. Низкоорбитальный КА массой 1 т оборудован сенсором, способным предупреждать с расстояния 100 км о потенциальном столкновении с точностью, при которой КА мог бы избежать столкновения, сместившись на 25 м в сторону. В заданных условиях на маневр потребуется 5 с. Для этого нужен реактивный двигатель с тягой 2 кН (типичные реактивные двигатели для коррекции орбит имеют тягу 1 кН). Если бы 375-тонной МКС понадобился такой маневр, нужен был бы реактивный двигатель с тягой 750 кН (такой же, как у второй ступени РН «Ариан-4»). К тому же, ускорение в таком маневре превысит допустимые нагрузки на выносные структуры (солнечные панели и т. п.). Снизить эти нагрузки можно за счет увеличения расстояния обнаружения КО, но тогда придется увеличивать мощность сенсора. Тронешь в одном месте — поползет в другом.

 

Наземные средства СККП уже широко используются для предупреждения о сближении с каталогизированными КО действующих КА, в том числе МКС. Имея большое число весьма совершенных средств наблюдения, рассредоточенных практически глобально, они не испытывают дефицита времени на предупреждение. Однако у них есть ограничения на размер обнаруживаемых КО и слежения за ними (минимум 10 см), а также на точность прогнозирования их движения.

 

Наземная система предупреждения о столкновениях должна отвечать трем очевидным требованиям:

• каталог КО системы содержит динамически обновляемую координатную информацию о всех опасных КО, траектории которых пересекают орбиту защищаемого КА;

• система обеспечивает достаточно высокую точность измерительной информации, чтобы уровень ложных тревог был низким и исключал лишние маневры ухода;

• защищаемый КА способен реагировать на предупреждение уходом от столкновения или выполнением других активных мер защиты.

 

Современные системы предупреждения о столкновениях, к сожалению, не отвечают этим требованиям. Существующие каталоги не полные в части объектов размером менее 10…20 см и не включают большинство потенциально опасных КО. Непредсказуемость состояния верхней атмосферы и, как следствие, неточность прогнозирования будущего положения сближающихся объектов делает неизбежным ненужные маневры (из-за требования значительного упреждения выдачи сигнала об опасности). Эта неопределенность также не позволяет точно и своевременно предсказать параметры ожидаемого столкновения для большинства существующих КА и точного расчета установок на маневр. Необходимые характеристики сенсоров для активной защиты КА достигаются сложными и дорогостоящими техническими решениями. Поэтому такую защиту имеет смысл применять только для пилотируемых и очень дорогих КА.

 

Даже при наличии эффективной системы предупреждения многие методы активной защиты могут оказаться физически не реализуемыми. Например, схема встречного обстрела атакующего КО требует большей мощности (десятки киловатт), чем может обеспечить современное оборудование КА. Маневр уклонения при срочном предупреждении может оказаться выполнимым лишь при наличии очень мощного реактивного двигателя и весьма жесткой конструкции КА, чтобы выдержать резкий маневр.

 

Что касается операционной защиты, то она включает избыточность и дублирование оборудования, специальную архитектуру дизайна. Большинство схем операционной защиты направлены не на снижение угрозы удара КМ, а на минимизацию вероятности отказа КА из-за сбоя отдельной его компоненты по любой причине, не обязательно связанной с КМ. Операционно обеспечивается лишь щадящий режим снижения качества функционирования КА при нештатном или некачественном функционировании какой-либо компоненты. Например, термопокрытие проектируется таким образом, чтобы оно сначала обеспечивало более чем достаточный термоконтроль, а его нижние слои плавно снижали свои термозащитные свойства при более жестких чем проектные воздействиях внешней среды. Солнечные панели устанавливаются большей площади, чем нужно для снабжения КА электроэнергией. Электронное оборудование и двигательная техника обычно дублируется в 2…3 раза. Такая операционная избыточность применяется и в многообъектовых космических системах. Например, в американской GPS (и российской ГЛоНАСС) используется больше спутников на орбитах, чем это требуется.


Расшифровку всех приведенных в статье условных сокращений смотреть здесь: «Исследование ближнего космоса: условные сокращения».

Автор: Admin | 2012-06-27 |

Определение степени угрозы со стороны космического мусора для космических аппаратов. Часть I


Нет сомнений, что при конструировании КА и разработке программы миссии игнорирование угрозы со стороны КМ по меньшей мере безответственно. В современном проектировании КА необходимо получить количественную оценку этой угрозы. Для этого конструктор должен проанализировать конкретную среду на пути будущего КА и четко представить себе уязвимость КА в этой среде.

 

Уже создано много аналитических, экспериментальных методов и инструментов для решения этой задачи. Но, пользуясь ими, мы не должны забывать о связанных с ними допущениях, ограничениях и неопределенностях.

 

Проектирование КА и его миссии состоит из целого ряда этапов. Каждый из которых в определенной, иногда весьма значительной степени, связан ограничениями, следующими из решений, принятых на предыдущих этапах. Чтобы избавиться от некоторых ограничений, если в этом возникает необходимость, приходится возвращаться к более ранним этапам и выполнять перепроектирование, что увеличивает стоимость проекта. Чем раньше КМ вводится как фактор в процессе проектирования, тем дешевле обойдется проект и более органично будет учтена реальность космического мусора в окончательной версии проекта.

 

Для каждого КА решение индивидуально, отлично от решений, принятых для других, так как количественная мера угрозы со стороны КМ, допустимого риска, конструкции и стоимости защиты напрямую зависит от массы, размеров, конфигурации аппарата, его рабочей орбиты, решаемых им задач.

 

Проектирование КА военного назначения должно подчиняться требованиям, подчас радикально отличным от принятых при создании наземного вооружения. Например, при проектировании космического кинетического оружия поражения необходимо учитывать, что наземных условиях выстрел снарядом (или пулей) имеет результатом попадание или промах. Сразу после этого снаряд или пуля, как правило, перестают существовать как таковые, т. е. уже не представляют опасности. В космосе при промахе кинетический снаряд продолжает полет с огромной космической скоростью и, следовательно, продолжает сохранять опасность, в том числе и для стороны, осуществившей выстрел.

 

Общий поток км, который встретит на своем пути проектируемый КА, зависит от высоты и наклонения орбиты, его размеров и формы, ориентации по отношению к вектору скорости потока КМ, продолжительности миссии, текущего уровня солнечной активности. К настоящему времени создано множество моделей засоренности ОКП (и ее прогнозирования), которые могут быть использованы для оценки потока и они постоянно совершенствуются [Kessler et al., 1989, 1994; Krisko, 2009, 2010, 2011a; Sdunnus, Klinkrad, 1993; Xu et al., 2011].

 


Проект космической станции «Freedom» был разработан в 1980-х гг., как ответ на запуск советской станции МИР, но так и не был завершен ввиду своей дороговизны и распада СССР – как главной первопричины необходимости создания «Freedom’а».

В 1998 году модернизированный модуль «Freedom» был включен в состав МКС, и составил американский сегмент станции.

 

Как только поток КМ определен и построено распределение углов атаки его элементов, можно оценить ожидаемое количество ударов по каждой компоненте КА за заданный период времени. В расчете учитывается и взаимное расположение компонент, экранирование каждой другими. Для этого существуют методики, которые использовались еще для анализа проектов ОС «Фридом», МКК «Шаттл», КА LDEF, ОК «Мир», МКС [Christiansen, 1993; Orbital…, 1995].

 

Количество ударов и их характеристики — это лишь исходная информация для определения ожидаемых последствий и влияния на выполнение КА своей миссии, т. е. оценка вероятности отказов и сбоев компонент и аппарата в целом. При этом нужно рассматривать следующие виды последствий ударов:

  • выход из строя критических компонент (часто приводящие к отказу всего КА);
  • повреждения после ударов высокоскоростных фрагментов; воздействие импульсных нагрузок от удара; влияние плазмы;
  • изменение влияния данного повреждения во времени;
  • поверхностная деградация от ударов.

 

Уязвимость КА в потоке км может быть определена как комбинация вероятностей отказов его различных компонент вследствие ударов КМ с учетом важности (критичности) каждой компоненты и их дублирования (избыточности).

 

Оценка уязвимости КА считается основанием для определения степени и вида защиты КА. В настоящее время применяются три вида защиты — пассивная, активная и операционная («стандарт» IADC). Пассивная защита — это не что иное как бронирование КА или его компонент. Активная — предполагает использование средств наблюдения для обеспечения заблаговременного предупреждения о грозящем столкновении и последующее применение мер защиты критических компонент КА или совершение маневра уклонения от потенциального столкновения. Операционная защита предусматривает изменение дизайна КА с допущением возможности умеренной деградации КА или изменения его функций с целью снижения общего риска для миссии. Задача конструктора КА — найти компромисс между стоимостью реализации каждого метода и выигрышем.

 

Бронирование, с одной стороны, защищает КА от ударов мелкого и, в меньшей степени, среднеразмерного КМ, с другой, удорожает конструкцию и выведение аппарата в космос, уменьшает массу полезного груза. Разумеется, масса брони пропорциональна размеру и массе частиц, от которых она защищает. ‘К счастью’, с большей вероятностью КА подвергается ударам мелкого КМ, чем среднеразмерного и тем более крупного. Поэтому защищать броней от удара крупного КО не имеет смысла из-за малой вероятности столкновения и неспособности уберечь КА от разрушения, если столкновение все же произойдет.

 

Сам выбор конкретного защитного покрытия — это по сути компромисс между: допустимым уровнем риска повреждения КА или его критических компонент; добавленной массой щита и допустимым снижением массы полезного груза. Не следует также забывать, что добавление брони увеличивает не только массу аппарата, но и площадь его поперечного сечения. Это два больших минуса как с точки зрения повышения засоренности космоса в перспективе, так и увеличения вероятности столкновения с КМ.

 

Некоторую роль защиты КА выполняет его скелетная конструкция, которая должна быть достаточно массивной и прочной, чтобы выдержать пусковые нагрузки.

 

В космической индустрии используются два типа щитов — монолитный и многослойный с промежутками. Достоинство первого — простота и малый объем. Многослойный — обеспечивает лучшую защиту от высокоскоростного КМ, чем монолитный, при той же массе. Монолитный щит естественно использовать для защиты от мелкого КМ при средних и низких скоростях удара, когда энергия атакующей частицы слишком низка, чтобы сама частица разрушилась. В этом случае щит эффективен потому, что его масса достаточно велика, чтобы абсорбировать и рассеять энергию удара.


Расшифровку всех приведенных в статье условных сокращений смотреть здесь: «Исследование ближнего космоса: условные сокращения».

Автор: Admin | 2012-06-27 |

Возможности и средства оценки повреждений космических аппаратов


Осмотр и первичный анализ повреждений от ударов КМ возможен непосредственно в космосе силами космонавтов. Так было на МКС, телескопе «Хаббл» и еще раньше на советских орбитальных станциях. Известно много случаев возвращения на Землю экспонированных в космосе поверхностей и самого тщательного их анализа в лабораторных условиях [LDEF., 1993]. Очень много полезной информации о воздействии КМ на космические аппараты дают наземные лабораторные испытания с применением сверхскоростных ударов. В качестве вспомогательного средства используется компьютерное (аналитическое и цифровое) моделирование.

 


Обшивка МКС, обстрелянная космическим мусором

 

В наземных лабораториях исследуются:

  • непосредственные результаты ударов КМ или его имитаций;
  • воздействие ударов КМ на функциональные характеристики КА и его компоненты, их надежность, живучесть;
  • эффективность методов противодействия повреждениям от ударов КМ (защитные покрытия, их материалы, конструкция, компоновка); воспроизведение разрушений КО (КА, РН, крупного КМ) в результате взрывов и столкновений, образование осколков.

 

При этом главный метод моделирования — экспериментальный сверхскоростной удар, а его цель — выяснение, как КА или его компоненты смогут перенести столкновение в космосе с КМ, а также уточнение влияния этих факторов на процесс засорения ОКП. Поскольку практически нереально и экономически накладно построить целый КА для последующего разрушения в лаборатории, испытания в основном проводятся на отдельных его компонентах и их сборках (топливные баки, связки проводов, изоляционные материалы, структурные блоки). Подробнее см. [Christiansen, 1990; Christiansen, Ortega, 1990; Orbital…, 1995; Schneider, Stilp, 1993; Whitney, 1993].

 


Модель микроспутника с солнечными батареями, основная миссия которого – изучение поведения космического мусора

 

В рамках сотрудничества японского университета Кюсю и подразделения НАСА по проблемам техногенного засорения космоса недавно было проведено семь ударных тестов, где целями служили уже натурные КА — микроспутники размерами от 15x15x15 до 20x20x20 см. Масса этих аппаратов составляла примерно 1,5 кг. Каждая цель была полностью оборудована функциональной электроникой (батареи, приемники, передатчики). В двух последних тестах на спутниках монтировались солнечные панели и многослойное защитное покрытие корпуса. Все цели были обстреляны снарядами различных размеров и при разных скоростях ударов. Образовавшиеся фрагменты размером до 2 мм были собраны, изучены и каталогизированы. Результаты тестов использованы для улучшения модели разрушений НАСА [Hanada, Liou, 2009; Murakami et al., 2009].

 

Многие аналитические теории предсказания повреждений от ударов км основаны, с целью упрощения вывода математических зависимостей, на предположении сферичности формы КМ. Однако реальный КМ характеризуется большим разнообразием форм. Удар несферического тела может причинить значительно большее повреждение во многих ситуациях. Например, глубина проникновения и объем кратера от удара в толстую плоскую мишень сильно зависят от длины снаряда вдоль его оси полета в момент удара [Gehring, 1970]. Плоские снаряды в виде пластинок приводят к большим повреждениям, чем сферические той же массы и при такой же скорости [Boslough et al., 1993].

 

Экономически нереально испытывать все компоненты при всех возможных условиях ударов КМ. Поэтому критические элементы подвергают испытаниям в номинальных условиях, а затем обращаются к компьютерному моделированию с целью распространения полученных результатов на космический аппарат в целом.

 

 

Компьютерное моделирование служит связывающим звеном между результатами обследования поверхностей, реально подвергшихся воздействию КМ в космосе, и предположениями ученых, проверяя и калибруя последние. Модели также позволяют экстраполировать данные, полученные в лаборатории в ограниченном диапазоне, на широкий спектр условий, которые невозможно воспроизвести в лаборатории.

 

При проверке надежности броневых покрытий также прибегают к сочетанию натурных экспериментов и компьютерного моделирования. Сочетание сверхскоростных тестов и компьютерного моделирования представляется довольно мощным инструментом оценки выживаемости КА и КС при ударах км.

 

Ударные испытания применяются и для исследования механизма образования осколков разрушения при сверхскоростном столкновении в космосе. Знать это очень важно для прогнозирования эволюции популяции КМ. Однако такие эксперименты очень дороги и их проведено немного. Конечно, полученные результаты можно экстраполировать с помощью компьютерных моделей, но со значительной степенью неопределенности ввиду ограниченности имеющихся данных.

 

Существует множество экспериментальных средств для моделирования и изучения ударов КМ, с помощью которых можно воспроизвести испытания с довольно крупными снарядами, разгоняемыми до больших скоростей. Однако есть определенные границы возможностей в этом направлении. Все разнообразие форм, размеров и состава КМ пока не может быть испытано во всех диапазонах скоростей. Имеются трудности с разгоном крупных снарядов до типичных скоростей столкновений в низкоорбитальной области ОКП. Эти ограничения затрудняют проектирование защитных покрытий, адекватных действительной космической среде, снижают точность предсказания ущерба от столкновения со сред-неразмерными КО, добавляют неопределенность в прогнозирование будущей популяции засоренности ОКП.

 

При испытании броневых покрытий КА в лабораторных условиях обычно используются ударные частицы размером от 1 мм до 1 см и массой до нескольких грамм, но вполне возможно провести тест и с более крупными снарядами, разгоняемыми до типичных скоростей столкновений на высоких орбитах.

 

Стандартная лабораторная двухступенчатая газовая пушка на легком газе может разгонять объекты размером до 50 мм до скоростей около 8 км/с. Некоторые пушки ускоряют, правда более мелкие объекты, до 10 км/с и выше. Стандартный снаряд — сфера, но возможны и другие формы — тонкие пластинки, длинные стержни, цилиндры [Piekutovski, 1986].

 

Поскольку легкогазовая пушка не может разгонять снаряд до скоростей, типичных для столкновения НОКО (10…15 км/с), были созданы ультрасверхскоростные пушки с расширенным диапазоном скоростей специально для изучения воздействия КМ на КА, способные доводить скорость небольших титановых пластинок до 15,8 км/с [Chhabilidas et al., 1992].

 

В России существуют также крупные камеры, в которых можно квазинатурно моделировать экспериментальные орбитальные взрывы и столкновения в контролируемой среде [Fortov, 1993].

 

Конструкторы защитных покрытий в работе используют (как вспомогательный инструмент исследований) аналитические методы, включающие уравнения «баллистического предела» [Herrman, Wilbeck, 1986; Reimerdes et al., 1993; Ryan, Christiansen, 2010]. С их помощью рассчитываются размеры частицы, останавливаемой данным конкретным щитом в функции скорости удара, его угла, плотности атакующей частицы и уравнения размеров щита [Christiansen, 1992]. Есть и аналитические модели для предсказания повреждений от ударов и их последствий, но они несколько сложнее.

 

К сожалению, не хватает моделей стандартизированных оценок рисков для определения вероятностей выхода из строя компонент КА вследствие удара км и стандартизированных моделей ухудшения рабочих характеристик компонент КА. Из-за этого последствия ударов КМ для КА и его выживаемость приходится оценивать косвенно, прибегая к рискованной экстраполяции [Orbital___, 1995].

 

Следует иметь в виду, что диапазон возможностей разгона частиц нужной массы и формы при моделировании ударов КМ пока ограничен. Эти ограничения затрудняют проектирование броневого покрытия КА, адекватного действительной космической среде, снижают точность прогнозирования ущерба, добавляют неопределенность в предсказание будущей популяции КМ.

 


Исследовательская орбитальная лаборатория LDEF

 

Другим слабым звеном в конструкции щитов от КМ часто бывает предположение, что крупный км состоит из алюминия, а мелкий из окиси алюминия. В реальности некоторые КО состоят из материалов более высокой плотности. При обследовании поверхности КА LDEF, как уже говорилось выше, обнаружены следы ударов частиц из нержавеющей стали, серебра, меди [Horz, Bernhard, 1992]. Щит, готовый выдержать удары алюминиевого КМ, может оказаться неспособным противостоять ударам более плотных тел.

 

Конечно, нереально испытывать щиты и другие компоненты КА на удары км всех возможных размеров, масс, форм, составов во всех диапазонах космических скоростей. Здесь нужно обращаться за помощью к компьютерным моделям, откалиброванным по достаточному объему экспериментальных данных, для экстраполяции на недостающие условия испытаний.


Расшифровку всех приведенных в статье условных сокращений смотреть здесь: «Исследование ближнего космоса: условные сокращения».

Автор: Admin | 2012-06-27 |

Столкновения с мелким КМ


Для корректной оценки роли мелкого КМ в воздействии среды на КО нужно прежде всего избавиться от порочного убеждения, что, якобы, только крупные КО представляют действительно серьезную угрозу для действующих КА, а мелкий км их только поцарапает. Во-первых, если крупный КО способен полностью разрушить КА, то мелкий км может вывести из строя его важные внешние устройства, узлы и блоки КА. Во-вторых, мелкая частица при столкновении с КА с относительной скоростью 14…15 км/с и более может нанести ему ущерб более ощутимый, чем крупный осколок, столкнувшийся при малой относительной скорости. В-третьих, у КА есть крайне уязвимые места, как, например, оптика, солнечные панели и т. п., для которых даже царапина обернется ощутимым повреждением.

 

Результат удара сантиметровой алюминиевой сферы в 0,5-сантиметровую оболочку КА на скорости 10 км/с — типичный пример повреждения от КМ. По данным американских исследователей [Orbital___, 1995], такой удар может полностью расплавить или, по крайней мере, частично испарить саму ударившую частицу и сделать пробоину в стенке КА с входным отверстием диаметром 3,3 см и выходным — 2,7 см. Сила удара, вызванная расширяющимся расплавом частицы КМ и материалом стенки, распространяясь на компоненты КА, расположенные в 2,5 см позади пробитой стенки, может превысить допустимую нагрузку для большинства материалов структур КА. В 15 см позади стенки она будет все еще близка к предельной нагрузке, допустимой для обычно используемых алюминиевых сплавов.

 

Удары мелкого КМ в хрупких материалах создают трещины, распространяющиеся далеко за пределы кратеров и пробоин. Они могут приводить к локальным образованиям плазмы, которая может вызывать разряды и другие нарушения в электронном оборудовании, солнечных панелях. Повреждения от ударов КМ зачастую сочетаются с другими видами воздействий внешней агрессивной среды (атомарный кислород, ультрафиолетовое излучение) и вызывать в итоге большие повреждения, чем сумма индивидуальных повреждений от каждого фактора в отдельности — супераддитивная функция композиции.

 


Пробоина в смотровом окне шаттла STS-007, полученная в результате столкновения с космическим мусором весом 8 грамм

 

И очень мелкие частицы способны вызвать серьезные повреждения. Например, частица диаметром 0,75 мм, ударяющаяся в 0,5-сантиметровое алюминиевое внешнее покрытие двигателя ориентации солнечных панелей, приведет к образованию осколков внутренней стенки покрытия и повредит двигатель. Частица диаметром 1 мм на относительной скорости 10 км/с может пробить радиатор с тонкостенными трубами охлаждения, какие используются в космических реакторах. Если в контуре охлаждения не предусмотрено автоматическое перекрытие или «отсечка» пробитых труб, может произойти утечка охладителя.

 

Даже если удары мелкого КМ не вызывают серьезных структурных повреждений, создаваемые ими сколы, кратеры, пробоины, царапины, мелкие трещины приводят к постепенной деградации поверхности КА, ослабляя ее и делая более уязвимой для воздействия агрессивной внешней среды.

 

Не удивительно, что основное внимание исследователей обращено именно на мелкий КМ. Этим объясняется и большой объем соответствующих публикаций. Мелкие частицы сталкиваются с подобными себе и крупными гораздо чаще, чем крупные КО между собой. При этом генерируются обширные потоки мелких частиц, часть которых покидает окрестности Земли, но большинство после недолговременной концентрации в области столкновения остается на долго живущих высокоэллиптических орбитах. Это подтверждается и измерениями c LDEF. Тыльная поверхность этого КА испытала столкновения с малоразмерным км, следы которых можно объяснить только высокой эллиптичностью орбит оставивших их частиц [Kessler, 1992]. Многие из этих частиц — чешуйки отслоившейся краски. в то же время, во многих кратерах обнаружены окись алюминия, медь, серебро, никель, нержавеющая сталь, которые могли быть оставлены фрагментами конструкционных и других компонент неизвестных КА [Horz, 1992]. Эксперимент с LDEF подтвердил наличие долгоживущих потоков мелкого КМ, происхождение которых можно объяснить их точечным источником — столкновением или взрывом КО [Mulholland et al., 1991].

 


Ремонт космического телескопа «Хаббл», который подвергся атаке космического мусора

 

Вероятность столкновения с частицами диаметром не более 1 мм практически равна единице. Поверхности КА Eureca, LDEF, Solar Max, PALAPA и др., возвращенных на Землю после нескольких лет пребывания в космосе, оказались испещренными множеством изъянов, оставленных частицами км. По данным NASA на март 1997 г., в течение последних 16 месяцев эксплуатации шаттлов КМ настолько серьезно повредил их иллюминаторы, что 18 окон пришлось заменить, а каждое стоило тогда более 50 тысяч долларов. В среднем после двух полетов у шаттла приходится заменять иллюминаторы. Наиболее уязвимыми оказались солнечные панели. На некоторых аппаратах они уже через 3 месяца полета оказывались выведенными из строя. Повреждение обшивки КА, иллюминаторов, солнечных батарей, антенн, топливных и газовых баллонов, других навесных элементов если и не выводит их из строя, то, во всяком случае, сокращает срок службы.

 

Из-за трудностей обнаружения КО размером меньше 1 см на ГСО и даже регистрации самих разрушений, порождающих малые осколки, статистика и характеристики столкновений на ГСО и их последствия плохо изучены. Измерительные данные об объектах на ГСО (в отличие от НОКО) мы получаем лишь эпизодически.

 

Единственно, что известно наверняка, столкновения на ГСО в среднем менее опасны и повреждения от них не так катастрофичны, как в низкоорбитальной области. Тем не менее, необходимо лучше понимать истинное состояние среды на ГСО, особенно характеристики потоков средне- и малоразмерного КМ, так как на этих орбитах работают наиболее дорогостоящие КА. ГСО крайне ограниченный по емкости, ценный ресурс для размещения там новых аппаратов, а время существования КО на ГСО — десятки, сотни тысяч и миллионы лет.

 

Белым пятном в наших представлениях о мелком КМ считаются источники его образования. Характеристики его популяции сильно зависят от времени и долгосрочного прогноза эволюции.


Расшифровку всех приведенных в статье условных сокращений смотреть здесь: «Исследование ближнего космоса: условные сокращения».

Автор: Admin | 2012-06-26 |

Космический мусор: каскадный эффект. Часть II


Многие независимые модели будущей популяции КМ подтверждают, что каскадные столкновения уже происходят на околоземных орбитах [Назаренко, 2010; Kessler, 1991; Kessler, Cour-Palais, 1978; Kessler et al., 1993, 2010; Potter, 1993; Rex, Eichler, 1993; Rossi et al., 1993; Su, 1993; Talent, 1992].

 

Эти модели в своей основе имеют различные методологии, различаются ключевыми исходными данными и параметрами, такими как начальная популяция, количество и распределение осколков, образующихся при взрыве и столкновении. Однако их прогоны дают схожие результаты. Все они предсказывают «более чем линейный» (скажем прямо, экспоненциальный) рост популяции КМ в области низких орбит на следующее столетие.

 


Рис. 6. частота столкновений с частицами различных размеров на высотах 900…1000 км

 

Еще в 1993 г. Э. Поттер [Potter, 1993] привел свидетельства уже начавшегося каскадного процесса в некоторых областях орбит, в частности, на высотах между 900 и 1000 км. Результаты наблюдений, анализа, расчета и моделирования указывают на значительный рост частоты столкновений в этом диапазоне высот. На рис. 6 в логарифмическом масштабе дано сравнение количества столкновений в год с частицами размером от 1 мм до 1 см в 1990 и 2020 гг.

 

По мнению некоторых экспертов [Назаренко, 2010], каскадный эффект уже начался для малоразмерной фракции. Э. Поттер [Potter, 1993] считает, что для крупных КО каскадный эффект пока не наблюдается, но конструкторы уже вынуждены бронировать КА. Достаточно взглянуть на возвращенные на Землю экспонированные в космосе поверхности, посмотреть историю зарегистрированных столкновений, результаты прогнозирования засоренности космоса и эти опасения становятся убедительными. Практически в каждом номере периодического (ежеквартального) журнала НАСА «Orbital Debris Quarterly News» публикуются сообщения об очередных столкновениях в космосе.

 

Каскадный процесс столкновений не обязательно будет охватывать полностью все ОКП. Орбитальная область, в которой он начнется, должна отвечать определенным требованиям:

• достаточно высокая плотность КО;

• не очень сильные атмосферные возмущения;

• достаточно высокие скорости столкновений.

 

Смысл второго требования — количество выбывающих из данной области КО не должно снижать плотности потока км в ней. Перечисленные условия обеспечивают достаточно большое число высокоэнергетических столкновений.

 

Коль скоро каскадный процесс столкновений начался, его нельзя остановить снижением частоты запусков новых КА и даже их прекращением, поскольку этот процесс самодостаточен и поддерживает сам себя. Если в орбитальную область, где начался цепной процесс столкновений, прекратить приток новых масс извне, количество столкновений начнет снижаться, но не ранее чем через сотни и тысячи лет. В то же время, несмотря на то, что большинство крупных объектов постепенно разрушатся, и из-за резко возросшего количества осколков, вероятность столкновений действующих КА с км может оказаться очень высокой.

 

После начала каскадного процесса при достижении некоторой критической плотности засоренности ОКП его развитие поддерживается тремя главными факторами: большим количеством образующихся при столкновении осколков (из-за высокой энергии столкновений даже при небольшой массе одного из участвующих в нем КО); высокой скоростью осколков, которая не только квадратично усиливает энергию столкновений, но и позволяет им за короткое время «пронизывать» гигантское пространство, тем самым повышая вероятность столкновения; орбитальной замкнутостью КМ в ОКП, из-за чего продукты разрушения (т. е. «размножившийся» км) в основной своей массе остаются в ОКП, увеличивая вероятность дальнейших столкновений.

 

Некоторые продукты разрушения из-за большого разброса начальных орбитальных параметров могут покинуть окрестность Земли, но такая возможность нарушает замкнутость ОКП лишь теоретически и не может считаться определяющей в рассматриваемом процессе. Тем более что пока эти частицы будут избавляться от земного притяжения, они смогут успеть еще неоднократно столкнуться с КМ или с действующими КА.

 

Рис. 7. «Автору» каскадного эффекта Дональду Кесслеру вручают награду имени Джерома Ледерера «Пионер космической безопасности» 2008 г. международной ассоциации оценки достижений в области космической безопасности (Don Kessler wins the Jerome Lederer — Space Safety Pioneer Award, 2008)

 

Итак, главной потенциальной опасностью со стороны КМ представляется мрачная перспектива развития каскадного эффекта, который приведет к практической невозможности использования ОКП в исследовательских, хозяйственных, коммерческих, военных и других целях. При этом может сильно пострадать экологическая обстановка на Земле. Возможно, это уже не перспектива, а реальность. Катастрофические столкновения действующих КА CERISE в 1996 г. и «Иридиума-33» с «Космосом-2251» в 2009 г. свидетельствуют о начале «синдрома Кесслера» [Liou, 2011a] (рис. 7).


Расшифровку всех приведенных в статье условных сокращений смотреть здесь: «Исследование ближнего космоса: условные сокращения».

Автор: Admin | 2012-06-26 |

Космический мусор: каскадный эффект. Часть I

Мебельный салон предлагает Вам приобрести продукцию фирмы KLER , которая считается эталоном стиля и качества. Кожаные диваны, мягкие пуфики, стильные реклайнеры, удобные кровати — вот лишь малая толика того, что Вы сможете приобрести, если прямо сейчас посетите сайт www.klermoscow.ru.



Пока столкновения в космосе не выводили из строя дорогостоящие, выполняющие важные государственные, социальные, экономические и даже стратегические функции КА, они оставались незамеченными в прямом и переносном смысле. Но после гибели французского КА CERISE и американского «Иридиума-33» проблема опасности столкновений и их предотвращения стала выходить на передний план.

 

Столкновения, как и взрывы, особенно неприятны своими последствиями — образованием множества осколков и расширением занимаемой ими орбитальной области вследствие разброса векторов начальных скоростей фрагментов. Но этим дело не ограничивается. Дональд Кесслер из Джонсоновского космического Центра НАСА первым обратил внимание на то, что при достижении определенной критической плотности мусора в той или иной орбитальной области в результате все возрастающего числа столкновений может начаться процесс образования вторичных осколков, т. е. так называемый «каскадный эффект», или «синдром Кесслера». По сути, космический мусор приобретает некий агрессивный характер, которому уже мало что можно противопоставить. Это как пожар, который легче предотвратить, чем тушить.

 

Впервые свою гипотезу Дональд Кесслер опубликовал в 1978 г. [Kessler, Cour-Palais, 1978]. Первые исследования каскадного эффекта были проведены в [Eichler, Rex, 1992; Kessler, 1991; Kessler, Cour-Palais, 1978; Potter, 1993], а одни из последних в [Назаренко, 2010; Kessler et al., 2010].

 

Вероятность столкновений в любой орбитальной области растет приблизительно пропорционально квадрату количества КО. При этом каждая орбитальная область имеет свою «критическую плотность» КО. Другими словами, там должно присутствовать достаточное количество объектов с большой массой для обеспечения в результате столкновений прироста фрагментов, превышающего убыль КО в результате схода с орбиты (например, под действием атмосферного торможения или принудительного снятия КО с орбит). Когда эта критическая плотность будет достигнута, фрагменты мусора становятся главной причиной все возрастающей частоты новых столкновений, хотя их временной масштаб может быть растянут здесь на десятки и сотни лет.

 


Рис. 1. Критическая плотность в низкоорбитальной области

 

В 1990-х гг. уже существовали отдельные орбитальные области, в которых пространственная плотность КМ превышала критический уровень. На рис. 1 показано, как изменяется с высотой критическая плотность КМ в низкоорбитальной области, зависящая от таких факторов, как сопротивление атмосферы, размеров КО, распределения наклонений орбит и др. [Kesler, 1991]. Районы, в которых реальная плотность км превышает критическую, заштрихованы (от 900 до 1000 км и около 1500 км). Популяция КМ там будет увеличиваться количественно, даже если не будет притока новых КО извне, а количество фрагментов от столкновений в соответствии с синдромом Кесслера — расти экспоненциально. Это видно из сравнения распределений каталогизированных КО по высоте по состоянию на 1999 и 2010 гг. (см. рис. 2 и 3). Для среднеразмерного и мелкого КМ эта разница была бы еще более впечатляющей, так как в результате столкновений КО мелких осколков образуется значительно больше, чем крупных, и еще больше, чем при взрыве (см. рис. 4).

 


Рис. 2. Сравнение распределений каталогизированных КО в диапазоне высот 100…3000 км по высоте апогея орбиты

 


Рис. 3. Сравнение распределений каталогизированных КО в диапазоне высот 3000…40 000 км по высоте апогея орбиты

 


Рис. 4. Сравнение выхода фрагментов различных размеров в результате взрыва и сверхзвукового столкновения

 

Конечно, запуски новых КА (вместе с их РН и сопутствующим КМ) и взрывные разрушения также вносят вклад в рост популяции КМ в этих районах, тем более, что они наиболее привлекательны для функционирования многих типов КА и поэтому пользуются повышенным спросом. Соответственно «оптимизация» условий возникновения каскадного процесса столкновений КО там будет поддерживаться постоянно.

 

в низкоорбитальных районах ОКП, в которых еще не достигнута критическая плотность КО, она может возрасти за счет фрагментов от столкновений в соседних. Ранее уже говорилось о том, что многие фрагменты, особенно при взрывах, отделяются с очень высокими скоростями, и их орбиты распределяются довольно широко в пространстве. За счет этого, а также постепенного снижения КМ в нижележащие районы из-за сопротивления атмосферы, реальная плотность там будет повышаться. Кроме того, фрагменты от столкновений ВЭКО с НОКО будут пересекать низкоорбитальные районы на очень высоких скоростях, вызывать дополнительную угрозу столкновений и соответственно провоцировать каскадный эффект.

 


Рис. 5. Приращение скорости, необходимое для вывода ИСЗ на орбиту захоронения (для трех классов орбит)

 

Высокие орбитальные районы обычно менее засорены, чем низкие и скорости столкновений там ниже, что обусловливает образование меньшего числа фрагментов при столкновении. При этом осколки распространяются там шире, чем на низких орбитах (см. рис. 5), что снижает вероятность новых столкновений. Все это препятствует развитию каскадного эффекта на высоких орбитах.

 

На ГСО, в окрестности которой скорость столкновений еще меньше и векторы скоростей КО при их сближении в своем большинстве близки к коллинеарным, даже если столкновение случится, осколки распространятся в гораздо большем объеме, чем на низких орбитах, и каскадного эффекта придется ждать, возможно, тысячи и десятки тысяч лет [Kessler, 1993]. Следовательно, в отличие от низкоорбитальных областей на ГСО популяция КМ будет расти в основном за счет взрывов и запусков новых КА, а не столкновений.

 


Процесс протекания синдрома Кесслера. Крупные обломки космического мусора, соударяясь, порождают большое количество более мелких, которые сталкиваются и образуют еще больше космического мусора более малого размера

 

Начало цепной ядерной реакции не заметить трудно, хоть и развивается она очень стремительно. С синдромом Кесслера дело обстоит иначе из-за масштаба времени. Оказывается не так просто понять, начался цепной процесс или нет. Ввиду растянутого масштаба времени судить приходится и по косвенным признакам. именно поэтому нет единодушного мнения ученых на этот счет. трудность осмысления этого явления двойная: нельзя точно предсказать начало процесса и нужно уяснить временной масштаб его развития. и то, и другое сильно зависят от многочисленных исходных неопределенностей.


Расшифровку всех приведенных в статье условных сокращений смотреть здесь: «Исследование ближнего космоса: условные сокращения».

Автор: Admin | 2012-06-25 |

История взрывов и столкновений в космосе. Часть V

Холодные глубины и сказочные красоты космического пространства, сотрясаемые взрывами сверхновых и освящаемые светом бесчисленных галактик, не могут не вселять ужас и восхищение в сердца всех жителей крошечной планеты по имени Земля.
Именно поэтому в наше неспокойное время многие стали задумываться, что происходит после смерти… Существует ли Вознесение, растворяется ли энергия наших душ космическом вакууме или за смертью следует одно бескрайнее НИЧТО?
Получить ответ на этот вопрос Вы сможете только на сайте www.bcoreanda.com.



Космический аппарат НАСА UARS

 

10 ноября 2007 г. случился довольно загадочный инцидент. Спутник НАСА для исследования верхней атмосферы UARS (Upper Atmosphere Research Satellite), после успешного выполнения своей 14-летней миссии в 2005 г. был пассивирован (топливные баки опустошены и аккумуляторы разряжены) и переведен на более низкую орбиту захоронения с целью сокращения срока существования. В течение последующих двух лет его высота постепенно снижалась, как вдруг 10 ноября 2007 г. от 5,7-тонной конструкции неожиданно отделилось, по крайней мере, четыре фрагмента (с умеренной скоростью). Два из них упали на Землю в конце ноября, остальные оставались на орбите до конца года. По мнению оператора, взорваться спутник не мог, поскольку был полностью пассивирован, если не считать мизерного количества сжатого газа в баллончике. Единственной объяснимой причиной разрушения могло быть столкновение с небольшим ненаблюдаемым элементом КМ [Two…, 2008].

 

Через день после этого инцидента США провели первый пуск РН «Дельта-IV» в 2007 г. Предыдущий ее полет в 2006 г. закончился незапланированным разрушением второй ступени с образованием 60 фрагментов.

 

На этот раз вторая ступень РН также произвела две дюжины обломков размером более 10 см. как и в предыдущем случае, образование фрагментов не помешало РН успешно выполнить свою функцию — вывести полезный груз на запланированную орбиту.

 

В марте 2008 г. по неизвестной причине взорвался российский «Космос-2421» (точнее, в марте — июне этот КА испытал три последовательных взрыва — 14 марта, 28 апреля и 9 июня [ISS Maneuvers…, 2008; The Multiple., 2008]) с образованием 506 фрагментов, 90 % которых имели размеры от 5 до 20 см. Взрыв произошел всего лишь в 60 км над МКС. К счастью, основная масса осколков уже сгорела в атмосфере к началу 2009 г. (рис. 6).

 


Рис. 6. КА «Космос-2421»

 

В течение нескольких месяцев многочисленные обломки и осколки от разрушения «Космоса-2421» проходили близко от МКС, и каждый раз приходилось планировать маневры ухода от столкновений, которые отменялись лишь, когда уточненные вероятности столкновений опускались ниже «красного» порога 0,0001. Один маневр (27 августа) пришлось совершить при расчетной вероятности столкновения 0,014 (расчетный промах 1,6 км). Его осуществили с помощью пристыкованного в то время к МКС Европейского автоматического модуля (АММ) «Жюль Верн». За два часа до предполагаемого столкновения включили его двигатели с целью замедления движения станции (на 1 м/с), чтобы чуть-чуть снизить среднюю высоту орбиты станции, предварительно повернув МКС на 180° относительно первоначальной «нормальной» ориентации.

 

Это был восьмой маневр за полетную программу МКС [ISS Maneuvers., 2008; ISS Crew…, 2009; The Multiple…, 2008; Orbital…, 2008].

 


Модель облака космического мусора, образующегося при разрушении космического аппарата

 

В начале июля 2008 г. 21-летний «Космос-1818» с законсервированным ядерным реактором на борту стал источником нового облака КМ, 30 его фрагментов были обнаружены СККП США и еще множество небольших металлических сфер — с помощью специальных СН. Это был первый из двух однотипных спутников, испытывавших новую ядерную энергетическую установку. Причина взрыва до сих пор остается невыясненной (вполне возможно было столкновение с КМ). По мнению некоторых экспертов, образовавшиеся металлические сферы могли быть каплями натрий-калиевого охладителя, который использовался в предыдущих версиях реактора [Kessler et al., 1997; New Debris…, 2009].

 

Неожиданное даже для операторов столкновение американского «Иридиума-33» (рис. 7) с российским «космосом-2251» (рис. 8), так же как и, в свое время, столкновение французского CERISE с обломком РН Arian), нанесло удар по скептикам, утверждавшим, что, вероятность серьезных катастроф мала, и апеллировавшим к факту редких регистраций столкновений. Вместе с тем, известный специалист Пулковской обсерватории А. Сочилина, исследуя орбитальное поведение КА на ГСО, показала, что, по крайней мере, 40 из них испытали столкновение с относительно крупными КО [Sochilina et al., 1998].

 


Рис. 7. КА «Иридиум-33»

 


Рис. 8. КА «Космос-2251»

 

Итак, 10 февраля 2009 г. действующий КА обеспечения глобальной спутниковой связью объектов США «Иридиум-33» (70 спутников в системе «Иридиум» на одной рабочей высоте) столкнулся с уже нефункционирующим российским ИСЗ «Космос-2251» (класса «Стрела-2м», диаметр 2,05 м, гравитационная штанга длиной 18 м, масса 900 кг) (рис. 9). Размеры «Иридиума-33» оцениваются как 2×1 м, масса 560 кг. Столкновение произошло над районом крайнего севера Сибири на высоте около 790 км при относительной скорости 11,646 км/с с образованием большого числа обломков. Наклонения орбит спутников составляли 86,4 и 74,0°, соответственно. Плоскости орбит в момент столкновения пересекались почти под прямым углом. Летом 2010 г. СККП США было зарегистрировано более 2100 фрагментов от обоих аппаратов.

 

Количество фрагментов, образовавшихся от разрушения «Космоса-2251», более чем вдвое превысило таковое от разрушения «Иридиум-33», что приблизительно соответствует соотношению масс исходных объектов. После столкновения объем каталога КО СККП США увеличился на 15,6 % (на 2347 КО), а количество не каталогизированных, но сопровождаемых СН, возросло на 6000 КО [Space…, 2010].

 


Рис. 9. Положение орбитальных плоскостей аппаратов «Иридиум-33» и «Космос-2251» в момент столкновения [Satellite…, 2009]

 


Рис. 10. Эволюция орбит фрагментов разрушения ИСЗ «Иридиум-33» и «космос-2251» через шесть месяцев после столкновения

 

Более детальный анализ столкновения КА «Иридиум-33» и «Космос-2251» можно найти в [Kelso, 2009; Makarov et al. 2011; Matney, 2010; Nazarenko, 2009b, 2011; Satellite…, 2009] (рис. 10).

 

Суммарное количество мелких фрагментов (размером около 1 см) от ИСЗ «Фенгюн-1С», «Иридиум-33» и «Космос-2251» по данным радиолокаторов «Хэйстэк» и ХЭкС составляет около 250 000, а крупных (свыше 10 см) — порядка 5500 [Update., 2010]. Объем каталога КО скачком увеличился на 60 % (см. рис. 4)!

 

Насколько серьезно было воспринято это событие, можно судить по тому факту, что уже в апреле 2009 г. в конгрессе США проводятся слушания под девизом «Сохранение космической среды для гражданского и коммерческого использования». Перед комитетом палаты конгресса по науке и технологиям (Подкомитет по космосу и аэронавтике) выступили генерал-лейтенант Ларри Джеймс от Стратегического командования США, Николас Джонсон — руководитель подразделения НАСА по проблемам техногенного засорения космоса, Ричард Дарбелло от Генеральной корпорации Интелсат и Скотт Пэйс от Института космической политики Университета им. Джорджа Вашингтона (рис. 11) [Congressional., 2009].

 


Рис. 11. Слева направо: генерал-лейтенант Ларри Джеймс, Николас Джонсон, Ричард Дарбелло, Скотт Пэйв

 

В июне 2009 г. в Вене на своем ежегодном собрании комитет ООН по мирному использованию космоса (COPUOS) заслушал ряд докладов, инициированных столкновением «Иридиума» и «космоса». бригадный генерал Сьюзен Хелмз (бывшая космонавтка) объявила, что Стратегическое командование США изыскивает возможности проведения оценки опасных сближений для большего числа действующих КА. Николас Джонсон сообщил последние данные о природе облака осколков от столкновения спутников и его возможной эволюции [United…, 2009].

 

Единственная польза от историй, происшедших с КА «Фенгюн-1С», «Иридиум-33» и «Космос-2251», в том, что они помогают понять процесс фрагментации крупных КО при столкновениях и предоставляют редкую возможность для проверки и калибровки моделей фрагментации по реальным данным.

 

Более полный обзор событий в космосе, происшедших с самого начала космической эры, можно найти в выпускаемых НАСА сериях Chronology и Orbital Debris Quarterly News [Accidental…, 2005; Cizek, 2001; History…, 2004; Johnson et al., 2008; Krisko, 2006; Portree, Loftus, 1993, 1999 и др.].


Расшифровку всех приведенных в статье условных сокращений смотреть здесь: «Исследование ближнего космоса: условные сокращения».

Автор: Admin | 2012-06-23 |
83 страница из 166« Первая...102030...798081828384858687...100110120...Последняя »

GIF
Видео
Видео
Все обо всем
Забавно!
Иллюстрированные факты
Искусство
Истории
Все размещенные на сайте материалы без указания первоисточника являются авторскими. Любая перепечатка информации с данного сайта должна сопровождаться ссылкой, ведущей на www.unnatural.ru.