Необычный

Бриллиантовая планета Dubbed 55 Cancri e

Планета Dubbed 55 Cancri e в представлении художника

Dubbed 55 Cancri e – далекий мир, состоящий из твердых пород, который всего в два раза крупнее Земли, но тяжелее ее аж в 8 раз! Классифицированный как суперземля он впервые был замечен на фоне своей центральной звезды в 2011 году. Было выяснено, что орбитальный период этой планеты составляет всего 18 часов, а следовательно она находится настолько близко к своему «Солнцу», что температура на ее поверхности не опускается ниже 2 150 °C, что в сочетании с перенасыщенной углеродом атмосферой представляет собой идеальную среду для рождения алмаза невиданных доселе размеров!
Читать дальше>>

Автор: Admin | 2012-11-21 | Космос

Глизе 163c — настоящий рай для микробов

Это Глизе 163c и там мечтают жить все микробы Земли

В семействе кандидатов на звание потенциально обитаемых миров пополнение – недавно обнаруженная астрономами суперземля Глизе 163c (Gliese 163c), на которой, по предварительным данным, условия проживания куда лучше, чем на большинстве ранее обнаруженных экзопланет. Читать дальше>>

Автор: Admin | 2012-11-18 | Космос

Там, где живут пришельцы: Солнечная система

1. Марс




Начнем с краткого описания небесного тела планетарного типа, получившего название Марс:
диаметр 6792 км (0,53 диаметра Земли), гравитация — 0,37 (это значит, что на марсианской поверхности Вы бы ощущали только 1/3 своего веса и подросли минимум на 3 см за счет расправления позвонков вашего позвоночника), атмосферное давление в 80-160 раз меньше Земного. Сутки на красной планете длятся почти столько же, сколько и на нашей, а вот один оборот вокруг Солнца проходит за 687 земных дней.

Климат: Марс находится на границе так называемой «зоны жизни» (она же обитаемая зона). Это значит, что если бы каким-то волшебным образом Земля оказалась на орбите Марса, то она получала бы от Солнца ровно столько тепла, сколько необходимо для существования океанов из жидкой воды на экваторе. Однако из-за крайне разряженной атмосферы моря и реки на Марсе просто не могут существовать: вода частично замерзает, частично испаряется из-за низкого давления. Основная часть воды сконцентрирована под поверхностью планеты в районах полюсов. Тем не менее, видимые из космоса полярные шапки Марса состоят по большей части не из водяного льда, а из замерзшего углекислого газа, температура замерзания которого значительно ниже воды. Читать дальше>>

В Великобритании полицейские взяли штурмом дом пожилого инвалида, который случайно подстрелил двух грабителей

А тем временем В Великобритании полицейские устроили настоящую облаву на пожилого инвалида, который случайно подстрелил двух грабителей, пробравшихся на его ферму.

63-летний Эдвард Тиббс (Edward Tibbs) живет на ферме со своей женой. Мужчина не может ходить и передвигается исключительно на своем мобильном скутере. В ночь на 14 декабря он услышал гогот гусей, решил что поблизости бродит лиса и немедленно выехал на место. Эдвард сделал два выстрела в темноту и со спокойной совестью отправился на боковую. Через час к его ферме подъехали 16 вооруженных полицейских, а над домом завис вертолет, со снайпером на борту. Читать дальше>>

Автор: Admin | 2012-10-19 | Необычные новости

СКОЛЬКО БЫЛО МАРСИАНСКИХ ПРОЕКТОВ? Часть IV

Весь прошлый год Вы активно работали, желая добиться повышения, и вот теперь, когда заветная цель достигнута, Вы поняли, что все это время совершенно не уделяли внимания своей второй половинке. А это значит, что пришло время загладить свою вину!

Сделать это очень просто: достаточно всего лишь на всего подарить интересные подарки девушке, чтобы показать ей как она Вам дорога и небезразлична!

Приобрести подарки, которые смогут растопить сердце любой девушки, Вы сможете на сайте emprana.ru.



Королев предрекал, что в 2010 году на Марсе появится первая колония. Ох, если бы он знал, как заблуждался.

 

Не знаю, как на самом деле рассуждали те, кто собирался в Америку, только пришли они примерно к такому же выводу. И я, честно говоря, не вижу, где они поступили неправильно. На крючок с наживкой насадили для верности еще солнечные батареи площадью в 30 футбольных полей, и американская сторона рухнула под напором русского интеллекта. Решила посмотреть проект. Но его-то нет! Неважно, покажем фрагмент проекта — марс-модуль. Параметры немножко другие, вес не 500 т, а 150 кг, площадь солнечных батарей не 30 футбольных полей, а 30 м2, но как звучит — «первый этап экспедиции человека на Марс»! Те, похоже, клюнули на нашу липовую наживку, и пошли доставать деньги на настоящий проект. А мы, вернувшись на Родину, вывернули пустые карманы и стали дальше делать вид, что никуда не летим только потому, что ждем электрореактивные двигатели.

 

Тут надо еще раз отдать должное специалистам. Они проявили дальновидность. Американцы идею, похоже, восприняли. Но вдруг прикатят на юбилей фирмы в 1996 году, тут книжка юбилейная, а в ней про Марс ни слова! Срочно внесли в раздел целых две страницы. Маловато, но видно, как десятилетиями бились над электрореактивным проектом и как на станциях его отрабатывали, иначе что мы на них 20 лет отрабатываем? И чтобы зарубежным коллегам приятно было вспомнить, как их охмуряли, на целой странице из двух расписано, как в 1994 году Ю.П. Семенов Голдину про марс-модуль рассказывал и документы передавал. Правда, Тихонравова не упомянули, ведь единственный законный проект с ЯЭРДУ в 1962 году он лично утвердил. Ну что делать — места не хватило. Зато за державу теперь не обидно, да и имидж свой, как и рубашка, все-таки ближе к телу. И опять я не вижу, где тут специалисты поступили неправильно.

 

Вполне добросовестно, пусть в несколько шутливой форме, я обосновал действия создателей «электрореактивного мифа» и придумал благородные мотивы их поступков, хотя какими они были на самом деле, неизвестно.

 

А если без шуток, то, рассмотрев в деталях все факты, которыми жонглирует главный конструктор «электрореактивного мифа» в подтверждение якобы существующего уже 46 лет проекта «МЭК», можно сделать следующие выводы.

 


 

1. Авторы доказывает полную непричастность Королева к проекту экспедиции на Марс. Делают это вполне осознанно. Для доказательства своей позиции они среди вороха виртуальной электрореактивной шелухи размещают две неприметные фразы: первая — «В 1959 году в ОКБ-1 разрабатывался проект «ТМК» для облета экипажем Марса. Торможение у Марса, выход на околомарсианскую орбиту, посадка на поверхность Марса не предусматривались…»; и вторая — «В 1960 году в ОКБ-1 был разработан проект «МЭК». Это был первый отечественный проект полета к Марсу с посадкой человека на поверхность Марса».

 

2. Единственным официальным проектом экспедиции на Марс в СССР и в России до настоящего времени является проект, разработанный под непосредственным руководством СП. Королева на основании постановления ЦК КПСС и Совмина СССР от 23 июня 1960 года, утвержденный в июле 1962 года СП. Королевым и председателем межведомственной комиссии президентом Академии наук СССР М.В. Келдышем в составе эскизного проекта по ракете H1. В значительной мере реализован: проведены летные испытания ракеты H1 (1968-1972 годы), проведены испытания тяжелого межпланетного корабля (ТМК) в ИМБП (1968-1974 годы). Его особенность — использование жидкостных ракетных двигателей для разгона к Марсу и аэродинамического торможения в его атмосфере для перехода на орбиту спутника.

 

3. Вариант проекта экспедиции на Марс с использованием электрореактивных двигателей также был разработан под непосредственным руководством Королева. В июле 1962 года был утвержден Тихонравовым, но дальнейшая разработка, по решению Королева, была прекращена. Работы по созданию электрореактивного двигателя были продолжены и ведутся по настоящее время.

 

4. Ни один из проектов с электрореактивными двигателями, упомянутых авторами публикаций и рассмотренных выше, не существовал и не существует в статусе проекта экспедиции на Марс. А описанные различия являются различиями лишь в источниках энергии для ЭРДУ и могут свидетельствовать о том, что первоначальный выбор источника энергии был сделан условно. Он продолжается вот уже 46 лет, еще не закончен, и поэтому превосходство ЭРДУ перед ЖРД следует считать недоказанным.

 

Надо сказать, что Королев в 1962 году отказался от варианта с ЭРДУ не только потому, что перспектива создания двигателей в приемлемые сроки была нулевая, и, как видим, оказался прав. Применение аэродинамического торможения позволило снизить начальную массу комплекса сразу в два раза, и весовое преимущество ЭРДУ полностью исчезло, а те, кто не знал об этом, долгое время продолжали пребывать в эйфории от этого мифического превосходства.

 

В дополнение к сказанному необходимо отметить, что при рассмотрении лишь исторического аспекта обнаруживается весьма серьезная предвзятость, проявленная авторами публикаций. Нет никаких гарантий, что они не деформировали и техническую сторону проекта с целью подтвердить свою историческую версию. В нашей статье нет места для анализа технических аспектов серьезных изданий, но на вопросы, касающиеся не только исторических, но и технических проблем, следует обратить внимание.

В заключение хочется привести высказывание президента Академии космонавтики Анатолия Сазоновича Коротеева (РК № 3). «Большим преимуществом Академии может стать оперативное привлечение квалифицированных кадров. Тех кто уже в возрасте и отошел от конкретной деятельности, но имеет опыт и высокую квалификацию, и безусловно, молодых специалистов. Мы должны работать в тесном контакте с нашими ведущими вузами, с Академией наук. В противном случае через какое-то время мы можем оказаться в плену заблуждений ограниченного контингента специалистов». К этому хочется добавить, что в составе этого «ограниченного контингента» могут оказаться лица очень высокого ранга, как чаще всего и происходило в истории нашей космонавтики. А заблуждения у них возникали под влиянием очередного мифа, удачно поданного автором в период творческой растерянности.

Автор: Admin | 2012-08-06 |

1974 год. «Контрольный выстрел» по проекту С. П. Королева

Вы настоящий профессионал своего дела, который знает, что бизнес – это наука, на постижение которой не хватит и целой жизни. И, конечно же, ищите близких Вам по духу людей, с которыми сможете безпринуждённо общаться, обмениваться опытом, заключать контракты и т.д. и т.п.

Специально для Вас и таких Вы: всей душой и телом преданных своему делу, и была создана первая деловая сеть рунета, существующая и активно развивающаяся вот уже на протяжении 4 лет.



Иллюстрация: советский ТМК на орбите Марса. По проекту С. П. королева, именно Тяжелый Межпланетный Корабль должен был доставить первого человека на поверхность Марса и положить начало колонизации этой планеты

 

В 1974 году окончательный удар по марсианскому проекту Королева нанес его друг и соратник в прошлом, а теперь соперник и ярый противник ракеты H1 — В.П. Глушко. К весне 1974 года когорта одержимых личными интересами добилась отстранения Мишина от должности главного конструктора и начальника ЦКБЭМ.

 


В 1974 году была поставлена жирная точка на марсианском проекте С. П. Королева, а идея колонизации планеты была и вовсе названа бедовой

 

Мне довелось шесть лет взаимодействовать с Мишиным в разных ситуациях (как ведущий конструктор по ЛЗ был подчинен непосредственно ему). Могу утверждать с полной ответственностью: вряд ли любой другой руководитель, в том числе и Глушко, которого я также видел в работе многие годы (как ведущий конструктор по комплексу «Энергия-Буран»), справился бы со всем клубком проблем более успешно. Главное преимущество Мишина перед всеми — он 20 лет неизменно подставлял свое плечо Королеву, таким опытом, кроме него, не обладал никто.

Сменивший Мишина Глушко, своим приказом, с молчаливого согласия партийно-правительственной верхушки, запретил пуск подготовленного комплекса Н1-ЛЗ, а также прекратил работы не только по лунной программе, но и по ракете H1, а стало быть, и по марсианскому проекту. Производственные заделы на заводах, полигоне, в смежных организациях были уничтожены.

 


С. П. Королев был убежден, что его проект покорения красной планеты будет успешен и даже предрекал, что первая колония для советских поселенцев появилась на Марсе в 2010 году

 

 

Никто из нас — непосредственных участников работ — не сомневался в успешном запуске H1. Глушко, видимо, тоже, иначе зачем было запрещать? Даже с экономической точки зрения, уничтожение изготовленного комплекса Н1-ЛЗ на Земле дороже, чем его самоуничтожение в полете. Глушко не устраивал успешный старт H1, который мог перечеркнуть диагноз, заведомо поставленный им двигателям Кузнецова после восьми лет их отработки — «гнилые». Между тем, Кузнецов довел ресурс своих «гнилых» до трех часов непрерывной работы при заданном ресурсе не более 20 минут. Свои же двигатели для «Энергии» Глушко, игнорируя всеобщие сомнения, доводил 13 лет.

 


Многие эксперты указывают на то, что причиной несостоятельности как лунного, так и марсианского проектов были действия со стороны В. П. Глушко (на фото сверху), испытывавшего личную неприязнь к С. П. Королеву.

 

Возможно, специалисты, сотрудничавшие в то время с Глушко, попытаются оправдать государственными интересами его необоснованное, незаконное и варварское решение о прекращении работ по H1. Но один штрих вынуждает усомниться в том, что эти действия диктовались государственными, а не личными мотивами.

 

В энциклопедии космонавтики, выпущенной в 1985 году под редакцией Глушко, рассказано о многих заместителях Королева, но ни слова не сказано о Мишине, которого Королев 20 лет признавал своим бессменным первым заместителем, и который восемь лет был его преемником. Я думаю, не нужно выяснять причины, по которым фамилия Мишина даже не упомянута в энциклопедии. Хорошо известна их взаимная личная неприязнь с Глушко. Других мотивов нет. И если это так, мы вправе предположить, что Глушко мог такую же предвзятость проявить по отношению к двигателям Кузнецова, к ракете H1 и ко всему творчеству Королева. А значит, только в угоду тщеславию и амбициям он мог похоронить королевский проект экспедиции на Марс и вольно или невольно, дважды поставить отечественную космонавтику в хвост к американцам — на Луне и на «Буране».

Автор: Admin | 2012-08-02 |

Отработка межпланетного полета на макете ТМК в ИМБП. Часть II

Ярким, элегантным, стильным и невероятно полезным украшением вашей кухни станет продукция от компании Le Creuset, история которой берет свое начало в далеком 1925 году.

Приобрести прихватки, кондитерские кисти, посуду и многое-многое другое от венценосного производителя Вы сможете только на сайте www.posuda-premium.ru.



На начальном этапе подобных экспериментов преобладали задачи отладки служебных систем, обеспечивающих газовый состав атмосферы в обитаемых отсеках. Поэтому большое значение придавалось вопросам космической токсикологии и, более широко, вопросам обитаемости объекта. Пуско-наладочные работы в отсеках изделия ЭУ-37 были благополучно завершены к 1971 году. Аппаратура и оборудование НЭКа в целом были также приведены в готовность к серьезным длительным экспериментам, позволявшим с максимально возможной на Земле полнотой моделировать условия пилотируемого межпланетного полета и профессиональную деятельность экипажа. НЭК был оборудован современными средствами медицинского контроля и исследований, компьютерной базой для обработки результатов экспериментов, системой аварийной сигнализации о состоянии здоровья и среды обитания.

 

К концу 60-х — началу 70-х годов НЭК был готов к проведению экспериментов и испытаний в изделии ЭУ-37 с участием человека.

 

В первом длительном эксперименте в макете межпланетного корабля в 1971-1972 годах продолжительностью 50 суток участвовал экипаж в составе В.А. Корсакова, Ю.Ф. Климентова и Г.Н. Пожарского. Накопленный космической медициной к тому времени опыт убедительно свидетельствовал о решающем значении правильного решения вопросов психологии и психофизиологии труда для успешного осуществления длительных пилотируемых космических миссий. Исходя из этого обстоятельства, два последующих длительных эксперимента были во многом подчинены изучению указанных вопросов, для чего в состав экипажа вводился врач-исследователь с соответствующей специализацией.

 

Циклограммы этих экспериментов были насыщены разнообразными методиками исследований: медицинских, психологических, медико-технических. Весьма существенное время в структуре режима труда и отдыха уделялось техническому обслуживанию и профилактическому ремонту систем корабля. Интенсивному изучению подвергалась способность человека-оператора выполнять штатную деятельность по управлению кораблем при сближении и стыковке, для чего в состав оборудования был включен уникальный по тому времени тренажер «Волга», моделировавший процесс стыковки. Работая на нем, испытатель оценивал ряд технических параметров — таких, как расход рабочего тела, скорость касания, угловые скорости по курсу, крену и тангажу, потребное время для выполнения стандартной задачи по поиску и причаливанию. Наряду с этим количественно оценивался уровень психофизиологической напряженности оператора по показателям вариационной пульсометрии, кожно-гальванической реакции, артериального давления, электроэнцефалограммы. Тем самым изучалась «физиологическая цена» выполнения сложной операторской задачи по управлению динамическим объектом на фоне длительного изолированного «полета».

 

В ходе экспериментов испытатели подвергались воздействию комплекса факторов, характерных для длительного космического полета: длительная и напряженная профессиональная деятельность, эмоциональный стресс, лимит и дефицит времени для выполнения необходимых операций, сенсорная и социальная изоляция, напряженность межличностных отношений, резко измененные параметры газовой среды (состав атмосферы, температура, давление и влажность). Часто возникали нештатные или аварийные ситуации, а в некоторых случаях они моделировались искусственно. При этом оценивалась способность членов экипажа преодолевать утомление и переутомление, дефицит сна, ситуацию острого или хронического неуспеха. Анализировались параметры внутригрупповой совместимости и личностные особенности, влияющие на успех-неуспех деятельности индивидуума в составе малой группы.

 

Второй длительный эксперимент продолжительностью 60 суток был организован и проведен на макете ТМК в 1974 году с 29 мая по 25 июля. Состав экипажа: командир Корсаков В.А., бортинженер Рябов Э.В., врач-испытатель Макаров В.И.

 


Рис. 2. 25 июня 1975 года. Москва. ИМБП. После завершения 90-суточного эксперимента в макете марсианского корабля ТМК. Экипаж испытателей. Слева направо: В.А. Корсаков, бортинженер Б.М. Абушкин, врач В.И. Макаров.

 

Третий длительный эксперимент продолжительностью 90 суток был организован и проведен в 1975 году с 27 марта по 25 июня. Состав экипажа: командир Корсаков В.А., бортинженер Абушкин Б.М., врач-испытатель Макаров В.И. (рис. 2).

 

Испытания на макете марсианского корабля продолжались и после отстранения от должности начальника предприятия и главного конструктора В.П. Мишина в апреле 1974 года, и далее по инерции до середины 1975 года. Научно-исследовательская, инженерно-конструкторская, испытательная деятельность на наземном экспериментальном комплексе была подчинена решению доминирующей задачи — отработке агрегатов и систем марсианского корабля — ТМК, а также вопросов обеспечения жизнедеятельности и работоспособности экипажей применительно к условиям именно межпланетного пилотируемого полета. Однако с приходом к руководству В.П. Глушко после его решения о прекращении работ по королевским проектам эта деятельность была по существу поставлена «вне закона». В дальнейшем эксперименты в НЭКе были перенацелены на обслуживание текущих потребностей программы полетов на орбитальные станции. Многие системы ТМК продолжали совершенствоваться в условиях реального космического полета уже в составе орбитальных станций.

 


Только спустя несколько десятилетий, в 2010, наземный экспериментальный комплекс был использован по своему прямому назначению в рамках международной программы, получившей название «Марс-500».

 

Однажды на Байконуре, появившийся там Николай Протасов, занимавшийся всем комплексом систем жизнеобеспечения на ТМК и курировавший от ОКБ-1 эти работы в НЭКе, с грустью сообщил мне: «Володя, меня бросили в воду». Это означало, что ему поручили заниматься системой регенерации воды для орбитальных станций. Эта система, созданная для ТМК, перекочевала сначала на ДОС, потом на «Мир», где регенерировала (то есть превратила конденсат в воду и, в первую очередь, в питьевую для нужд экипажа) в общей сложности 21,5 тонны воды, обеспечив пятнадцатилетние потребности экипажа. На МКС к осени 2006 года она регенерировала 8 тонн воды. Поэтому утверждения некоторых авторов о том, что первые орбитальные станции были созданы для того, чтобы их системы использовать для межпланетных кораблей, мягко говоря, не совсем корректны. Правильнее следует сказать, что многие системы, созданные для межпланетного корабля, были использованы на орбитальных станциях и естественно проходили там свою дальнейшую отработку.

 

Королев мечтал о космическом полете, не связанном никакими ограничениями. В 1962 году он так сформулировал комплекс первоочередных задач космической биотехнологии: «Надо бы начать разработку «оранжереи по Циолковскому», с наращиваемыми постепенно звеньями или блоками, и надо начинать работать над «космическими урожаями». Каков состав этих посевов, какие культуры? Их эффективность, полезность? Обратимость (повторяемость) посевов из своих же семян, из расчета длительного существования оранжереи? Какие организации будут вести эти работы: по линии растениеводства (и вопросов посева, влаги и т. д.), по линии механизации и «светотеплосолнечной» техники и систем ее регулирования для оранжереи и т. д.?»

 

В порядке подготовки к комплексным испытаниям в составе ТМК первые наземные лабораторные образцы биолого-технических систем жизнеобеспечения прошли отработку в научном годовом эксперименте в 1967-1968 годах с участием трех испытателей в наземном лабораторном комплексе.

 

В этом эксперименте осуществилась регенерация практически всех (кроме пищи) продуктов потребления и жизнедеятельности физико-химическими методами и биологическое восполнение потребностей человека в витаминах и клетчатке при культивировании в оранжерее зеленых культур: капусты хибинской, огуречной травы, кресс-салата и укропа. Трое испытателей: врач Г.А. Мановцев, биолог А.Н. Божко и техник Б.Н. Улыбышев в течение года в условиях полной изоляции от внешней среды жили и работали, потребляя кислород и воду, полученные из их продуктов жизнедеятельности. В процессе эксперимента была установлена возможность нормального выращивания высших растений в замкнутом объеме при пребывании в нем человека и многократного использования транспирационной воды без ее регенерации для полива растений. Эксперимент был завершен 5 ноября 1968 года.

 

Видно, что стали претворяться в жизнь прозорливые слова К.Э. Циолковского: «Есть полная возможность еще на Земле практически выработать и испытать средства дыхания и питания человека в изолированном пространстве».

 

Испытаниями, проводившимися в ИМБП, не исчерпывались медико-биологические исследования в обеспечение марсианского проекта Королева. Так, в конце 1960-х — начале 1970-х годов в Институте Физики Сибирского отделения Академии наук СССР (г. Красноярск) было проведено не менее десятка длительных (до полугода) экспериментов с целью доказательства возможности осуществления в ограниченном замкнутом пространстве биологической системы жизнеобеспечения, автономно управляемой изнутри. Замкнутая экосистема с общим объемом около 300 м3 включала, помимо испытателей, звенья высших и низших растений (оранжерея). Замкнутость по массообмену достигала 82%. Воспроизводимая часть рациона экипажа была доведена до 60% по массе и до 52% по калорийности. Особо отметим, что объем гермообъекта, использовавшегося в г. Красноярске, точно соответствовал объему блока обитаемых отсеков макетного образца ТМК, установленного в НЭКе (г. Москва).

 

В тот же период в Жуковском на базе Летно-испытательного института им. М.М. Громова были проведены исследования, направленные на отработку принципов создания искусственной тяжести при перелете «Земля-Марс-Земля». Были изготовлены две установки длительного вращения. Первая из них — медленно вращающаяся камера (МВК-1) и более совершенная установка — стенд «Орбита», смонтированная на центрифуге диаметром 20 м. В результате многочисленных экспериментов с участием испытателей было установлено, что фактор вращения не может служить препятствием в медицинском отношении к созданию космического объекта (конкретно, ТМК) с искусственной тяжестью.

 

В тот же период на базе ИМБП был подготовлен, организован и проведен первый в мире длительный эксперимент продолжительностью в три года с хроническим облучением подопытных животных (собак). Спектральный состав, суммарная интенсивность и общая доза облучения соответствовали ожидаемым значениям при перелете «Земля-Марс-Земля». В данном эксперименте моделировались факторы галактического космического излучения и облучения электронами и протонами высоких энергий, возникающих при хромосферных вспышках на Солнце. Углубленно изучалось состояние здоровья подопытных животных, в том числе реакции кроветворной системы и особенности протекания высшей нервной деятельности. Было показано, что примененные факторы не приводили к развитию угрожающих жизни патологических состояний и не вызывали срыва высшей нервной деятельности животных.

 

При создании ИМБП СП. Королевым предусматривалось приоритетное решение медико-биологических проблем, критически значимых для осуществления длительных межпланетных полетов. Учитывая необходимость проведения экспериментальных исследований по данной проблеме, в середине 1960-х годов был осуществлен поиск таких природных экстремальных зон на нашей планете, в которых условия обитания человека в наибольшей степени приближены к условиям межпланетной экспедиции. В итоге для этих исследований применительно к длительным межпланетным полетам человека была выбрана антарктическая станция «Восток». Известно, что зимовка на станции сопровождается почти полной изоляцией от внешнего мира, гипокинезией, необычным световым режимом, периодическим воздействием сверхнизких температур (до -80 С) и постоянной гипоксией в связи с тем, что станция расположена на ледниковом куполе Антарктиды.

 

В период с 1965 по 1971 годы институт принял участие в 5 антарктических экспедициях. Девять научных сотрудников института находились на станции «Восток» по одному году, выполняя разнообразные физиологические и метаболические исследования в интересах космической физиологии и медицины. В итоге многолетних антарктических исследований была описана стадийность процессов адаптации к экстремальным условиям обитания. Выявлены закономерности развития астенизации организма, апробированы средства и способы поддержания жизнедеятельности человека в этих условиях. Проведенный анализ показал также, что при длительном нахождении в экстремальных условиях наиболее значимыми факторами, с точки зрения их влияния на общее состояние и поведение человека, являются не физические факторы внешней среды, а социальная изоляция, монотонность и однообразие окружающей обстановки.

 

Полученные результаты и проведенные наблюдения были учтены при медицинском обосновании возможности длительных пилотируемых космических полетов. В то же время полученные в Антарктиде результаты явились существенным вкладом в решение проблем экологической физиологии и адаптации человека к неблагоприятным климатогеографическим условиям.

 

Комплекс работ по созданию систем жизнеобеспечения человека на борту марсианского корабля в длительном межпланетном полете был задуман и организован Королевым в процессе разработки проекта этого корабля в 1960-1964 годах. В проект верило немало людей разных профессий, непосредственно занимавшихся его осуществлением. Именно поэтому работы продолжались почти десять лет после Королева. Это красноречиво говорит о том, что марсианский проект Сергея Павловича, в отличие от всех других, действительно был реальностью.

 

В совместном российско-американском издании «Космическая биология и медицина», в котором подведены итоги развития этой науки к началу XXI века, констатировалось, что степень разработанности биологических систем жизнеобеспечения по-прежнему определяется в основном результатами исследования моделей, созданных в СССР в 70-80 годы. Речь идет в первую очередь о конкретных моделях ЗБТК, предназначавшихся для реализации в бортовом варианте в составе ТМК.

Автор: Admin | 2012-07-24 |

Оценка и перспективы борьбы с космическим мусором. Часть I


Безусловно, в наше время наблюдается более ответственное отношение человека к освоению космической среды. Это, в частности, выражается и в выборе некоторыми странами (к сожалению, далеко не всеми) щадящих режимов проведения космических экспериментов, приводящих к образованию КМ; в более рациональном проектировании космической техники, во все более активном использовании орбит захоронения отработавшей техники и в расширяющейся популяризации идей бережного отношения к чистоте космической среды.

 

К сожалению, нет поставленной в международном масштабе и системно решаемой задачи полного исследования засоренности ОКП. Большинство измерений КМ собрано по случаю, как побочный продукт. Ни национальных, ни интернациональных централизованно координируемых стратегий разработки и реализации космических экспериментов, рассчитанных исключительно на изучение и решение проблемы КМ сегодня не существует [Orbital___, 1995].

 

Все известные модели предсказывают только рост техногенной засоренности околоземного космоса. Разница лишь в некоторых конкретных параметрах и форме кривых, которые, тем не менее, всегда монотонно возрастающие. Хуже того, для разных сценариев развития процесса дальнейшего освоения космоса они либо экспоненциальные, либо, в лучшем случае, асимптотически линейные.

 

В прошлом международное космическое право создавалось под эгидой Комитета ООН по мирному использованию космического пространства (COPUOS) и не имело прямого отношения к угрозе со стороны КМ. Долгое время действовали три международных договора, лишь косвенно касающиеся КМ:

• Договор о принципах управления деятельностью при исследовании и использовании космического пространства, включая Луну и другие небесные тела (10 октября 1967 г.).

• Конвенция о международной ответственности за вред, нанесенный КО (1 сентября 1972 г.).

• Конвенция о регистрации объектов, запускаемых в космическое пространство (15 сентября 1976 г.).

 


В последние годы ООН все пристальнее вникает в проблему техногенного засорения космоса. С 1994 г. Научно-технический подкомитет Комитета ООН по мирному использованию космоса на каждой своей ежегодной сессии включает в качестве пункта повестки дня рассмотрение этого вопроса [United…, 2011]. На 38-й Ассамблее COSPAR, состоявшейся в Бремене в 2010 г., на секции «Потенциально вредоносная деятельность в космосе» главной была тема «Космический мусор — глобальный вызов».

 

В 1999 г. Подкомитет выпустил свой первый большой отчет по этой теме [United…, 1999]. В 2007 г., опираясь на предложения и отчеты IADC, он разработал основные направления снижения засоренности космоса [United…, 2007а]. В этот важный документ ООН включает следующие требования к космической деятельности государств:

• ограничивать образование новых КО при нормальной работе КА;

• минимизировать возможности случайного разрушения (взрыва) КА (РН) во время его функционального существования;

• ограничивать вероятность случайного столкновения на орбите;

• избегать намеренных разрушений КО и других вредных действий в космосе;

• минимизировать возможности послеоперационного разрушения КА (РН) в виду остаточной энергетики на борту;

• ограничивать длительность пребывания КА и ступеней РН в области низких орбит по окончании их миссии;

• ограничивать длительность пребывания КА и ступеней РН в области геосинхронных орбит по окончании их миссии.

 

На 48-й сессии в феврале 2011 г. Подкомитет продолжил изучение проблемы КМ, заслушав целый ряд специальных докладов представителей США, Франции, России, ЕКА, IADC. В качестве злободневного вопроса рассматривалось постоянно возрастающее число маневров уклонения от столкновений, выполнявшихся действующими КА в последние годы. НАСА доложила о семи таких маневрах своего флота автоматических спутников и маневре МКС; Франция и ЕКА — о 13 и 9 маневрах, соответственно [United…, 2011].

 


На этой фотографии мы видим лабораторный опыт, проведенный специалистами Европейского Космического Агентства (European Space Agency). 15-грамовая алюминиевая сфера была запущена со скоростью 6.8 км/с в алюминиевый блок, толщиной 18 см.

Примерно так же выглядит броня космического аппарата, когда в него попадает крошечный обломок космического мусора.

 

Нам представляется, что следовало бы пересмотреть современную стратегию реагирования операторов КА на опасные сближения. Во-первых, точность предсказания сближения в большинстве случаев низка, прежде всего, для не каталогизированных КО. Во-вторых, не существует оценок того, насколько полезными оказались проведенные за все время маневры ухода от столкновений, действительно ли они увели КА от реальных столкновений, поскольку невозможно точно оценить реальный промах, да еще гипотетический в прошлом. В-третьих, степень эффективности дорогостоящих уходов от столкновения страдает от того, что большинство действительно опасных сближений не регистрируется, так как количество не каталогизированных (а, следовательно, не отслеживаемых) опасных элементов КМ велико. В этих условиях возможны даже такие парадоксы: уводим КА от сближения с менее опасным КО в сторону более опасного. Уже сейчас суета с так называемыми уводами от столкновений достаточно интенсивна, а что будет в будущем, когда плотность КМ значительно возрастет? Сомнению не подлежит целесообразность уводов от столкновения с крупными и массивными КО, так как они действительно крайне опасны, сопровождаются с высокой точностью ввиду достаточного количества измерений и меньшей зависимости эволюции их траектории движения от атмосферного торможения (меньшее значение отношения площади поперечного сечения к массе).


Расшифровку всех приведенных в статье условных сокращений смотреть здесь: «Исследование ближнего космоса: условные сокращения».

Автор: Admin | 2012-07-02 |

Пути уменьшения негативных последствий засоренности земной орбиты и снижения самой засоренности. Часть IV

Хотите провести незабываемый отдых на пляже, омываемом теплыми волнами Карибского моря? Тогда без промедления вбейте в Яндекс “Маргарита Венесуэла” или, не тратя времени, посетите сайт www.isla-margarita.ru, который расскажет Вам, чем так примечателен райский остров под названием Маргарита.



Рис. 2. Оптико-электронный комплекс по наблюдению за космосом «Окно»

 

Традиционные методы поиска плохо адаптируются к новым широкомасштабным популяционным изменениям в ОКП и нуждаются в совершенствовании с целью повышения их производительности и эффективности. В настоящее время назрела необходимость модернизации всего арсенала методов поиска КО и создания методологии обнаружения мелких и слабоконтрастных космических объектов (КО) на основе последних научных достижений в этой области. В частности [Вениаминов, 2010], предлагается новый теоретический подход к построению методов поиска таких КО по грубой априорной информации об их орбитах. Некоторые методы, основанные на этом подходе, успешно испытаны, показали высокую эффективность и уже используются в действующих системах (в российской СККП, в частности, в ОЭК «Окно» (рис. 2) [Tretyakov et al., 2005; Veniaminov et al., 2005]). Еще на этапе отработки с их помощью удалось обнаружить БЭКО типа «Молния», считавшиеся потерянными и в течение более полугода не кооперируемые операторами, а также успешно пронаблюдать заданные КО на ГСО бортовым телескопом с очень узким полем зрения в космическом эксперименте с орбитальной астрономической обсерваторией «Астрон» (рис. 3), проводившемся в течение более шести лет с марта 1983 г. под руководством академиков А. Б. Северного и А. А. Боярчука.

 


Рис. 3. Советская космическая обсерватория «Астрон» была запущена в 1983 году. Проработала вместо одного запланированного года шесть лет

 

За последние десятилетия создано много моделей засоренности ОКП, в том числе и для составления прогнозов на десятки и сотни лет вперед. Однако практически все они грешат достоверностью выдаваемой информации. Одна из главных причин в недостатке измерительной информации для калибровки этих моделей, особенно в части мелкого КМ.

 

Повышение эффективности решения проблемы КМ, оперативности получения соответствующих оценок и прогнозов требуют постоянного совершенствования динамических моделей состояния засоренности ОКП на базе современных научных исследований (в математике, физике, астрономии) и регулярного притока новых данных наблюдений КМ. Крайне актуально заполнение пробела в знаниях о связи между хорошо наблюдаемой крупноразмерной фракцией фрагментов разрушения КО и практически ненаблюдаемой мелкой фракцией с целью адекватной экстраполяции первой на вторую при моделировании разрушений.

 

Имеет смысл внимательно проанализировать архивные данные всех космических миссий, предусматривавших зондирование космоса разнообразными бортовыми СН в различных диапазонах длин волн при выполнении задач, не связанных с наблюдениям КМ. Новая информация о КМ будет получена фактически бесплатно и этим нужно воспользоваться.

 


Рис. 4. Радиолокационная станция GRAVES

 

Международное сотрудничество могло бы помочь улучшить качество каталогов КО без особых дополнительных затрат. Это, пожалуй, самый экономичный способ существенно поднять эффективность каталогов. В каждом из них есть объекты, отсутствующие в других. Кроме того, между каталогами есть противоречия, анализ которых даст возможность устранить ошибки в обоих каталогах. В принципе, такой обмен позволит улучшить и точность сопровождения КО. Идеальным шагом в интересах повышения качества мониторинга ОКП было бы объединение СККП России, США и создающейся сейчас европейской СККП. Однако первые две системы принадлежат Министерствам обороны России и США, а основа европейской СККП РЛС GRAVES (рис. 4) — Министерству обороны Франции. Поэтому существуют определенные режимные ограничения на выдачу информации, и в нынешней международной обстановке мало вероятно, что их удастся устранить.

 

Крайне важно договориться о запрете намеренных разрушений КО, в том числе в конце их активного существования, испытаний кинетического оружия (ИС, АСАТ, KKV). Этот вопрос в значительной степени политический и затрагивает такие деликатные аспекты интересов государств, как национальная безопасность. Если не удастся договориться о полном запрете, то можно попытаться склонить заинтересованные стороны к проведению испытаний по «разумным» щадящим сценариям, которые завершались бы минимальным увеличением засоренности космоса.

 

По мере нарастания угрозы техногенного засорения космоса и ее осознания широкими слоями общества все чаще слышны голоса из научных, общественных и государственных организаций о необходимости принятия более радикальных мер борьбы с этой угрозой, чем реально принимаемые или планируемые. Так, Международная академия астронавтики (IAA) после фундаментальных исследований, инициированных ею в конце 2006 г., пришла к выводу о необходимости сосредоточиться, в отличие от прежних, «пассивных» мер, на активном удалении из космоса больших и малых нефункциональных КО — отработавших КА, ступеней РН, сопутствующих космическим миссиям фрагментов, которые служат потенциальным источником дальнейшего развития каскадного эффекта.

 


Рис. 5. Прогноз распределений пространственной плотности крупных КО для различных сценариев борьбы с засорением ОКП

 

Основным инструментом исследований служила эволюционная модель НАСА LEGEND. В качестве критерия для выбора кандидата на удаление было принято произведение массы КО на вероятность столкновения — MPC. При этом рассматривались различные сценарии и нормы удаления: 5 (сценарий 1), 10 (сценарий 2) и 20 (сценарий 3) КО в год, начиная с 2020 г. На рис. 5 показан прогноз на 200 лет (на 2206 г.) распределений пространственной плотности крупных КО (<10 см) по высотам для этих сценариев. Нижняя кривая представляет распределение плотности на 2006 г., верхняя — прогноз на 200 лет при условии, что никакие меры по снижению засоренности ОКП приниматься не будут [Liou, Johnson, 2007].

 


Рис. 6. «Солнечный парус» на аппарате Космос-1, запуск которого состоялся в 2005 году с российской подводной лодки, но закончился неудачей и ракета-носитель вместе со спутником упали в океан

 

Главный вопрос стратегии активного удаления КО из космоса, как уже отмечалось, — рациональный выбор эффективных (или хотя бы физически реализуемых) и в то же время экономически оправданных (по крайней мере, щадящих) средств проведения этой операции. К их числу может быть отнесено использование направленной энергии, электродинамических и аэродинамических приемов (искусственное увеличение баллистического коэффициента), «солнечных парусов» (рис. 6), вспомогательных двигательных установок, тормозящих поверхностей, «захват» на орбите и пр. Проект IAA позиционируется как международный, у него 23 автора из девяти стран [Johnson, Klinkrad, 2009; Liou, Johnson, 2007a].

 

Заметим, что эта мера (активное удаление из космоса крупных объектов) постоянно предлагается в течение последних 30 лет. Однако принять ее к исполнению мешала дороговизна таких проектов. Сейчас, похоже, правительства космических держав (прежде всего США) готовы с этим смириться ввиду большой убедительности последних событий в ОКП.


Расшифровку всех приведенных в статье условных сокращений смотреть здесь: «Исследование ближнего космоса: условные сокращения».

Автор: Admin | 2012-07-02 |

Пути уменьшения негативных последствий засоренности земной орбиты и снижения самой засоренности. Часть III

Хотите побывать этим летом в славном городе Ставрополь, тогда обязательно занесите в закладки своего браузера сайт http://2stavropol.ru/, по страницам которого Вы совершите электронную экскурсию по этому прекрасному городу. Так что, когда Вы приедете в Ставрополь, то будете знать его как свои пять пальцев и точно не сможете пропустить ни одной достопримечательности.



Рис. 1. Бремя существования переходной ступени вывода КА на ГСО с борта шаттла

 

Слабые гравитационные возмущения влияют на время существования КО на ГСO с высотой перигея меньше 300 км, а выбор ориентации орбиты по отношению к Солнцу и Луне может заставить лунно-солнечные возмущения работать на снижение перигея. На рис. 1 показано, как время существования РН изменяется в зависимости от угла между плоскостью начальной орбиты переходной ступени и Солнцем [Loftus et al., 1992]. Это подсказывает очень дешевый способ ускорения схода с орбиты некоторых КА, но для других может потребоваться существенная коррекция программ запуска, полета, функционирования и согласования с прочими требованиями миссии.

 

На низких орбитах можно использовать приспособления для усиления торможения в атмосфере, например, установку насадок или изменение геометрии поверхности с целью увеличения ее площади. Это могут быть надувные баллоны. Чтобы они не сдувались после перфорации мелким мусором, использовать способы придания им жесткости после надува.

 

Перевод КА и РН на орбиты захоронения в конце их активного существования. Принудительное снятие КО с орбит и сокращение времени их существования обходится сравнительно недорого для НОКО или КО на эллиптических орбитах с низким перигеем. С ростом высоты их стоимость неприемлемо возрастает. Есть более универсальный метод «разредить» переполненные рабочие орбиты — перевод выработавших ресурс КА на орбиты захоронения, где они уже не представляют угрозы для действующих КА. Такие орбиты должны отстоять достаточно далеко от рабочих, чтобы естественные возмущения не вернули их вскоре назад. Перевод КО на орбиты захоронения не может считаться радикальным способом борьбы с засорением космоса, так как не уменьшает общей кинетической энергии в ОКП. Этот способ снижает риск столкновений в исходном районе, но повышает его в районе захоронения. Если там произойдет разрушение КА, то осколки могут достигнуть и его прежней рабочей орбиты. При выборе способа снижения опасности столкновения для действующих КА нужно сопоставлять различные варианты по стоимости и эффективности. Представляется, что в перенаселенной низкоорбитальной области, где трудно найти место для орбиты захоронения, обычно больше подходят методы радикального удаления КО с орбиты. Но для ГСО и полусуточных орбит они слишком дороги.

 


Швейцарцы уже изобрели миниатюрные аппараты, которые научное сообщество прозвало космическими пылесосами. Основная задача этих сверхтехнологичных устройств – очищение орбиты нашей планеты от мусора

 

Методы активного удаления КМ с орбит. Эта идея возникла почти лет 30 назад [Liou, Johnson, 2007b; Orbital___, 1985]. Однако из-за технической сложности и чрезвычайно высокой стоимости подобных проектов их не относили к разряду практически реализуемых. Удаление с орбит крупных КО требует высокозатратного создания специальной космической транспортной техники при сравнительно малой значимости снижения риска столкновений в результате такой операции. Самая оптимистическая оценка стоимости реализации подобного проекта [Petro, Ashley, 1989] — более 15 млн. дол. на каждый КО в нижней орбитальной области, не считая затрат на разработку маневровых систем.

 

События 2007, 2009 гг. (разрушения КА «Фенгюн-1С», «Иридиум-33», «Космос-2251») и последние модельные исследования, подтвердившие явную нестабильность популяции КМ в низкоорбитальной области (ниже 2000 км), дали новый импульс для дискуссий на эту тему. Как уже упоминалось выше, президент США Обама заявил в 2010 г., что национальная космическая политика США предусматривает проведение исследований и развитие технологий удаления КО из ОКП. Были даны соответствующие директивы NASA и Министерству обороны США [Liou, 2011b; President…, 2010].

 

 

Перед планированием операций по активному удалению КО встает ряд вопросов:

• в каком орбитальном районе следует осуществлять такие операции в первую очередь;

• каковы главные цели этих операций;

• какой КМ следует удалять в первую очередь;

• какой будет выигрыш от этого;

• каким образом конкретно осуществлять операцию.

 

В свете последних исследований и событий в космосе ответ на первый вопрос будет однозначен — низкоорбитальная область с наиболее неустойчивой популяцией КМ с признаками начала каскадного процесса. Засорение более высоких орбитальных областей, как мы уже отметили, проходит значительно медленнее. Второй вопрос затрагивает как общие, так и частные цели. Общей вполне может быть максимизация отношения достигаемой выгоды к стоимости операции. Частные цели: управление ростом популяции мусора, ограничение интенсивности столкновений, смягчение последствий столкновений для конкретно выбранных КА, например, пилотируемых, и т. п. Какой КМ удалять прежде всего, во многом зависит от ответа на второй вопрос. Если цель операции — стабилизация роста популяции КМ или снижение числа катастрофических столкновений, то удалять нужно в первую очередь крупные массивные КО. В случае постановки задачи снижения угрозы нарушения функционирования действующих КА, следует настраиваться на удаление КО размером от 5 мм до 1 см. Они самые опасные в этом смысле и составляют 80 % всех КО размером более 5 мм [Liou, 2011b]. Другой вопрос — как это сделать.

 

Идей высказано достаточно много, включая и весьма фантастические предложения: «космические веники», огромные пенные шары, фольговые ловушки, лазерные испарители наземного и космического базирования. Короче, в настоящее время не существует сколько-нибудь эффективных технологий удаления мелкого КМ, а все предлагаемые схемы выглядят очень дорогими.

 

Выбор того или иного метода борьбы с засорением ОКП по сути будет компромиссом между эффективностью его применения и стоимостью реализации.

 

Мы уже говорили, что из-за ошибок прогнозирования движения КО в 159 атмосфере невозможно с достаточной определенностью и, главное, своевременно предсказать место и время падения на Землю крупных обломков, что не позволяет принять необходимые меры защиты.

 

Главная неопределенность связана со «слабым» знанием вариаций плотности верхней атмосферы, и трудностью предсказания изменяющейся во времени площади поперечного сечения НОКО из-за его переменной ориентации в пространстве. Функцией этих двух характеристик будет сила сопротивления атмосферы, как очень важная компонента уравнений движения КО. Из-за плохого знания этих характеристик точность прогнозирования движения НОКО снижается на ±15 %, что составляет несколько, а иногда и десятки километров за сутки. Эти ошибки существенно превосходят все остальные, включая погрешности наблюдения и неоднозначность модели движения. Особенно недопустимы такие ошибки при расчете параметров сближения КО для программирования маневра уклонения от столкновения.

 

Над этой проблемой работают многие ученые, но ее решение пока оказывается им не под силу. Заметно улучшить точность определения этих двух характеристик сейчас нереально. Единственный, по нашему мнению, вариант — увеличение плотности средств наблюдения и рациональное их размещение с целью сокращения «слепых» для СН интервалов движения КО. Положительный эффект в этом случае гарантирован, однако проблема — в высокой стоимости реализации такого варианта. В то же время, если это все-таки будет сделано, то приведет не только к демпфированию проблемы непредсказуемости атмосферы, но и к существенному покрытию слабо контролируемых сегодня областей орбит, т. е. к более быстрому обнаружению КО, причем на большем разнообразии орбит.

 

Обе СККП испытывают множество трудностей в обнаружении и контроле движения БЭКО и других КО в высокоорбитальной области. Одна из причин этих трудностей — несовершенство используемых повсеместно методов поиска и обнаружения малоразмерных и слабоконтрастных КО. В ОКП присутствует гигантская масса элементов КМ с широчайшим разбросом орбитальных, массогабаритных и прочих индивидуальных параметров: по высотам, размерам, яркости и т. п. При этом специалисты испытывают большой дефицит измерительной информации для полноценного исследования проблемы техногенного засорения ОКП. КО различных классов требуют индивидуального подхода к их поиску и обнаружению.


Расшифровку всех приведенных в статье условных сокращений смотреть здесь: «Исследование ближнего космоса: условные сокращения».

Автор: Admin | 2012-06-30 |
6 страница из 52« Первая...2345678910...203040...Последняя »

GIF
Видео
Видео
Все обо всем
Забавно!
Иллюстрированные факты
Искусство
Истории
Все размещенные на сайте материалы без указания первоисточника являются авторскими. Любая перепечатка информации с данного сайта должна сопровождаться ссылкой, ведущей на www.unnatural.ru.