Необычный

Оценка и перспективы борьбы с космическим мусором. Часть I


Безусловно, в наше время наблюдается более ответственное отношение человека к освоению космической среды. Это, в частности, выражается и в выборе некоторыми странами (к сожалению, далеко не всеми) щадящих режимов проведения космических экспериментов, приводящих к образованию КМ; в более рациональном проектировании космической техники, во все более активном использовании орбит захоронения отработавшей техники и в расширяющейся популяризации идей бережного отношения к чистоте космической среды.

 

К сожалению, нет поставленной в международном масштабе и системно решаемой задачи полного исследования засоренности ОКП. Большинство измерений КМ собрано по случаю, как побочный продукт. Ни национальных, ни интернациональных централизованно координируемых стратегий разработки и реализации космических экспериментов, рассчитанных исключительно на изучение и решение проблемы КМ сегодня не существует [Orbital___, 1995].

 

Все известные модели предсказывают только рост техногенной засоренности околоземного космоса. Разница лишь в некоторых конкретных параметрах и форме кривых, которые, тем не менее, всегда монотонно возрастающие. Хуже того, для разных сценариев развития процесса дальнейшего освоения космоса они либо экспоненциальные, либо, в лучшем случае, асимптотически линейные.

 

В прошлом международное космическое право создавалось под эгидой Комитета ООН по мирному использованию космического пространства (COPUOS) и не имело прямого отношения к угрозе со стороны КМ. Долгое время действовали три международных договора, лишь косвенно касающиеся КМ:

• Договор о принципах управления деятельностью при исследовании и использовании космического пространства, включая Луну и другие небесные тела (10 октября 1967 г.).

• Конвенция о международной ответственности за вред, нанесенный КО (1 сентября 1972 г.).

• Конвенция о регистрации объектов, запускаемых в космическое пространство (15 сентября 1976 г.).

 


В последние годы ООН все пристальнее вникает в проблему техногенного засорения космоса. С 1994 г. Научно-технический подкомитет Комитета ООН по мирному использованию космоса на каждой своей ежегодной сессии включает в качестве пункта повестки дня рассмотрение этого вопроса [United…, 2011]. На 38-й Ассамблее COSPAR, состоявшейся в Бремене в 2010 г., на секции «Потенциально вредоносная деятельность в космосе» главной была тема «Космический мусор — глобальный вызов».

 

В 1999 г. Подкомитет выпустил свой первый большой отчет по этой теме [United…, 1999]. В 2007 г., опираясь на предложения и отчеты IADC, он разработал основные направления снижения засоренности космоса [United…, 2007а]. В этот важный документ ООН включает следующие требования к космической деятельности государств:

• ограничивать образование новых КО при нормальной работе КА;

• минимизировать возможности случайного разрушения (взрыва) КА (РН) во время его функционального существования;

• ограничивать вероятность случайного столкновения на орбите;

• избегать намеренных разрушений КО и других вредных действий в космосе;

• минимизировать возможности послеоперационного разрушения КА (РН) в виду остаточной энергетики на борту;

• ограничивать длительность пребывания КА и ступеней РН в области низких орбит по окончании их миссии;

• ограничивать длительность пребывания КА и ступеней РН в области геосинхронных орбит по окончании их миссии.

 

На 48-й сессии в феврале 2011 г. Подкомитет продолжил изучение проблемы КМ, заслушав целый ряд специальных докладов представителей США, Франции, России, ЕКА, IADC. В качестве злободневного вопроса рассматривалось постоянно возрастающее число маневров уклонения от столкновений, выполнявшихся действующими КА в последние годы. НАСА доложила о семи таких маневрах своего флота автоматических спутников и маневре МКС; Франция и ЕКА — о 13 и 9 маневрах, соответственно [United…, 2011].

 


На этой фотографии мы видим лабораторный опыт, проведенный специалистами Европейского Космического Агентства (European Space Agency). 15-грамовая алюминиевая сфера была запущена со скоростью 6.8 км/с в алюминиевый блок, толщиной 18 см.

Примерно так же выглядит броня космического аппарата, когда в него попадает крошечный обломок космического мусора.

 

Нам представляется, что следовало бы пересмотреть современную стратегию реагирования операторов КА на опасные сближения. Во-первых, точность предсказания сближения в большинстве случаев низка, прежде всего, для не каталогизированных КО. Во-вторых, не существует оценок того, насколько полезными оказались проведенные за все время маневры ухода от столкновений, действительно ли они увели КА от реальных столкновений, поскольку невозможно точно оценить реальный промах, да еще гипотетический в прошлом. В-третьих, степень эффективности дорогостоящих уходов от столкновения страдает от того, что большинство действительно опасных сближений не регистрируется, так как количество не каталогизированных (а, следовательно, не отслеживаемых) опасных элементов КМ велико. В этих условиях возможны даже такие парадоксы: уводим КА от сближения с менее опасным КО в сторону более опасного. Уже сейчас суета с так называемыми уводами от столкновений достаточно интенсивна, а что будет в будущем, когда плотность КМ значительно возрастет? Сомнению не подлежит целесообразность уводов от столкновения с крупными и массивными КО, так как они действительно крайне опасны, сопровождаются с высокой точностью ввиду достаточного количества измерений и меньшей зависимости эволюции их траектории движения от атмосферного торможения (меньшее значение отношения площади поперечного сечения к массе).


Расшифровку всех приведенных в статье условных сокращений смотреть здесь: «Исследование ближнего космоса: условные сокращения».

Автор: Admin | 2012-07-02 |

Пути уменьшения негативных последствий засоренности земной орбиты и снижения самой засоренности. Часть IV

Хотите провести незабываемый отдых на пляже, омываемом теплыми волнами Карибского моря? Тогда без промедления вбейте в Яндекс “Маргарита Венесуэла” или, не тратя времени, посетите сайт www.isla-margarita.ru, который расскажет Вам, чем так примечателен райский остров под названием Маргарита.



Рис. 2. Оптико-электронный комплекс по наблюдению за космосом «Окно»

 

Традиционные методы поиска плохо адаптируются к новым широкомасштабным популяционным изменениям в ОКП и нуждаются в совершенствовании с целью повышения их производительности и эффективности. В настоящее время назрела необходимость модернизации всего арсенала методов поиска КО и создания методологии обнаружения мелких и слабоконтрастных космических объектов (КО) на основе последних научных достижений в этой области. В частности [Вениаминов, 2010], предлагается новый теоретический подход к построению методов поиска таких КО по грубой априорной информации об их орбитах. Некоторые методы, основанные на этом подходе, успешно испытаны, показали высокую эффективность и уже используются в действующих системах (в российской СККП, в частности, в ОЭК «Окно» (рис. 2) [Tretyakov et al., 2005; Veniaminov et al., 2005]). Еще на этапе отработки с их помощью удалось обнаружить БЭКО типа «Молния», считавшиеся потерянными и в течение более полугода не кооперируемые операторами, а также успешно пронаблюдать заданные КО на ГСО бортовым телескопом с очень узким полем зрения в космическом эксперименте с орбитальной астрономической обсерваторией «Астрон» (рис. 3), проводившемся в течение более шести лет с марта 1983 г. под руководством академиков А. Б. Северного и А. А. Боярчука.

 


Рис. 3. Советская космическая обсерватория «Астрон» была запущена в 1983 году. Проработала вместо одного запланированного года шесть лет

 

За последние десятилетия создано много моделей засоренности ОКП, в том числе и для составления прогнозов на десятки и сотни лет вперед. Однако практически все они грешат достоверностью выдаваемой информации. Одна из главных причин в недостатке измерительной информации для калибровки этих моделей, особенно в части мелкого КМ.

 

Повышение эффективности решения проблемы КМ, оперативности получения соответствующих оценок и прогнозов требуют постоянного совершенствования динамических моделей состояния засоренности ОКП на базе современных научных исследований (в математике, физике, астрономии) и регулярного притока новых данных наблюдений КМ. Крайне актуально заполнение пробела в знаниях о связи между хорошо наблюдаемой крупноразмерной фракцией фрагментов разрушения КО и практически ненаблюдаемой мелкой фракцией с целью адекватной экстраполяции первой на вторую при моделировании разрушений.

 

Имеет смысл внимательно проанализировать архивные данные всех космических миссий, предусматривавших зондирование космоса разнообразными бортовыми СН в различных диапазонах длин волн при выполнении задач, не связанных с наблюдениям КМ. Новая информация о КМ будет получена фактически бесплатно и этим нужно воспользоваться.

 


Рис. 4. Радиолокационная станция GRAVES

 

Международное сотрудничество могло бы помочь улучшить качество каталогов КО без особых дополнительных затрат. Это, пожалуй, самый экономичный способ существенно поднять эффективность каталогов. В каждом из них есть объекты, отсутствующие в других. Кроме того, между каталогами есть противоречия, анализ которых даст возможность устранить ошибки в обоих каталогах. В принципе, такой обмен позволит улучшить и точность сопровождения КО. Идеальным шагом в интересах повышения качества мониторинга ОКП было бы объединение СККП России, США и создающейся сейчас европейской СККП. Однако первые две системы принадлежат Министерствам обороны России и США, а основа европейской СККП РЛС GRAVES (рис. 4) — Министерству обороны Франции. Поэтому существуют определенные режимные ограничения на выдачу информации, и в нынешней международной обстановке мало вероятно, что их удастся устранить.

 

Крайне важно договориться о запрете намеренных разрушений КО, в том числе в конце их активного существования, испытаний кинетического оружия (ИС, АСАТ, KKV). Этот вопрос в значительной степени политический и затрагивает такие деликатные аспекты интересов государств, как национальная безопасность. Если не удастся договориться о полном запрете, то можно попытаться склонить заинтересованные стороны к проведению испытаний по «разумным» щадящим сценариям, которые завершались бы минимальным увеличением засоренности космоса.

 

По мере нарастания угрозы техногенного засорения космоса и ее осознания широкими слоями общества все чаще слышны голоса из научных, общественных и государственных организаций о необходимости принятия более радикальных мер борьбы с этой угрозой, чем реально принимаемые или планируемые. Так, Международная академия астронавтики (IAA) после фундаментальных исследований, инициированных ею в конце 2006 г., пришла к выводу о необходимости сосредоточиться, в отличие от прежних, «пассивных» мер, на активном удалении из космоса больших и малых нефункциональных КО — отработавших КА, ступеней РН, сопутствующих космическим миссиям фрагментов, которые служат потенциальным источником дальнейшего развития каскадного эффекта.

 


Рис. 5. Прогноз распределений пространственной плотности крупных КО для различных сценариев борьбы с засорением ОКП

 

Основным инструментом исследований служила эволюционная модель НАСА LEGEND. В качестве критерия для выбора кандидата на удаление было принято произведение массы КО на вероятность столкновения — MPC. При этом рассматривались различные сценарии и нормы удаления: 5 (сценарий 1), 10 (сценарий 2) и 20 (сценарий 3) КО в год, начиная с 2020 г. На рис. 5 показан прогноз на 200 лет (на 2206 г.) распределений пространственной плотности крупных КО (<10 см) по высотам для этих сценариев. Нижняя кривая представляет распределение плотности на 2006 г., верхняя — прогноз на 200 лет при условии, что никакие меры по снижению засоренности ОКП приниматься не будут [Liou, Johnson, 2007].

 


Рис. 6. «Солнечный парус» на аппарате Космос-1, запуск которого состоялся в 2005 году с российской подводной лодки, но закончился неудачей и ракета-носитель вместе со спутником упали в океан

 

Главный вопрос стратегии активного удаления КО из космоса, как уже отмечалось, — рациональный выбор эффективных (или хотя бы физически реализуемых) и в то же время экономически оправданных (по крайней мере, щадящих) средств проведения этой операции. К их числу может быть отнесено использование направленной энергии, электродинамических и аэродинамических приемов (искусственное увеличение баллистического коэффициента), «солнечных парусов» (рис. 6), вспомогательных двигательных установок, тормозящих поверхностей, «захват» на орбите и пр. Проект IAA позиционируется как международный, у него 23 автора из девяти стран [Johnson, Klinkrad, 2009; Liou, Johnson, 2007a].

 

Заметим, что эта мера (активное удаление из космоса крупных объектов) постоянно предлагается в течение последних 30 лет. Однако принять ее к исполнению мешала дороговизна таких проектов. Сейчас, похоже, правительства космических держав (прежде всего США) готовы с этим смириться ввиду большой убедительности последних событий в ОКП.


Расшифровку всех приведенных в статье условных сокращений смотреть здесь: «Исследование ближнего космоса: условные сокращения».

Автор: Admin | 2012-07-02 |

Пути уменьшения негативных последствий засоренности земной орбиты и снижения самой засоренности. Часть III

Хотите побывать этим летом в славном городе Ставрополь, тогда обязательно занесите в закладки своего браузера сайт http://2stavropol.ru/, по страницам которого Вы совершите электронную экскурсию по этому прекрасному городу. Так что, когда Вы приедете в Ставрополь, то будете знать его как свои пять пальцев и точно не сможете пропустить ни одной достопримечательности.



Рис. 1. Бремя существования переходной ступени вывода КА на ГСО с борта шаттла

 

Слабые гравитационные возмущения влияют на время существования КО на ГСO с высотой перигея меньше 300 км, а выбор ориентации орбиты по отношению к Солнцу и Луне может заставить лунно-солнечные возмущения работать на снижение перигея. На рис. 1 показано, как время существования РН изменяется в зависимости от угла между плоскостью начальной орбиты переходной ступени и Солнцем [Loftus et al., 1992]. Это подсказывает очень дешевый способ ускорения схода с орбиты некоторых КА, но для других может потребоваться существенная коррекция программ запуска, полета, функционирования и согласования с прочими требованиями миссии.

 

На низких орбитах можно использовать приспособления для усиления торможения в атмосфере, например, установку насадок или изменение геометрии поверхности с целью увеличения ее площади. Это могут быть надувные баллоны. Чтобы они не сдувались после перфорации мелким мусором, использовать способы придания им жесткости после надува.

 

Перевод КА и РН на орбиты захоронения в конце их активного существования. Принудительное снятие КО с орбит и сокращение времени их существования обходится сравнительно недорого для НОКО или КО на эллиптических орбитах с низким перигеем. С ростом высоты их стоимость неприемлемо возрастает. Есть более универсальный метод «разредить» переполненные рабочие орбиты — перевод выработавших ресурс КА на орбиты захоронения, где они уже не представляют угрозы для действующих КА. Такие орбиты должны отстоять достаточно далеко от рабочих, чтобы естественные возмущения не вернули их вскоре назад. Перевод КО на орбиты захоронения не может считаться радикальным способом борьбы с засорением космоса, так как не уменьшает общей кинетической энергии в ОКП. Этот способ снижает риск столкновений в исходном районе, но повышает его в районе захоронения. Если там произойдет разрушение КА, то осколки могут достигнуть и его прежней рабочей орбиты. При выборе способа снижения опасности столкновения для действующих КА нужно сопоставлять различные варианты по стоимости и эффективности. Представляется, что в перенаселенной низкоорбитальной области, где трудно найти место для орбиты захоронения, обычно больше подходят методы радикального удаления КО с орбиты. Но для ГСО и полусуточных орбит они слишком дороги.

 


Швейцарцы уже изобрели миниатюрные аппараты, которые научное сообщество прозвало космическими пылесосами. Основная задача этих сверхтехнологичных устройств – очищение орбиты нашей планеты от мусора

 

Методы активного удаления КМ с орбит. Эта идея возникла почти лет 30 назад [Liou, Johnson, 2007b; Orbital___, 1985]. Однако из-за технической сложности и чрезвычайно высокой стоимости подобных проектов их не относили к разряду практически реализуемых. Удаление с орбит крупных КО требует высокозатратного создания специальной космической транспортной техники при сравнительно малой значимости снижения риска столкновений в результате такой операции. Самая оптимистическая оценка стоимости реализации подобного проекта [Petro, Ashley, 1989] — более 15 млн. дол. на каждый КО в нижней орбитальной области, не считая затрат на разработку маневровых систем.

 

События 2007, 2009 гг. (разрушения КА «Фенгюн-1С», «Иридиум-33», «Космос-2251») и последние модельные исследования, подтвердившие явную нестабильность популяции КМ в низкоорбитальной области (ниже 2000 км), дали новый импульс для дискуссий на эту тему. Как уже упоминалось выше, президент США Обама заявил в 2010 г., что национальная космическая политика США предусматривает проведение исследований и развитие технологий удаления КО из ОКП. Были даны соответствующие директивы NASA и Министерству обороны США [Liou, 2011b; President…, 2010].

 

 

Перед планированием операций по активному удалению КО встает ряд вопросов:

• в каком орбитальном районе следует осуществлять такие операции в первую очередь;

• каковы главные цели этих операций;

• какой КМ следует удалять в первую очередь;

• какой будет выигрыш от этого;

• каким образом конкретно осуществлять операцию.

 

В свете последних исследований и событий в космосе ответ на первый вопрос будет однозначен — низкоорбитальная область с наиболее неустойчивой популяцией КМ с признаками начала каскадного процесса. Засорение более высоких орбитальных областей, как мы уже отметили, проходит значительно медленнее. Второй вопрос затрагивает как общие, так и частные цели. Общей вполне может быть максимизация отношения достигаемой выгоды к стоимости операции. Частные цели: управление ростом популяции мусора, ограничение интенсивности столкновений, смягчение последствий столкновений для конкретно выбранных КА, например, пилотируемых, и т. п. Какой КМ удалять прежде всего, во многом зависит от ответа на второй вопрос. Если цель операции — стабилизация роста популяции КМ или снижение числа катастрофических столкновений, то удалять нужно в первую очередь крупные массивные КО. В случае постановки задачи снижения угрозы нарушения функционирования действующих КА, следует настраиваться на удаление КО размером от 5 мм до 1 см. Они самые опасные в этом смысле и составляют 80 % всех КО размером более 5 мм [Liou, 2011b]. Другой вопрос — как это сделать.

 

Идей высказано достаточно много, включая и весьма фантастические предложения: «космические веники», огромные пенные шары, фольговые ловушки, лазерные испарители наземного и космического базирования. Короче, в настоящее время не существует сколько-нибудь эффективных технологий удаления мелкого КМ, а все предлагаемые схемы выглядят очень дорогими.

 

Выбор того или иного метода борьбы с засорением ОКП по сути будет компромиссом между эффективностью его применения и стоимостью реализации.

 

Мы уже говорили, что из-за ошибок прогнозирования движения КО в 159 атмосфере невозможно с достаточной определенностью и, главное, своевременно предсказать место и время падения на Землю крупных обломков, что не позволяет принять необходимые меры защиты.

 

Главная неопределенность связана со «слабым» знанием вариаций плотности верхней атмосферы, и трудностью предсказания изменяющейся во времени площади поперечного сечения НОКО из-за его переменной ориентации в пространстве. Функцией этих двух характеристик будет сила сопротивления атмосферы, как очень важная компонента уравнений движения КО. Из-за плохого знания этих характеристик точность прогнозирования движения НОКО снижается на ±15 %, что составляет несколько, а иногда и десятки километров за сутки. Эти ошибки существенно превосходят все остальные, включая погрешности наблюдения и неоднозначность модели движения. Особенно недопустимы такие ошибки при расчете параметров сближения КО для программирования маневра уклонения от столкновения.

 

Над этой проблемой работают многие ученые, но ее решение пока оказывается им не под силу. Заметно улучшить точность определения этих двух характеристик сейчас нереально. Единственный, по нашему мнению, вариант — увеличение плотности средств наблюдения и рациональное их размещение с целью сокращения «слепых» для СН интервалов движения КО. Положительный эффект в этом случае гарантирован, однако проблема — в высокой стоимости реализации такого варианта. В то же время, если это все-таки будет сделано, то приведет не только к демпфированию проблемы непредсказуемости атмосферы, но и к существенному покрытию слабо контролируемых сегодня областей орбит, т. е. к более быстрому обнаружению КО, причем на большем разнообразии орбит.

 

Обе СККП испытывают множество трудностей в обнаружении и контроле движения БЭКО и других КО в высокоорбитальной области. Одна из причин этих трудностей — несовершенство используемых повсеместно методов поиска и обнаружения малоразмерных и слабоконтрастных КО. В ОКП присутствует гигантская масса элементов КМ с широчайшим разбросом орбитальных, массогабаритных и прочих индивидуальных параметров: по высотам, размерам, яркости и т. п. При этом специалисты испытывают большой дефицит измерительной информации для полноценного исследования проблемы техногенного засорения ОКП. КО различных классов требуют индивидуального подхода к их поиску и обнаружению.


Расшифровку всех приведенных в статье условных сокращений смотреть здесь: «Исследование ближнего космоса: условные сокращения».

Автор: Admin | 2012-06-30 |

Пути уменьшения негативных последствий засоренности земной орбиты и снижения самой засоренности. Часть II

Сайт www.webbazar.ru станет вашим верным другом и незаменимым помощником в поиске товаров в интернете. По сути webbazar — это гигантский Интернет магазин с большой буквы, представляющий сотни более мелких! Благодаря этому Вы сможете найти все, начиная от бумажных полотенец и заканчивая сложной вычислительной техникой, в одном месте, не отходя от своего компьютера!



Самый неудоборешаемый вопрос — это поиск путей реального снижения засоренности ОКП. Есть только один физически осуществимый способ — прекратить всю космическую деятельность на несколько миллионов лет. За это время ОКП, хотя и очень медленно, само очистится без нашей помощи. Но человечество генетически неспособно столько ждать, хотя, на наш взгляд, оно и заслужило такое наказание.

 

Возможные (как реальные, так и пока фантастические) методы снижения и прекращения роста будущей популяции КМ можно разделить на две категории:

• методы, снижающие краткосрочную опасность засорения ОКП;

• методы, позволяющие уменьшить эту опасность в дальней перспективе.

 

Методы первой категории не направлены на снижение общей массы КМ в ОКП, т. е. не уменьшают общую кинетическую энергию на околоземных орбитах — источник долгосрочной опасности столкновений в ОКП [Kessler, Loftus, 1995]. Эти методы не решают проблему коренным образом, т. е. уменьшения общей массы КО на орбитах, хотя и позволяют замедлить рост опасности КМ. Гораздо важнее уменьшить рост количества столкновений, прежде всего, в низкоорбитальной области. Этой цели служат снятие с орбит крупных КО и перевод на орбиты захоронения крупных НОКО и КО на эллиптических орбитах, пересекающих низкоорбитальную область. Это задача методов второй категории.

 

Рассмотрим конкретные методы обеих категорий.

 

Сокращение высвобождения КМ, сопутствующего запуску и функционированию КА. Этот тип КМ составляет порядка 10% от количества каталогизированных КО. Существует также значительная популяция некаталогизированного КМ этого типа. Причем большинство его находится в наиболее «населенных» орбитальных районах. Прекращение выброса в космос такого мусора реализуется довольно легко и без негативного влияния на оперативные свойства КА, хотя достигнутый эффект будет небольшим. Но на низких орбитах находятся ценные действующие КА, поэтому это будет полезно.

 

Сокращение продуктов выхлопа твердотопливных двигателей. Тем самым достигается лишь небольшое облегчение для космической деятельности, поскольку эти мельчайшие частицы имеют очень короткое время существования (менее 5 % их остаются на орбитах более года [Orbital___, 1995]). Здесь нужно либо отказываться от использования твердотопливных двигателей, либо менять тип топлива.

 


Пассивация КА и РН. Цель — сохранение целостности КА и РН и, как следствие, сокращение осколкообразования от взрывов. Так как при взрыве образуется значительное количество крупных и среднеразмерных фрагментов с потенциально длительным временем орбитального существования, то сокращение количества взрывов даст существенный эффект в смысле сдерживания роста популяции КМ. Единой рекомендации по предотвращению случайных взрывов нет. Но существует системный подход, называемый пассивацией, который предполагает:

• определение всех потенциальных источников запасенной энергии, остающейся к концу функционирования КА;

• для каждого такого источника разрабатывается безопасный метод рассеивания запасенной энергии;

• активация этих методов в конце функционального существования КА.

 

Для устранения условий взрыва РН топливо либо выжигается, либо просто стравливается после отделения ступени от КА продувкой баков или испарением.

 

Хотя конструкторы и избегают применять краску и другие материалы покрытий, быстро деградирующие в полете КА, они не требуют, чтобы покрытие оставалось прочным как в ходе, так и после окончания миссии.

 

Недорогой мерой борьбы с образованием км стало бы разделение процессов поверхностной деградации в открытом космосе и превентивных методов противодействия им и их последствиям.

 

Уменьшение осколкообразования вследствие столкновений. В принципе, прямой путь к достижению этой цели — сокращение количества столкновений с помощью маневров уклонения от них или удаление КО, грозящих столкновениями, из переполненных орбитальных областей.

 

Выше уже говорилось, что любые меры ограничения количества КО без сокращения общей массы КМ (и, следовательно, кинетической энергии в ОКП) недостаточны для уменьшения долгосрочной угрозы столкновений. Если даже удастся создать самые совершенные системы предупреждения о грозящем столкновении, их нельзя использовать для предотвращения столкновений неуправляемых КО, поскольку они не способны маневрировать. Что касается удаления КО с густонаселенных орбит, то это достигается принудительным вводом КА в атмосферу замедляющими полет приемами или сокращением орбитального существования (ускорение естественного схода с орбиты), переводом КА на орбиту захоронения в конце активного полета, активным удалением км с орбит.

 

Принудительный ввод в атмосферу КА и РН и сокращение длительности существования КО. Относятся к радикальным методам второй категории. Они предполагают включение двигателя (если, конечно, на борту осталось топливо), использование естественных возмущающих сил и приемы усиления торможения в атмосфере. Для этого можно использовать специальные небольшие реактивные двигатели или выжигание остатков топлива в основных двигателях.

 

Чтобы иметь возможность выполнять такого типа маневры, традиционные проекты КА и РН будут нуждаться в соответствующих модификациях. Многие КА и РН не имеют собственных систем ориентации и коррекции орбит. Могут также понадобиться более мощные системы энергоснабжения, сложные командные системы для длительного сохранения работоспособности и возможности выполнения маневров торможения. И, конечно же, потребуется большее количество топлива. В руководящих документах НАСА по снижению опасности со стороны км предлагается ограничивать время существования КО, пересекающих низкоорбитальную область, 25-ю годами. Но на всякие константы такого рода нужно иметь глубокое и убедительное обоснование.

 

Атмосферное торможение имеет сильнейшее влияние на продолжительность существования НОКО, его имеет смысл использовать с целью ускорения погружения КО в плотные слои атмосферы. Время существования КО на эллиптической орбите можно изменять даже более резко, чем на круговой в зависимости от начальной высоты перигея. РН, запущенная на ГTO с низким перигеем, гораздо быстрее сходит с орбиты, чем запущенная на орбиту с высоким перигеем. Это подсказывает эффективный и дешевый способ сокращения времени существования КО на высокоэллиптической орбите.


Расшифровку всех приведенных в статье условных сокращений смотреть здесь: «Исследование ближнего космоса: условные сокращения».

Автор: Admin | 2012-06-29 |

Определение степени угрозы со стороны космического мусора для космических аппаратов. Часть II

Только на сайте www.rezina.ua Вы всегда сможете купить качественные шины ведущих мировых производителей. Так, например, комплект зимней резины Debica Frigo обойдет Вам всего в 1 600 грн.



Этот кратер в 5 см броне шаттла, участвовавшего в миссии НАСА Solar Maximum Mission, пробил крошечный обломок орбитального мусора

 

На типичных для низкоорбитальных космических объектов скоростях столкновения атакующая частица обычно расплавляется или даже испаряется, а мельчайшие осколки или расплав либо образуют большой кратер в щите, либо пробивают его насквозь, в зависимости от толщины щита. Чтобы монолитный щит защищал от высокоскоростного удара (от перфорации), его толщина должна быть пропорциональна второй или третьей степени скорости столкновения [Swift, 1982; Cour-Palais, 1985, 1987]. При скоростях удара более 2…3 км/с многослойный щит (например, бампер Уиппла) эффективнее монолитного. Экспериментальные и теоретические данные показывают, что при типовой скорости удара в области низких орбит бампер Уиппла обеспечивает защиту, эквивалентную защите монолитного в 10…20 раз более массивного, чем бампер [Swift, 1982].

 

Когда высокоскоростной снаряд ударяется в бампер многослойного щита Уиппла, их взаимодействие возбуждает обратную ударную волну, разрушающую, расплавляющую и даже испаряющую материал снаряда. Затем мелкие и уже более медленные частицы движутся от бампера к следующему, улавливающему слою (кэтчеру) и, ударяясь в него, распределяют энергию удара (ее оставшуюся часть) по большей площади. При этом каждая мелкая частица обладает малой энергией и создает меньший момент. Поэтому кэтчер может быть более тонким, чем монолитный щит. Многослойный щит защищает не только от высокоскоростных частиц км, но и от медленно летящих, которые просто пробивают бампер и останавливаются более толстым кэтчером.

 

Толщина бампера и кэтчера выбирается с учетом самого быстрого, самого крупного и самого высокоэнергичного из ожидаемых атакующих КО, а промежуток между ними должен оптимизировать распределение энергии КО.

 


Международная космическая станция – настоящая бронированная крепость, которая может устоять под натиском космического мусора диаметром до 25 см

 

Разработано много усовершенствованных вариантов щита Уиппла, снижающих суммарную его массу для защиты КА в конкретной среде и уменьшающих масштабы вторичного осколкообразования при ударе — в том числе и для защиты МКС [Christiansen, 1994; Christiansen, Kerr, 1993; Cour-Palais, Crews, 1990; Lambert, 1994].

 

Системы активной защиты КА включают также средства наблюдения (бортовые или наземные) для предупреждения оператора о грозящем столкновении и механизмы для защиты критических компонент и/или двигатели для выполнения маневра уклонения от столкновения. На сегодняшний день в качестве предупреждающих сенсоров используются наземные средства наблюдения, прежде всего СККП. На основе наблюдений рассчитываются потенциальные сближения КА с каталогизированными КО. В случае превышения вероятности столкновения допустимого уровня риска с помощью маневровых двигателей совершается маневр уклонения. Основы маневров уклонения от столкновения изложены в работе [Foster, Stansbery, 2003] и ряде документов НАСА.

 

Существуют и другие проекты активной защиты. Например, бортовые сенсоры обнаруживают приближение КО, после чего закрываются шторки над чувствительным компонентом КА или он разворачивается, подставляя приближающемуся объекту более защищенную сторону. Могут также выбрасываться особые щиты навстречу атакующему КО, или использоваться оружие направленной энергии (лазер, плазма и т. п.) для отклонения или разрушения приближающегося объекта [Schall, 1993; Settecerri, Beraun, 1993].

 

Проблема всех схем активной защиты в том, что они требуют упрежденного обнаружения опасности столкновения. Из-за высоких скоростей сближения, зачастую свыше 15 км/с, это упреждение должно быть весьма значительным — за сотни километров до встречи. При этом требуется не только обнаружение, но и устойчивое слежение за КО с целью получения точной координатной информации о нем, которая позволила бы однозначно сказать, будет ли в действительности столкновение. В НАСА есть модель SBRAM для предварительной оценки опасности для действующих КА со стороны каких-либо КО через дни, недели и месяцы [Krisko et al., 2005; Matney, 1998, 2000].

 

Казалось бы, естественно разместить все компоненты системы активной защиты (включая сенсоры) на борту защищаемого КА. Но это только на первый взгляд. Требования к системам, способным своевременно обнаружить на достаточном расстоянии и сопровождать среднеразмерный КО, очень высоки и сегодня практически не реализуемы. В частности, бортовой радар должен иметь чрезвычайно высокую мощность, оптика — от десятков до сотен сантиметров в диаметре. Сенсоры должны обладать широким полем зрения для обнаружения набегающих КО со всех ресурсов.

 

В [Orbital., 1995] приводится такой пример и соответствующий расчет. Низкоорбитальный КА массой 1 т оборудован сенсором, способным предупреждать с расстояния 100 км о потенциальном столкновении с точностью, при которой КА мог бы избежать столкновения, сместившись на 25 м в сторону. В заданных условиях на маневр потребуется 5 с. Для этого нужен реактивный двигатель с тягой 2 кН (типичные реактивные двигатели для коррекции орбит имеют тягу 1 кН). Если бы 375-тонной МКС понадобился такой маневр, нужен был бы реактивный двигатель с тягой 750 кН (такой же, как у второй ступени РН «Ариан-4»). К тому же, ускорение в таком маневре превысит допустимые нагрузки на выносные структуры (солнечные панели и т. п.). Снизить эти нагрузки можно за счет увеличения расстояния обнаружения КО, но тогда придется увеличивать мощность сенсора. Тронешь в одном месте — поползет в другом.

 

Наземные средства СККП уже широко используются для предупреждения о сближении с каталогизированными КО действующих КА, в том числе МКС. Имея большое число весьма совершенных средств наблюдения, рассредоточенных практически глобально, они не испытывают дефицита времени на предупреждение. Однако у них есть ограничения на размер обнаруживаемых КО и слежения за ними (минимум 10 см), а также на точность прогнозирования их движения.

 

Наземная система предупреждения о столкновениях должна отвечать трем очевидным требованиям:

• каталог КО системы содержит динамически обновляемую координатную информацию о всех опасных КО, траектории которых пересекают орбиту защищаемого КА;

• система обеспечивает достаточно высокую точность измерительной информации, чтобы уровень ложных тревог был низким и исключал лишние маневры ухода;

• защищаемый КА способен реагировать на предупреждение уходом от столкновения или выполнением других активных мер защиты.

 

Современные системы предупреждения о столкновениях, к сожалению, не отвечают этим требованиям. Существующие каталоги не полные в части объектов размером менее 10…20 см и не включают большинство потенциально опасных КО. Непредсказуемость состояния верхней атмосферы и, как следствие, неточность прогнозирования будущего положения сближающихся объектов делает неизбежным ненужные маневры (из-за требования значительного упреждения выдачи сигнала об опасности). Эта неопределенность также не позволяет точно и своевременно предсказать параметры ожидаемого столкновения для большинства существующих КА и точного расчета установок на маневр. Необходимые характеристики сенсоров для активной защиты КА достигаются сложными и дорогостоящими техническими решениями. Поэтому такую защиту имеет смысл применять только для пилотируемых и очень дорогих КА.

 

Даже при наличии эффективной системы предупреждения многие методы активной защиты могут оказаться физически не реализуемыми. Например, схема встречного обстрела атакующего КО требует большей мощности (десятки киловатт), чем может обеспечить современное оборудование КА. Маневр уклонения при срочном предупреждении может оказаться выполнимым лишь при наличии очень мощного реактивного двигателя и весьма жесткой конструкции КА, чтобы выдержать резкий маневр.

 

Что касается операционной защиты, то она включает избыточность и дублирование оборудования, специальную архитектуру дизайна. Большинство схем операционной защиты направлены не на снижение угрозы удара КМ, а на минимизацию вероятности отказа КА из-за сбоя отдельной его компоненты по любой причине, не обязательно связанной с КМ. Операционно обеспечивается лишь щадящий режим снижения качества функционирования КА при нештатном или некачественном функционировании какой-либо компоненты. Например, термопокрытие проектируется таким образом, чтобы оно сначала обеспечивало более чем достаточный термоконтроль, а его нижние слои плавно снижали свои термозащитные свойства при более жестких чем проектные воздействиях внешней среды. Солнечные панели устанавливаются большей площади, чем нужно для снабжения КА электроэнергией. Электронное оборудование и двигательная техника обычно дублируется в 2…3 раза. Такая операционная избыточность применяется и в многообъектовых космических системах. Например, в американской GPS (и российской ГЛоНАСС) используется больше спутников на орбитах, чем это требуется.


Расшифровку всех приведенных в статье условных сокращений смотреть здесь: «Исследование ближнего космоса: условные сокращения».

Автор: Admin | 2012-06-27 |

Возможности и средства оценки повреждений космических аппаратов


Осмотр и первичный анализ повреждений от ударов КМ возможен непосредственно в космосе силами космонавтов. Так было на МКС, телескопе «Хаббл» и еще раньше на советских орбитальных станциях. Известно много случаев возвращения на Землю экспонированных в космосе поверхностей и самого тщательного их анализа в лабораторных условиях [LDEF., 1993]. Очень много полезной информации о воздействии КМ на космические аппараты дают наземные лабораторные испытания с применением сверхскоростных ударов. В качестве вспомогательного средства используется компьютерное (аналитическое и цифровое) моделирование.

 


Обшивка МКС, обстрелянная космическим мусором

 

В наземных лабораториях исследуются:

  • непосредственные результаты ударов КМ или его имитаций;
  • воздействие ударов КМ на функциональные характеристики КА и его компоненты, их надежность, живучесть;
  • эффективность методов противодействия повреждениям от ударов КМ (защитные покрытия, их материалы, конструкция, компоновка); воспроизведение разрушений КО (КА, РН, крупного КМ) в результате взрывов и столкновений, образование осколков.

 

При этом главный метод моделирования — экспериментальный сверхскоростной удар, а его цель — выяснение, как КА или его компоненты смогут перенести столкновение в космосе с КМ, а также уточнение влияния этих факторов на процесс засорения ОКП. Поскольку практически нереально и экономически накладно построить целый КА для последующего разрушения в лаборатории, испытания в основном проводятся на отдельных его компонентах и их сборках (топливные баки, связки проводов, изоляционные материалы, структурные блоки). Подробнее см. [Christiansen, 1990; Christiansen, Ortega, 1990; Orbital…, 1995; Schneider, Stilp, 1993; Whitney, 1993].

 


Модель микроспутника с солнечными батареями, основная миссия которого – изучение поведения космического мусора

 

В рамках сотрудничества японского университета Кюсю и подразделения НАСА по проблемам техногенного засорения космоса недавно было проведено семь ударных тестов, где целями служили уже натурные КА — микроспутники размерами от 15x15x15 до 20x20x20 см. Масса этих аппаратов составляла примерно 1,5 кг. Каждая цель была полностью оборудована функциональной электроникой (батареи, приемники, передатчики). В двух последних тестах на спутниках монтировались солнечные панели и многослойное защитное покрытие корпуса. Все цели были обстреляны снарядами различных размеров и при разных скоростях ударов. Образовавшиеся фрагменты размером до 2 мм были собраны, изучены и каталогизированы. Результаты тестов использованы для улучшения модели разрушений НАСА [Hanada, Liou, 2009; Murakami et al., 2009].

 

Многие аналитические теории предсказания повреждений от ударов км основаны, с целью упрощения вывода математических зависимостей, на предположении сферичности формы КМ. Однако реальный КМ характеризуется большим разнообразием форм. Удар несферического тела может причинить значительно большее повреждение во многих ситуациях. Например, глубина проникновения и объем кратера от удара в толстую плоскую мишень сильно зависят от длины снаряда вдоль его оси полета в момент удара [Gehring, 1970]. Плоские снаряды в виде пластинок приводят к большим повреждениям, чем сферические той же массы и при такой же скорости [Boslough et al., 1993].

 

Экономически нереально испытывать все компоненты при всех возможных условиях ударов КМ. Поэтому критические элементы подвергают испытаниям в номинальных условиях, а затем обращаются к компьютерному моделированию с целью распространения полученных результатов на космический аппарат в целом.

 

 

Компьютерное моделирование служит связывающим звеном между результатами обследования поверхностей, реально подвергшихся воздействию КМ в космосе, и предположениями ученых, проверяя и калибруя последние. Модели также позволяют экстраполировать данные, полученные в лаборатории в ограниченном диапазоне, на широкий спектр условий, которые невозможно воспроизвести в лаборатории.

 

При проверке надежности броневых покрытий также прибегают к сочетанию натурных экспериментов и компьютерного моделирования. Сочетание сверхскоростных тестов и компьютерного моделирования представляется довольно мощным инструментом оценки выживаемости КА и КС при ударах км.

 

Ударные испытания применяются и для исследования механизма образования осколков разрушения при сверхскоростном столкновении в космосе. Знать это очень важно для прогнозирования эволюции популяции КМ. Однако такие эксперименты очень дороги и их проведено немного. Конечно, полученные результаты можно экстраполировать с помощью компьютерных моделей, но со значительной степенью неопределенности ввиду ограниченности имеющихся данных.

 

Существует множество экспериментальных средств для моделирования и изучения ударов КМ, с помощью которых можно воспроизвести испытания с довольно крупными снарядами, разгоняемыми до больших скоростей. Однако есть определенные границы возможностей в этом направлении. Все разнообразие форм, размеров и состава КМ пока не может быть испытано во всех диапазонах скоростей. Имеются трудности с разгоном крупных снарядов до типичных скоростей столкновений в низкоорбитальной области ОКП. Эти ограничения затрудняют проектирование защитных покрытий, адекватных действительной космической среде, снижают точность предсказания ущерба от столкновения со сред-неразмерными КО, добавляют неопределенность в прогнозирование будущей популяции засоренности ОКП.

 

При испытании броневых покрытий КА в лабораторных условиях обычно используются ударные частицы размером от 1 мм до 1 см и массой до нескольких грамм, но вполне возможно провести тест и с более крупными снарядами, разгоняемыми до типичных скоростей столкновений на высоких орбитах.

 

Стандартная лабораторная двухступенчатая газовая пушка на легком газе может разгонять объекты размером до 50 мм до скоростей около 8 км/с. Некоторые пушки ускоряют, правда более мелкие объекты, до 10 км/с и выше. Стандартный снаряд — сфера, но возможны и другие формы — тонкие пластинки, длинные стержни, цилиндры [Piekutovski, 1986].

 

Поскольку легкогазовая пушка не может разгонять снаряд до скоростей, типичных для столкновения НОКО (10…15 км/с), были созданы ультрасверхскоростные пушки с расширенным диапазоном скоростей специально для изучения воздействия КМ на КА, способные доводить скорость небольших титановых пластинок до 15,8 км/с [Chhabilidas et al., 1992].

 

В России существуют также крупные камеры, в которых можно квазинатурно моделировать экспериментальные орбитальные взрывы и столкновения в контролируемой среде [Fortov, 1993].

 

Конструкторы защитных покрытий в работе используют (как вспомогательный инструмент исследований) аналитические методы, включающие уравнения «баллистического предела» [Herrman, Wilbeck, 1986; Reimerdes et al., 1993; Ryan, Christiansen, 2010]. С их помощью рассчитываются размеры частицы, останавливаемой данным конкретным щитом в функции скорости удара, его угла, плотности атакующей частицы и уравнения размеров щита [Christiansen, 1992]. Есть и аналитические модели для предсказания повреждений от ударов и их последствий, но они несколько сложнее.

 

К сожалению, не хватает моделей стандартизированных оценок рисков для определения вероятностей выхода из строя компонент КА вследствие удара км и стандартизированных моделей ухудшения рабочих характеристик компонент КА. Из-за этого последствия ударов КМ для КА и его выживаемость приходится оценивать косвенно, прибегая к рискованной экстраполяции [Orbital___, 1995].

 

Следует иметь в виду, что диапазон возможностей разгона частиц нужной массы и формы при моделировании ударов КМ пока ограничен. Эти ограничения затрудняют проектирование броневого покрытия КА, адекватного действительной космической среде, снижают точность прогнозирования ущерба, добавляют неопределенность в предсказание будущей популяции КМ.

 


Исследовательская орбитальная лаборатория LDEF

 

Другим слабым звеном в конструкции щитов от КМ часто бывает предположение, что крупный км состоит из алюминия, а мелкий из окиси алюминия. В реальности некоторые КО состоят из материалов более высокой плотности. При обследовании поверхности КА LDEF, как уже говорилось выше, обнаружены следы ударов частиц из нержавеющей стали, серебра, меди [Horz, Bernhard, 1992]. Щит, готовый выдержать удары алюминиевого КМ, может оказаться неспособным противостоять ударам более плотных тел.

 

Конечно, нереально испытывать щиты и другие компоненты КА на удары км всех возможных размеров, масс, форм, составов во всех диапазонах космических скоростей. Здесь нужно обращаться за помощью к компьютерным моделям, откалиброванным по достаточному объему экспериментальных данных, для экстраполяции на недостающие условия испытаний.


Расшифровку всех приведенных в статье условных сокращений смотреть здесь: «Исследование ближнего космоса: условные сокращения».

Автор: Admin | 2012-06-27 |

Космический мусор: каскадный эффект. Часть II


Многие независимые модели будущей популяции КМ подтверждают, что каскадные столкновения уже происходят на околоземных орбитах [Назаренко, 2010; Kessler, 1991; Kessler, Cour-Palais, 1978; Kessler et al., 1993, 2010; Potter, 1993; Rex, Eichler, 1993; Rossi et al., 1993; Su, 1993; Talent, 1992].

 

Эти модели в своей основе имеют различные методологии, различаются ключевыми исходными данными и параметрами, такими как начальная популяция, количество и распределение осколков, образующихся при взрыве и столкновении. Однако их прогоны дают схожие результаты. Все они предсказывают «более чем линейный» (скажем прямо, экспоненциальный) рост популяции КМ в области низких орбит на следующее столетие.

 


Рис. 6. частота столкновений с частицами различных размеров на высотах 900…1000 км

 

Еще в 1993 г. Э. Поттер [Potter, 1993] привел свидетельства уже начавшегося каскадного процесса в некоторых областях орбит, в частности, на высотах между 900 и 1000 км. Результаты наблюдений, анализа, расчета и моделирования указывают на значительный рост частоты столкновений в этом диапазоне высот. На рис. 6 в логарифмическом масштабе дано сравнение количества столкновений в год с частицами размером от 1 мм до 1 см в 1990 и 2020 гг.

 

По мнению некоторых экспертов [Назаренко, 2010], каскадный эффект уже начался для малоразмерной фракции. Э. Поттер [Potter, 1993] считает, что для крупных КО каскадный эффект пока не наблюдается, но конструкторы уже вынуждены бронировать КА. Достаточно взглянуть на возвращенные на Землю экспонированные в космосе поверхности, посмотреть историю зарегистрированных столкновений, результаты прогнозирования засоренности космоса и эти опасения становятся убедительными. Практически в каждом номере периодического (ежеквартального) журнала НАСА «Orbital Debris Quarterly News» публикуются сообщения об очередных столкновениях в космосе.

 

Каскадный процесс столкновений не обязательно будет охватывать полностью все ОКП. Орбитальная область, в которой он начнется, должна отвечать определенным требованиям:

• достаточно высокая плотность КО;

• не очень сильные атмосферные возмущения;

• достаточно высокие скорости столкновений.

 

Смысл второго требования — количество выбывающих из данной области КО не должно снижать плотности потока км в ней. Перечисленные условия обеспечивают достаточно большое число высокоэнергетических столкновений.

 

Коль скоро каскадный процесс столкновений начался, его нельзя остановить снижением частоты запусков новых КА и даже их прекращением, поскольку этот процесс самодостаточен и поддерживает сам себя. Если в орбитальную область, где начался цепной процесс столкновений, прекратить приток новых масс извне, количество столкновений начнет снижаться, но не ранее чем через сотни и тысячи лет. В то же время, несмотря на то, что большинство крупных объектов постепенно разрушатся, и из-за резко возросшего количества осколков, вероятность столкновений действующих КА с км может оказаться очень высокой.

 

После начала каскадного процесса при достижении некоторой критической плотности засоренности ОКП его развитие поддерживается тремя главными факторами: большим количеством образующихся при столкновении осколков (из-за высокой энергии столкновений даже при небольшой массе одного из участвующих в нем КО); высокой скоростью осколков, которая не только квадратично усиливает энергию столкновений, но и позволяет им за короткое время «пронизывать» гигантское пространство, тем самым повышая вероятность столкновения; орбитальной замкнутостью КМ в ОКП, из-за чего продукты разрушения (т. е. «размножившийся» км) в основной своей массе остаются в ОКП, увеличивая вероятность дальнейших столкновений.

 

Некоторые продукты разрушения из-за большого разброса начальных орбитальных параметров могут покинуть окрестность Земли, но такая возможность нарушает замкнутость ОКП лишь теоретически и не может считаться определяющей в рассматриваемом процессе. Тем более что пока эти частицы будут избавляться от земного притяжения, они смогут успеть еще неоднократно столкнуться с КМ или с действующими КА.

 

Рис. 7. «Автору» каскадного эффекта Дональду Кесслеру вручают награду имени Джерома Ледерера «Пионер космической безопасности» 2008 г. международной ассоциации оценки достижений в области космической безопасности (Don Kessler wins the Jerome Lederer — Space Safety Pioneer Award, 2008)

 

Итак, главной потенциальной опасностью со стороны КМ представляется мрачная перспектива развития каскадного эффекта, который приведет к практической невозможности использования ОКП в исследовательских, хозяйственных, коммерческих, военных и других целях. При этом может сильно пострадать экологическая обстановка на Земле. Возможно, это уже не перспектива, а реальность. Катастрофические столкновения действующих КА CERISE в 1996 г. и «Иридиума-33» с «Космосом-2251» в 2009 г. свидетельствуют о начале «синдрома Кесслера» [Liou, 2011a] (рис. 7).


Расшифровку всех приведенных в статье условных сокращений смотреть здесь: «Исследование ближнего космоса: условные сокращения».

Автор: Admin | 2012-06-26 |

Космический мусор: каскадный эффект. Часть I

Мебельный салон предлагает Вам приобрести продукцию фирмы KLER , которая считается эталоном стиля и качества. Кожаные диваны, мягкие пуфики, стильные реклайнеры, удобные кровати — вот лишь малая толика того, что Вы сможете приобрести, если прямо сейчас посетите сайт www.klermoscow.ru.



Пока столкновения в космосе не выводили из строя дорогостоящие, выполняющие важные государственные, социальные, экономические и даже стратегические функции КА, они оставались незамеченными в прямом и переносном смысле. Но после гибели французского КА CERISE и американского «Иридиума-33» проблема опасности столкновений и их предотвращения стала выходить на передний план.

 

Столкновения, как и взрывы, особенно неприятны своими последствиями — образованием множества осколков и расширением занимаемой ими орбитальной области вследствие разброса векторов начальных скоростей фрагментов. Но этим дело не ограничивается. Дональд Кесслер из Джонсоновского космического Центра НАСА первым обратил внимание на то, что при достижении определенной критической плотности мусора в той или иной орбитальной области в результате все возрастающего числа столкновений может начаться процесс образования вторичных осколков, т. е. так называемый «каскадный эффект», или «синдром Кесслера». По сути, космический мусор приобретает некий агрессивный характер, которому уже мало что можно противопоставить. Это как пожар, который легче предотвратить, чем тушить.

 

Впервые свою гипотезу Дональд Кесслер опубликовал в 1978 г. [Kessler, Cour-Palais, 1978]. Первые исследования каскадного эффекта были проведены в [Eichler, Rex, 1992; Kessler, 1991; Kessler, Cour-Palais, 1978; Potter, 1993], а одни из последних в [Назаренко, 2010; Kessler et al., 2010].

 

Вероятность столкновений в любой орбитальной области растет приблизительно пропорционально квадрату количества КО. При этом каждая орбитальная область имеет свою «критическую плотность» КО. Другими словами, там должно присутствовать достаточное количество объектов с большой массой для обеспечения в результате столкновений прироста фрагментов, превышающего убыль КО в результате схода с орбиты (например, под действием атмосферного торможения или принудительного снятия КО с орбит). Когда эта критическая плотность будет достигнута, фрагменты мусора становятся главной причиной все возрастающей частоты новых столкновений, хотя их временной масштаб может быть растянут здесь на десятки и сотни лет.

 


Рис. 1. Критическая плотность в низкоорбитальной области

 

В 1990-х гг. уже существовали отдельные орбитальные области, в которых пространственная плотность КМ превышала критический уровень. На рис. 1 показано, как изменяется с высотой критическая плотность КМ в низкоорбитальной области, зависящая от таких факторов, как сопротивление атмосферы, размеров КО, распределения наклонений орбит и др. [Kesler, 1991]. Районы, в которых реальная плотность км превышает критическую, заштрихованы (от 900 до 1000 км и около 1500 км). Популяция КМ там будет увеличиваться количественно, даже если не будет притока новых КО извне, а количество фрагментов от столкновений в соответствии с синдромом Кесслера — расти экспоненциально. Это видно из сравнения распределений каталогизированных КО по высоте по состоянию на 1999 и 2010 гг. (см. рис. 2 и 3). Для среднеразмерного и мелкого КМ эта разница была бы еще более впечатляющей, так как в результате столкновений КО мелких осколков образуется значительно больше, чем крупных, и еще больше, чем при взрыве (см. рис. 4).

 


Рис. 2. Сравнение распределений каталогизированных КО в диапазоне высот 100…3000 км по высоте апогея орбиты

 


Рис. 3. Сравнение распределений каталогизированных КО в диапазоне высот 3000…40 000 км по высоте апогея орбиты

 


Рис. 4. Сравнение выхода фрагментов различных размеров в результате взрыва и сверхзвукового столкновения

 

Конечно, запуски новых КА (вместе с их РН и сопутствующим КМ) и взрывные разрушения также вносят вклад в рост популяции КМ в этих районах, тем более, что они наиболее привлекательны для функционирования многих типов КА и поэтому пользуются повышенным спросом. Соответственно «оптимизация» условий возникновения каскадного процесса столкновений КО там будет поддерживаться постоянно.

 

в низкоорбитальных районах ОКП, в которых еще не достигнута критическая плотность КО, она может возрасти за счет фрагментов от столкновений в соседних. Ранее уже говорилось о том, что многие фрагменты, особенно при взрывах, отделяются с очень высокими скоростями, и их орбиты распределяются довольно широко в пространстве. За счет этого, а также постепенного снижения КМ в нижележащие районы из-за сопротивления атмосферы, реальная плотность там будет повышаться. Кроме того, фрагменты от столкновений ВЭКО с НОКО будут пересекать низкоорбитальные районы на очень высоких скоростях, вызывать дополнительную угрозу столкновений и соответственно провоцировать каскадный эффект.

 


Рис. 5. Приращение скорости, необходимое для вывода ИСЗ на орбиту захоронения (для трех классов орбит)

 

Высокие орбитальные районы обычно менее засорены, чем низкие и скорости столкновений там ниже, что обусловливает образование меньшего числа фрагментов при столкновении. При этом осколки распространяются там шире, чем на низких орбитах (см. рис. 5), что снижает вероятность новых столкновений. Все это препятствует развитию каскадного эффекта на высоких орбитах.

 

На ГСО, в окрестности которой скорость столкновений еще меньше и векторы скоростей КО при их сближении в своем большинстве близки к коллинеарным, даже если столкновение случится, осколки распространятся в гораздо большем объеме, чем на низких орбитах, и каскадного эффекта придется ждать, возможно, тысячи и десятки тысяч лет [Kessler, 1993]. Следовательно, в отличие от низкоорбитальных областей на ГСО популяция КМ будет расти в основном за счет взрывов и запусков новых КА, а не столкновений.

 


Процесс протекания синдрома Кесслера. Крупные обломки космического мусора, соударяясь, порождают большое количество более мелких, которые сталкиваются и образуют еще больше космического мусора более малого размера

 

Начало цепной ядерной реакции не заметить трудно, хоть и развивается она очень стремительно. С синдромом Кесслера дело обстоит иначе из-за масштаба времени. Оказывается не так просто понять, начался цепной процесс или нет. Ввиду растянутого масштаба времени судить приходится и по косвенным признакам. именно поэтому нет единодушного мнения ученых на этот счет. трудность осмысления этого явления двойная: нельзя точно предсказать начало процесса и нужно уяснить временной масштаб его развития. и то, и другое сильно зависят от многочисленных исходных неопределенностей.


Расшифровку всех приведенных в статье условных сокращений смотреть здесь: «Исследование ближнего космоса: условные сокращения».

Автор: Admin | 2012-06-25 |

История взрывов и столкновений в космосе. Часть V

Холодные глубины и сказочные красоты космического пространства, сотрясаемые взрывами сверхновых и освящаемые светом бесчисленных галактик, не могут не вселять ужас и восхищение в сердца всех жителей крошечной планеты по имени Земля.
Именно поэтому в наше неспокойное время многие стали задумываться, что происходит после смерти… Существует ли Вознесение, растворяется ли энергия наших душ космическом вакууме или за смертью следует одно бескрайнее НИЧТО?
Получить ответ на этот вопрос Вы сможете только на сайте www.bcoreanda.com.



Космический аппарат НАСА UARS

 

10 ноября 2007 г. случился довольно загадочный инцидент. Спутник НАСА для исследования верхней атмосферы UARS (Upper Atmosphere Research Satellite), после успешного выполнения своей 14-летней миссии в 2005 г. был пассивирован (топливные баки опустошены и аккумуляторы разряжены) и переведен на более низкую орбиту захоронения с целью сокращения срока существования. В течение последующих двух лет его высота постепенно снижалась, как вдруг 10 ноября 2007 г. от 5,7-тонной конструкции неожиданно отделилось, по крайней мере, четыре фрагмента (с умеренной скоростью). Два из них упали на Землю в конце ноября, остальные оставались на орбите до конца года. По мнению оператора, взорваться спутник не мог, поскольку был полностью пассивирован, если не считать мизерного количества сжатого газа в баллончике. Единственной объяснимой причиной разрушения могло быть столкновение с небольшим ненаблюдаемым элементом КМ [Two…, 2008].

 

Через день после этого инцидента США провели первый пуск РН «Дельта-IV» в 2007 г. Предыдущий ее полет в 2006 г. закончился незапланированным разрушением второй ступени с образованием 60 фрагментов.

 

На этот раз вторая ступень РН также произвела две дюжины обломков размером более 10 см. как и в предыдущем случае, образование фрагментов не помешало РН успешно выполнить свою функцию — вывести полезный груз на запланированную орбиту.

 

В марте 2008 г. по неизвестной причине взорвался российский «Космос-2421» (точнее, в марте — июне этот КА испытал три последовательных взрыва — 14 марта, 28 апреля и 9 июня [ISS Maneuvers…, 2008; The Multiple., 2008]) с образованием 506 фрагментов, 90 % которых имели размеры от 5 до 20 см. Взрыв произошел всего лишь в 60 км над МКС. К счастью, основная масса осколков уже сгорела в атмосфере к началу 2009 г. (рис. 6).

 


Рис. 6. КА «Космос-2421»

 

В течение нескольких месяцев многочисленные обломки и осколки от разрушения «Космоса-2421» проходили близко от МКС, и каждый раз приходилось планировать маневры ухода от столкновений, которые отменялись лишь, когда уточненные вероятности столкновений опускались ниже «красного» порога 0,0001. Один маневр (27 августа) пришлось совершить при расчетной вероятности столкновения 0,014 (расчетный промах 1,6 км). Его осуществили с помощью пристыкованного в то время к МКС Европейского автоматического модуля (АММ) «Жюль Верн». За два часа до предполагаемого столкновения включили его двигатели с целью замедления движения станции (на 1 м/с), чтобы чуть-чуть снизить среднюю высоту орбиты станции, предварительно повернув МКС на 180° относительно первоначальной «нормальной» ориентации.

 

Это был восьмой маневр за полетную программу МКС [ISS Maneuvers., 2008; ISS Crew…, 2009; The Multiple…, 2008; Orbital…, 2008].

 


Модель облака космического мусора, образующегося при разрушении космического аппарата

 

В начале июля 2008 г. 21-летний «Космос-1818» с законсервированным ядерным реактором на борту стал источником нового облака КМ, 30 его фрагментов были обнаружены СККП США и еще множество небольших металлических сфер — с помощью специальных СН. Это был первый из двух однотипных спутников, испытывавших новую ядерную энергетическую установку. Причина взрыва до сих пор остается невыясненной (вполне возможно было столкновение с КМ). По мнению некоторых экспертов, образовавшиеся металлические сферы могли быть каплями натрий-калиевого охладителя, который использовался в предыдущих версиях реактора [Kessler et al., 1997; New Debris…, 2009].

 

Неожиданное даже для операторов столкновение американского «Иридиума-33» (рис. 7) с российским «космосом-2251» (рис. 8), так же как и, в свое время, столкновение французского CERISE с обломком РН Arian), нанесло удар по скептикам, утверждавшим, что, вероятность серьезных катастроф мала, и апеллировавшим к факту редких регистраций столкновений. Вместе с тем, известный специалист Пулковской обсерватории А. Сочилина, исследуя орбитальное поведение КА на ГСО, показала, что, по крайней мере, 40 из них испытали столкновение с относительно крупными КО [Sochilina et al., 1998].

 


Рис. 7. КА «Иридиум-33»

 


Рис. 8. КА «Космос-2251»

 

Итак, 10 февраля 2009 г. действующий КА обеспечения глобальной спутниковой связью объектов США «Иридиум-33» (70 спутников в системе «Иридиум» на одной рабочей высоте) столкнулся с уже нефункционирующим российским ИСЗ «Космос-2251» (класса «Стрела-2м», диаметр 2,05 м, гравитационная штанга длиной 18 м, масса 900 кг) (рис. 9). Размеры «Иридиума-33» оцениваются как 2×1 м, масса 560 кг. Столкновение произошло над районом крайнего севера Сибири на высоте около 790 км при относительной скорости 11,646 км/с с образованием большого числа обломков. Наклонения орбит спутников составляли 86,4 и 74,0°, соответственно. Плоскости орбит в момент столкновения пересекались почти под прямым углом. Летом 2010 г. СККП США было зарегистрировано более 2100 фрагментов от обоих аппаратов.

 

Количество фрагментов, образовавшихся от разрушения «Космоса-2251», более чем вдвое превысило таковое от разрушения «Иридиум-33», что приблизительно соответствует соотношению масс исходных объектов. После столкновения объем каталога КО СККП США увеличился на 15,6 % (на 2347 КО), а количество не каталогизированных, но сопровождаемых СН, возросло на 6000 КО [Space…, 2010].

 


Рис. 9. Положение орбитальных плоскостей аппаратов «Иридиум-33» и «Космос-2251» в момент столкновения [Satellite…, 2009]

 


Рис. 10. Эволюция орбит фрагментов разрушения ИСЗ «Иридиум-33» и «космос-2251» через шесть месяцев после столкновения

 

Более детальный анализ столкновения КА «Иридиум-33» и «Космос-2251» можно найти в [Kelso, 2009; Makarov et al. 2011; Matney, 2010; Nazarenko, 2009b, 2011; Satellite…, 2009] (рис. 10).

 

Суммарное количество мелких фрагментов (размером около 1 см) от ИСЗ «Фенгюн-1С», «Иридиум-33» и «Космос-2251» по данным радиолокаторов «Хэйстэк» и ХЭкС составляет около 250 000, а крупных (свыше 10 см) — порядка 5500 [Update., 2010]. Объем каталога КО скачком увеличился на 60 % (см. рис. 4)!

 

Насколько серьезно было воспринято это событие, можно судить по тому факту, что уже в апреле 2009 г. в конгрессе США проводятся слушания под девизом «Сохранение космической среды для гражданского и коммерческого использования». Перед комитетом палаты конгресса по науке и технологиям (Подкомитет по космосу и аэронавтике) выступили генерал-лейтенант Ларри Джеймс от Стратегического командования США, Николас Джонсон — руководитель подразделения НАСА по проблемам техногенного засорения космоса, Ричард Дарбелло от Генеральной корпорации Интелсат и Скотт Пэйс от Института космической политики Университета им. Джорджа Вашингтона (рис. 11) [Congressional., 2009].

 


Рис. 11. Слева направо: генерал-лейтенант Ларри Джеймс, Николас Джонсон, Ричард Дарбелло, Скотт Пэйв

 

В июне 2009 г. в Вене на своем ежегодном собрании комитет ООН по мирному использованию космоса (COPUOS) заслушал ряд докладов, инициированных столкновением «Иридиума» и «космоса». бригадный генерал Сьюзен Хелмз (бывшая космонавтка) объявила, что Стратегическое командование США изыскивает возможности проведения оценки опасных сближений для большего числа действующих КА. Николас Джонсон сообщил последние данные о природе облака осколков от столкновения спутников и его возможной эволюции [United…, 2009].

 

Единственная польза от историй, происшедших с КА «Фенгюн-1С», «Иридиум-33» и «Космос-2251», в том, что они помогают понять процесс фрагментации крупных КО при столкновениях и предоставляют редкую возможность для проверки и калибровки моделей фрагментации по реальным данным.

 

Более полный обзор событий в космосе, происшедших с самого начала космической эры, можно найти в выпускаемых НАСА сериях Chronology и Orbital Debris Quarterly News [Accidental…, 2005; Cizek, 2001; History…, 2004; Johnson et al., 2008; Krisko, 2006; Portree, Loftus, 1993, 1999 и др.].


Расшифровку всех приведенных в статье условных сокращений смотреть здесь: «Исследование ближнего космоса: условные сокращения».

Автор: Admin | 2012-06-23 |

История взрывов и столкновений в космосе. Часть IV

Не желаете идти на поводу у вашей судьбы и хотите знать, что Вас ждет в будущем? Тогда я хочу порекомендовать Вам сайт astrogenc.ru, где Вы найдете самые точные гороскопы, которые помогут Вам узнать, какие испытания на вашем жизненном пути уготовила Вам судьба.



Японский ракета-носитель H-IIA

 

В 2006 г. было еще несколько взрывов, в том числе разрушение второй ступени японской РН H-IIA; вспомогательного двигателя РН; верхней ступени РН «молния» [Significant…, 2007; Three…, 2006].

 

19 февраля 2007 г. взорвался разгонный блок «Бриз-М» РН «Протон». В результате не удалось вывести спутник связи «Арабсат-4А» на геостационарную орбиту. Он почти с полным баком топлива остался на орбите 495×14 750 км и наклонением 51,5° [Four Satellite___, 2007]. После взрыва образовалось более 1000 осколков.

 

В 2007 г. было восемь взрывов.

 

 


Рис. 3. КА «Фенгюн-1С» до разрушения

 

11 января 2007 г. при испытаниях китайского кинетического противоспутникового оружия была атакована и взорвана мишень — метеорологический китайский ИСЗ «Фенгюн-1С» (Fengyun1C) (международный номер 1999-025А) массой почти 960 кг, на почти круговой солнечно-синхронной орбите высотой ~850 км и наклонением 98,8° (рис. 3). В результате кинетического удара с относительной скоростью ~9 км/с в интенсивно используемой области орбит образовалось облако осколков, из которых в течение первой недели было обнаружено более 600. к 11 июля 2007 г. 129 было каталогизировано уже 2347 осколков. К середине сентября 2010 г. их было 3037 [Chinese Debris…, 2010]. По данным [Fengyun-1C.., 2008, 2009; Stokely, Matney, 2008], радар «Хэйстэк» зарегистрировал еще более 150 000 не каталогизированных осколков от взрыва размером до 1 см.

 

Интересно, что общее количество фрагментов от разрушения КА «Фенгюн-1С» (обнаруженных СККП США и радаром «Хэйстэк») превысило предсказанное Стандартной моделью разрушения от столкновения НАСА [Stansbery, 2008].

 


Рис. 4. История изменения количества КО в ОКП

 

Это событие расценивается специалистами как самое драматическое в истории «размножения» КМ, и наглядно демонстрируется резким его скачком на диаграмме рис. 4 над абсциссой 2007 г. количество каталогизированного км, который накапливался в течение 50 лет, в одно мгновение возросло более чем на треть, а фрагментов разрушений — сразу на 75 % [Detection., 2007]. Ничего подобного за всю историю освоения космоса не наблюдалось.

 

Произошедшее усугубляется еще и тем, что по оценке специалистов [Chinese Debris…, 2010; Johnson et al., 2007] основная масса образовавшихся осколков (~95 %) продолжит свое орбитальное существование в течение, по крайней мере, нескольких десятков лет, а часть из них — сотни лет [Space., 2008]. к июлю 2007 г. сгорело только 13 из каталогизированных обломков. к середине сентября 97 % всех обнаруженных и каталогизированных на тот момент обломков от взрыва (3067) все еще оставались на орбитах [Chinese Debris…, 2010].

 

И все это в области орбит, насыщенных действующими КА, в частности, метеорологическими, океанической разведки: российские «Метеор-1», «Метеор-2», американские NOAA, DMSP, китайские серии «Фенгюн» и др.

 

Из-за огромного числа образовавшихся фрагментов и большого разброса векторов начальных скоростей уже в первые шесть месяцев после взрыва некоторым действующим КА пришлось совершить маневры ухода от столкновения с ними. КА НАСА Terra, движущемуся по почти круговой орбите со средней высотой 705 км, 22 июня была дана команда на маневр ухода от 35-сантиметрового обломка (расчетное сближение составило 19 м). Спустя несколько дней МКС приготовилась к подобному маневру, который был отменен перед самым включением двигателя после того, как уточненное значение промаха оказалось приемлемым.

 

 

После разрушения КА «Фенгюн-1С» орбиты образовавшихся осколков были ограничены достаточно узким диапазоном наклонений и прямых восхождений. Однако различные скорости прецессий орбит привели со временем к существенному расширению этого диапазона. На рис. 5 показана эволюция всего пучка орбит фрагментов за шесть месяцев. Облако осколков охватило диапазон по высоте от 200 до 4000 км [Detection…, 2007; Chinese Anti-satellite…, 2007; Liou, Johnson, 2008a, b].

 


Рис. 5. Расплывающийся тороидальный пучок орбит осколков от разрушения ИСЗ «Фенгюн-1С» с интервалом в три, шесть, девять и двенадцать месяцев

 

Для сравнения напомним об аналогичном событии годом позже. 21 февраля 2008 г. США провели испытание противоспутникового оружия АСАТ, в результате которого ракетой SV-3 был разрушен ИСЗ USA-193 [Kaufman, White, 2008]. Спутник вышел из строя сразу после вывода на околоземную орбиту. Его топливный бак остался заполненным не использованным гидразином, а анализ выживаемости показал, что он может достичь поверхности Земли и создать серьезные проблемы в зависимости от того, куда бак упадет.

 


По мнению американцев, кинетический удар по спутнику и его разрушение на орбите убивали сразу двух зайцев: c одной стороны, проводилось испытание кинетического оружия, с другой, устранялась угроза падения на Землю бака, заполненного гидразином. 21 февраля спутник был разрушен на множество мелких осколков (360 было обнаружено и сопровождалось до их входа в атмосферу), большая часть которых сгорела в атмосфере в течение одного часа после удара ракеты. К концу марта на орбитах оставалось всего несколько фрагментов, последний сгорел а атмосфере летом того же года [Satellite___, 2008].

 

Эксперимент, проводившийся на высоте 250 км (гораздо меньшей, чем в первом испытании АСАТа и, тем более чем в китайском), был построен таким образом, что 99 % образовавшихся осколков сгорели в атмосфере в течение недели.

 


F-15 — убийца спутников

 

Как известно, первое испытание АСАТа состоялось 13 сентября 1985 г. Противоспутник запустили с борта самолета F-15 и разрушили ИСЗ Solwind на орбите 545×515 км. Образовалось 285 фрагментов разрушения цели, многие из которых просуществовали в космосе более 15 лет. Некоторые из них прошли на расстоянии 1,3 км от МКС. Последний из 131 осколков сгорел в феврале 2004 г. [Grego, 2006].

 

Спустя месяц после разрушения китайского «Фенгюн-1С» произошли еще четыре взрыва. Двух китайских КА и двух российских компонентов запуска: Beidou 2A, CBERS-1; двигатель осадки топлива российской РН «Протон» и разгонного блока «Бриз-М».

 

Последний взрыв заслуживает особого внимания. В феврале 2006 г. РН «Протон» с разгонным блоком «Бриз-М» был использован для вывода ИСЗ «Арабсат-4А» на низкую парковую орбиту. Через 50 мин после вывода двигатель «Бриза-М» снова был включен (второе включение из четырех запланированных). Однако из-за возникшей неисправности отработал меньше положенного времени и не включился снова. КА в результате не вышел на штатную операционную орбиту, отделился от РН, и позже была отдана команда на его управляемый вход в атмосферу. 19 февраля 2007 г. двухтонная конструкция «Бриза-М» взорвалась и разлетелась на более чем 1000 различимых с Земли обломков, находясь на орбите 495×14 705 км с наклонением 51,5°.

 

По счастливой случайности, взрыв наблюдался, по крайней мере, тремя астрономами в разных частях Австралии и был сфотографирован. На нескольких снимках ясно видно распространение облака обломков малой яркости. Причина взрыва — скорее всего неизрасходованное топливо на борту разгонного блока. Хотя все четыре взрыва непреднамеренные, по крайней мере, три из них можно было предотвратить. Как рекомендовано во многих национальных и интернациональных руководствах по снижению засоренности ОКП, КА и ступени РН в конце своего активного существования должны быть пассивированы (например, путем сброса остатков топлива) [Four Satellite___, 2007].


Расшифровку всех приведенных в статье условных сокращений смотреть здесь: «Исследование ближнего космоса: условные сокращения».

Автор: Admin | 2012-06-23 |
7 страница из 19« Первая...34567891011...Последняя »

GIF
Видео
Видео
Все обо всем
Забавно!
Иллюстрированные факты
Искусство
Истории
Все размещенные на сайте материалы без указания первоисточника являются авторскими. Любая перепечатка информации с данного сайта должна сопровождаться ссылкой, ведущей на www.unnatural.ru.