Необычный

Космо-факты

Самые удивительные и невероятные факты о космосе.




1. Масса Солнца составляет 99.86% от массы всей Солнечной системы, оставшиеся 0.14% приходятся на планеты и астероиды.
Читать дальше>>

Автор: Admin | 2012-02-15 | Космос, Необычный Топ

Картины свечной копотью

Как и многие другие художники, француз Стивен Спазак (Steven Spazuk) начинал свою карьеру со скетчей, потом перешел к написанию картин акварельными, а позже и акриловыми красками. В 1980 году он был очарован идеальными оттенками и плавными градиентами, которых позволяло добиться использование аэрозольных красок.

В 2001 году у него родилась идея, благодаря которой сегодня его называют мэтром современной живописи, на работах которого воспитывается новое поколение художников-авангардистов.

Однажды, тоскливым зимним вечером… а может и солнечным летним днем мне в голову пришла мысль: ‘Что произойдет, если я поднесу холст к источнику огня и попробую нарисовать картину пламенем?’. Ответом стало темное пятно копоти, в котором угадывались очертания моего родного города”, — меланхолично вспоминает Стивен Спазак.

Художник, закончивший Университет Лаваль (Universit Laval) и ставший в 1983 году бакалавром изобразительных искусств, создает как миниатюрные картины и гигантские мозаики, которые состоят из множества отдельных полотен. Читать дальше>>

Автор: Admin | 2012-02-10 | Искусство

Модель образования океанов. Часть II

Хотите провести незабываемые выходные со своей семьей или просто порыбачить и подумать о жизни в одиночестве, тогда вашим выбором станет уникальная и самобытная природа Приморья, чья красота не имеет в мире аналогов. Узнать все, что Вас интересует о природе Приморья ‘из первых рук’ Вы сможете на сайте blogotshelnika.ru.


Поначалу мне казалось невозможным проверить это, потому как диапиры везде должны контактировать с водой, и не только в океанах, но и на континентах, поскольку кора повсеместно обводнена в той или иной степени. Однако потом сообразил, что Байкальская зона рифтогенеза* вся поражена вечной мерзлотой и там везде отрицательные среднегодовые температуры. Под долинами в этой области вечная мерзлота прослеживается на 300—400 метров, а под хребтами ее мощность не менее километра. Разумеется, в мерзлоте могут быть проталины («талики», на языке мерзлотоведов). Однако они располагаются в основном под крупными реками и озерами, и площадь их распространения мала среди ареала ненарушенной мерзлоты. Вода не может проникать сквозь слой вечной мерзлоты, она попросту замерзает. Следовательно, кора этого региона должна быть обводнена в меньшей степени, а это как раз то, что нужно, и можно было надеяться, что тепловой поток здесь будет ниже среднего (фонового) для геологических провинций подобного рода (для древних платформ).

———————————————————————————————————

* Байкальская зона рифтогенеза имеет ширину около 200 км и протягивается на 1500 км. Озеро Байкал является лишь одной из впадин этой зоны.

———————————————————————————————————

 

Согласитесь, такой сумасшедший прогноз можно было сделать только на основе концепции «изначально гидридной Земли». Ведь Байкальская зона рифтогенеза повсеместно подперта диапиром «аномальной мантии», в котором отмечаются пониженные плотности и скорости сейсмических волн. В рамках традиционных представлений, все привыкли это связывать с высокими температурами, а посему тепловой поток просто обязан быть выше фонового.

 

В свете наших построений, пониженные плотности и скорости обусловлены не высокими температурами, а тем, что «аномальная мантия» представлена интерметаллическими сплавами. Был изготовлен сплав из кремния, магния и железа, взятых в пропорции, как ее определила магнитная сепарация (см. табл. № 1)*.

 

———————————————————————————————————

* В пересчете на 100% сплав содержал: кремния — 51, магния — 35,5 и железа — 13,5 % вес. Навеска была изготовлена из порошков металлов. Плавление проводилось в алундовом тигле в электровакуумной печи при степени разрежения порядка 10-5 — 10-4 мм ртут. ст. Температурный режим: нагрев до 1600 0С — 2 часа (с задержкой в области плавления магния на 0,5 часа), выдержка при 1600 0С — 5 мин. Охлаждение — 2 ч. Для предупреждения разбрызгивания при плавлении тигель накрывали плотной крышкой, а для уменьшения пористости проводилось повторное плавление.

———————————————————————————————————

 

Для данного образца были определены сжимаемость и скорости прохождения сейсмических волн в диапазоне давлений до 27 килобар (рис. 18).

 


Рис. 18. Скорости прохождения сейсмических волн и сжимаемость железо-магний-кремниевого сплава в диапазоне давлений до 27 кбар, за пределами этого интервала — экстраполяция. Точками показаны скорости и плотности в породах типа оливиновых габроноритов.

 

Согласно этим данным при давлении 11 килобар, что соответствует глубине 35 км, плотность становится равной 3,1 г/см3, а скорость 7,6 км/с, что полностью соответствует значениям в аномальной мантии на этих же глубинах. Более того, в «аномальной мантии» геофизики отмечают аномально высокие (для силикатов) градиенты нарастания плотности и скоростей с глубиной, но именно это свойственно исследованному образцу. Таким образом, все геофизические аномальности в глубинном диапире, подпирающем Байкальскую рифтовую зону, становятся нормой, если считать, что в основание коры внедряются не силикаты, а интерметаллические силициды. Мне оставалось только ждать, что покажут исследования теплового потока.

 

Следует отметить, уже в 70-х годах ХХ века стало ясно, что в Байкальской рифтовой зоне (БРЗ) складывается парадоксальная ситуация — отсутствует региональная тепловая аномалия. Согласно бытующей точки зрения, такого быть не должно. Последовали новые энергичные исследования, и вот, через 30 лет, получен еще более парадоксальный результат — тепловой поток в БРЗ существенно ниже среднего для Забайкалья. Весной 2002 года в Иркутске в Институте земной коры состоялась защита докторской диссертации В.А.Голубева, в которой было объявлено «что средневзвешенное по площади БРЗ значение теплового потока, учитывающее все полученные к данному моменту величины, составляет лишь 46,1 мВт/м2». Среднее для Забайкалья равно 52± мВт/м2. Фоновое значение для областей этого типа, не затронутых рифтогенезом, составляет 60—65 мВт/м2. Как мы видим, среднее для Забайкалья меньше фонового значения, и это свидетельствует об охлаждающем влиянии глубинного диапира на сопредельные территории. Таким образом, мой сумасшедший прогноз подтвердился (этот прогноз был опубликован в 1992 году в книге, изданной на английском языке в Канаде — «Hydridic Earth…»).

 

Мы не случайно отклонились от темы «образование океана», это было необходимо для объяснения специфики вулканизма в зонах спрединга. В осевых частях океанов под рифтовыми долинами также располагаются холодные диапиры интерметаллических силицидов. Однако в этих зонах они подходят совсем близко к поверхности планеты, на расстояние порядка 1,5—2-х километров от дна океана. Выше мы уже говорили о том, что на подходе они непременно контактируют с водой и в своей головной части покрываются «шляпой» силикатного расплава, т.к. реакции окисления сопровождаются выделением большого количества тепла. Вместе с тем сами силициды в существенном объеме не плави -лись, поскольку у них достаточно высокие температуры плавления (Mg2Si — 1102 0C, Si — 1430 0C, FeSi — 1410 0C), высокая теплопроводность (примерно на порядок выше, чем у силикатов), и, кроме того, они ведь холодные. При такой теплопроводности отток тепла из зоны нагрева будет столь эффективен, что просто не возможно поднять температуру в существенном объеме до точки плавления. Это все равно, что пробовать расплавить железный лом, нагревая его кончик, торчащий из ледяной воды.

 

Отсюда следует, что силикатный расплав в зоне контакта диапиров с водой может существовать лишь весьма непродолжительное время, пока идут экзотермические реакции. Но как только трещинная зона, открывшая воде путь к силицидам, залечивается расплавом, реакции тут же прекращаются, и все быстро остывает, поскольку это все не поддерживается внутренним теплом планеты, а, наоборот, «замораживается» из-за эффективного охлаждающего воздействия глубинного диапира. Скорее всего, каждая дайка и связанное с нею излияние базальтов в осевой зоне являются следствием отдельного акта плавления. Итак, расширение планеты вызывает появление трещинных зон, через которые вода гидросферы проникает в интерметаллические силициды. Последние в зоне контакта с водой бурно окисляются, силикатная оторочка диапиров плавится, расплав извергается через те же трещинные зоны и залечивает их дайками, доступ воды в зону реакции прекращается, остатки расплава быстро охлаждаются и кристаллизуются в виде силикатной корки. Если расширение продолжается, то образовавшаяся корка и дайка (дайки) вновь рвутся трещинной зоной и весь цикл раз за разом повторяется, покуда идет процесс разрастания океана, т.е. этап расширения планеты, сопровождаемый нагнетанием «клиньев» интерметаллических силицидов в осевые части зоны спрединга. Именно так формируется «комплекс параллельных даек».

 

В свете сказанного можно понять, почему дайки имеют столь малую протяженность по вертикали (примерно 1,5 км) и обнаруживают исключительную распространенность по горизонтали. Кроме того, при нашем понимании этого явления, нет необходимости предполагать существование крупных, скрытых на глубине, магматических очагов, питающих дайки. Следует сказать более категорично: на этапе формирования «комплекса параллельных даек» таких очагов на глубине быть не должно. Все, что может быть расплавного, это силикатная «шляпа» на головной части интерметаллического диапира, на глубине 1,5—2-х километров от дна рифтовой долины. И обнаружить ее можно в тех местах, где в настоящее время происходят излияния лав; там, где излияний нет, расплавная «шляпа», скорее всего, уже превратилась в силикатную корку. И еще, расплавы, если они образуются по нашей модели, должны быть «сухими», т.е. в них не должно быть воды, что можно установить при исследовании свежих закаленных стекол. Более того, в этих силикатных стеклах могут быть включения самородных металлов.

 

Мне довелось видеть в нескольких местах на континентах современный вулканизм, связанный с рифтогенезом. Это очень интересная тема, и о ней стоило бы поговорить более подробно, но не в этой книге. Здесь только отмечу, что поражает полнейшее отсутствие поствулканической деятельности. К примеру, на западе США в штате Айдахо современными базальтами залита громадная территория. Извержения происходят из множества центров, и крупные вулканические постройки отсутствуют. На местности относительный возраст лав легко определяется по характеру растительности. Более ранние потоки уже имеют кое-где кармашки с почвой и соответственно траву и кустики. Однако сплошного растительного покрова нет. Более поздние потоки абсолютно лишены и почвы, и растительного покрова, а на самых молодых нет даже пыли. Ходишь по ним с опаской, все мерещится, что они еще не остыли, но нигде ничего не булькает и не парит, ничем не пахнет, нет ни одной фумаролы, ни одного грязевого котла. Ощущение такое, как будто все внезапно было заморожено. И учтите, что этот вулканизм ныне действующий, он не закончился, и новые извержения могут произойти в любой момент. Этому месту американцы дали название «лунные кратеры», видимо, по причине отсутствия растительности, преимущественно черного цвета излившихся пород и какой-то угнетающей безжизненности ландшафта.

 

В районах современного вулканизма, где вулканическая деятельность поддерживается внутренним теплом планеты (Курилы — Камчатка и др. островные дуги или зоны альпийского тектогенеза), такого не увидишь. Да что за примером далеко ходить, в 300 км к северо-востоку от «лунных кратеров», в Йелоустонском парке, где также современный вулканизм, но поддержанный глубинным теплом планеты, все совершенно иначе. Тут тебе и гейзеры, и фумаролы, и горячие источники, и сероводородом воняет так, что хоть противогаз надевай, породы раскрашены гидротермами во все цвета радуги, и на этом фоне буйство жизни, как растительной, так и животной. Бывало так, поставишь машину на асфальтированную площадку, отойдешь выпить кофе и покурить, возвращаешься, а под бампером твоей машины появилась трещинка в асфальте, и из нее уже пробивается фумаролка. Даже беглого взгляда достаточно, чтобы увидеть нарастание эндогенной активности в данном регионе. Интересно, чем все это завершится? И не дай бог здесь случится извержение игнимбритов, которые способны заливать одноактно площади в десятки тысяч квадратных километров.

 

Мне как геологу бывать в таких местах чрезвычайно интересно. Но хотел бы я жить постоянно на этих территориях? Одному — с превеликим удовольствием, с семьей — ни за что на свете. А они — американцы живут, правда, не плотно. Видимо долгое существование в комфорте и достатке притупляет чувство самосохранения и усыпляет бдительность. Представьте себе, в Айдахо (где «лунные кратеры») одновременно с последними излияниями базальтов обширные площади более древних извержений были превращены в «крошево» множественными мелкими взрывами. В результате верхний слой, на глубину нескольких метров, представляет собой хаотическое нагромождение остроугольных обломков (преобладающие размеры от 0,4 м и более) и глыб (размерами с автомобиль), которые, по всей видимости, неоднократно перебрасывались с места на место. Среди этого хаоса можно разглядеть взрывные воронки диаметром до 10—15 м, которые сохранили свою форму, потому что оказались последними.

 

Ходить по этому «крошеву» абсолютно невозможно, можно перебираться на четвереньках, и то с особыми мерами предосторожности. Многие глыбы еле держатся, чуть тронешь — она поехала, и хорошо, если ты сверху. Базальты, по большей части, ошлакованные, их ноздреватые сколы хорошо сцепляются, в результате сохраняются очень крутые откосы и даже вертикальные стенки. Сначала я не понял, откуда такое взялось, и полез внутрь этого хаоса, не жалея рук и ног. Сгоряча залез далеко, наконец, сообразил «что к чему» и затем долго и нудно выбирался назад, проклиная свой дурацкий энтузиазм и переживая за кроссовки, которые, прямо на глазах теряли свой фирменный вид. Более «мертвого» места невозможно себе представить, там не было даже насекомых, и это в июне месяце.

 

В данном регионе протрузии интерметаллических силицидов внедряются в кору. Они содержат примесь водорода. Кроме того, в результате реакций с водой, проникающей в силициды сверху по трещинным зонам, также выделяется большое количество водорода. Это приводит к образованию и отделению из зоны реакции резко восстановленных флюидов, состоящих преимущественно из водорода и силанов. Силаны (кремний-водородные соединения) сильно ядовиты и, смешиваясь с кислородом атмосферы, взрываются. Вряд ли кто пожелает оказаться в том месте, где все это может случиться снова. И нет никаких сомнений, что это произойдет в ближайшем будущем, поскольку уже несколько лет, как вода из реки Snake River, протекающей по этой территории, по большей части уходит под землю. Ниже мы еще будем обсуждать некоторые другие явления, связанные с отделением силанов.

Автор: Admin | 2012-01-26 |

Внешнее ядро планеты Земля

У каждой современной женщины возникает естественное желание избавиться от нежелательных волос на теле. В салонах красоты качественное исполнение этой процедуры стоит немалых денег и может очень серьезно ударить по семейному бюджету, поэтому я советую каждой бережливой хозяйке всерьез задуматься о приобретении домашнего фотоэпилятора MS Westfalia HPLight, который быстро и безболезненно удалит нежелательные волоски.
Более подробную информацию о фотоэпиляторе и условиях его приобретения Вы сможете узнать на сайте www.hplight-shop.ru


Внешнее ядро планеты Земля

 

1. Поперечные волны не проходят через внешнее ядро, что свидетельствует о его жидком состоянии.

2. Магнитное поле Земли генерируется во внешнем ядре, и поэтому оно должно иметь высокую электропроводность.

3. Плотность на подошве мантии примерно 5,5 г/см3, на поверхности ядра — 9,9 г/см3, т.е. при переходе через границу плотность увеличивается примерно в 1,8 раза.

 

В рамках наших построений внешнее ядро представлено металлами, содержащими водород в основном в виде раствора. И оказывается одного этого (водорода, растворенного в металлах) абсолютно достаточно, чтобы внешнее ядро было жидким, электропроводящим и более плотным в сравнении с металлосферой, из которой водород был дегазирован в прошлые эпохи. Однако по порядку.

 

Технологам хорошо известно охрупчивание металлов при растворении в них водорода. Причину этого явления выясняло уже не одно поколение специалистов по физике твердого тела. Теперь представьте себе, как к этим специалистам приходит неотесанный геолог (ваш покорный слуга) и заявляет, что если металлы с растворенным в них водородом подвергнуть всестороннему (гидростатическому) сжатию, то с некоторого уровня давлений охрупчивание исчезнет, проявится способность к пластической деформации, а при дальнейшем повышении давления металлы потекут, как будто бы они расплавлены. И все это, по нахальному мнению «неотесанного», должно быть при комнатной температуре.

 

Можете представить, что тут началось. Физики ринулись доказывать, что это абсолютно исключено. Рисовали формулы, но это меня не впечатляло по причине моей якобы полной неосведомленности. Они это легко приняли и перешли на более доступные способы убеждения, что, мол, нужно хоть что-то знать в той области, в которой предсказываешь неизвестное ранее физическое явление. Я соглашался с ними, скорбел по поводу своей неотесанности, но уходить не торопился. Наконец, самый маститый из присутствующих, окончательно потеряв терпение, сказал: «То, что вы предлагаете, звучит для Нас так же, как если бы Мы стали уверять вас, что сейчас перед входом в Наш институт на скамейке сидит семейство питекантропов. Вы бы Нам поверили?!». Невозможно было не увидеть в этом заявлении намека на то, что (по их разумению) я сам из этого же семейства. Я резко встал. Физики вздохнули с явным облегчением. Но вместо того, чтобы вежливо исчезнуть, я радостно предложил им пойти и посмотреть на ту скамейку, если сидят, то прогноз верен, а если нет, то, стало быть, нет. Такой реакции они явно не ожидали. Повисло гробовое молчание, но я заметил, что они устали и почти готовы сдаться и проверить предсказанное мной явление хотя бы потому, что такого никто никогда не делал. Они — экспериментаторы, а это чрезвычайно любопытная публика, на что я и рассчитывал.

 

Почувствовав критический момент, я вытащил «бумагу», оформленную на фирменном бланке Академии наук СССР, с подписью академика-секретаря. Он тоже геолог и не мог «не порадеть родному человечку». В письме была настоятельная просьба оказать мне всяческое содействие. Физики заворчали, что, мол, надо было начинать с этого, столько времени зря потеряли. Вопрос был решен.

 

Непосредственные исполнители нашлись в одном академическом институте на Урале, там была подходящая аппаратура. Состоялась встреча, на которой исполнители разочаровали меня своими техническими возможностями, они могли определять пластичность металла только до 12 тысяч атмосфер (при комнатной температуре). Но мне нужен был гораздо больший интервал давлений. Без всякой надежда: на успех я согласился и передал им образец состава TiH0,14 (при такой концентрации водород находится в титане исключительно в виде твердого раствора). На вопрос: «Какой ожидается результат?», я тут же от руки нарисовал график (см. рис. № 8). Нарисовал, разумеется, «от фонаря», но держался при этом столь уверенно, что произвел определенное впечатление на исполнителей, и вопросов они больше не задавали.

Через несколько дней зазвонил телефон: «Здравствуйте, это мы с Урала! Помните нас?» Голос веселый, но вместе с тем какой-то немного прокурорский. Просят о встрече. Ну, думаю, физики хотят позабавиться над бедным геологом… Встретились, они дают мне чертеж и говорят: «Это результат эксперимента». Смотрю и вижу, что этот чертеж один к одному совпадает с моим рисунком (от фонаря!). Озвучил свое наблюдение. Они повторяют, что это результат эксперимента: «просто все получилось именно так, как вы нарисовали». «Но так же не бывает!» — вырвалось у меня. Физики-экспериментаторы посмотрели на меня какими-то странными взглядами и согласились: «Мы тоже думаем, что такого быть не может, и хотели бы знать, где Вы про это прочитали?»… Так вот в чем причина странности их взглядов — они подозревали меня в плагиате.

 


Рис. 8. Появление пластичности в титане, содержащем растворенный водород, в условиях гидростатического (всестороннего) сжатия.

 

 

В голове был полнейший сумбур, все вертелся вопрос: как же такое (?!) могло случиться? Наконец, я успокоился, а что, собственно, произошло? Просто концепция сработала на предсказательность, и немного улыбнулась фортуна в том, что для первого опыта был выбран именно титан, у которого переход от водородной хрупкости к пластичности оказался при таких низких давлениях. Выбрал бы какой-нибудь другой металл и сидел бы сейчас с постной рожей. Как водится у мужиков, страшно захотелось глотнуть «освежающего», однако времена были «застойные», и пришлось удовлетвориться сигаретой.

 

Между тем физики сидели и ждали, когда же я буду «колоться» по поводу плагиата, и, судя по выражениям на их лицах, совершенно неадекватно понимали мои душевные муки. Пришлось рассказать им про новую концепцию, постепенно подводя к выводу, что в рамках этих построений предсказанное мной явление просто обязано быть. Показал на эту тему книгу, опубликованную мною несколькими годами раньше, где все это было обосновано.

 

Смотрю, поверили и уже не слушали, а внимали. Кроме того, при своих прежних контактах с физиками, как с этими ребятами, так и с теми учеными мужами, что записали меня в питекантропы, я немного лукавил, бравируя своей неотесанностью. На самом деле было потрачено много времени на ликбез в данной области, и я мог вести разговор на их профессиональном языке, чем в данный момент постарался воспользоваться в полной мере. Ребята поняли, что перед ними «никем не паханное», загорелись энтузиазмом и, действительно, затем много и быстро сделали.

Оказалось, как я и предполагал, переход от водородной хрупкости к водородной пластичности при гидростатическом сжатии наблюдается во всех металлах, если только в них удается создать твердый раствор водорода и сохранить его при комнатной температуре. А титан вообще начинает течь при давлении в 10—12 тыс. атм., как будто бы он расплавлен, и это при комнатной температуре (справка — температура плавления титана 1665 оС)*.

 

————————————————————————————————————

* Более того, с помощью некоторого «know how» я могу заставить титан (состава, примерно TiH0,1) течь, как будто бы он расплавлен, при давлении порядка одной тысячи атмосфер и температуре, мало отличающейся от комнатной (напоминаю, температура плавления титана 1665 оС). Эти опыты я проводил на установке, которая не позволяла сделать давление меньше 1—1.5 тыс. атм. Однако у меня полная уверенность в том, что титан (с применением моего «know how») потечет и при меньших давлениях, что открывает новую возможность в технологии обработки металлов. Ау! Инвесторы, где вы? Есть возможность кое-что организовать и хорошо заработать.

————————————————————————————————————

 

Вместе с тем кремний в обычных условиях не металл, а полупроводник, и в нем не удается сохранить истинный твердый раствор водорода при комнатной температуре. Поэтому с кремнием эксперименты не проводились. Однако в интервале давлений 112—125 килобар решетка кремния трансформируется в более плотную модификацию, и при этом происходит переход типа «полупроводник → металл», т.е. кремний в недрах нашей планеты с уровня 375 км и глубже становится металлом по всем физическим свойствам. И поскольку в таблице Менделеева он стоит непосредственно над титаном, то свойства металлизированного кремния должны быть очень сходными со свойствами титана.

 

Работа уральских физиков весьма укрепила мою уверенность в собственной правоте, и с этой уверенностью я вновь отправился к ученым мужам, которые так неласково меня приняли поначалу.

 

Разумеется, я жаждал реванша и ждал покаяния. Но ни того, ни другого не получил. У них, у физиков-экспериментаторов, нет жестких канонов, с которыми они за долгое время сосуществования могли бы сродниться душой и телом и воспринимать их крушение болезненно. У них все быстро меняется, и только захочешь что-нибудь возвести в догму, как она рушится в связи с новыми результатами. Они к этому привыкли и восприняли реальность предсказанного мной явления как в общем-то рутинное событие. И все же им было любопытно узнать, какая модель физического процесса позволила предсказать неизвестное ранее физическое явление.

 

Эта модель удивительно проста. Все основано на сопоставлении размеров голого протона и атомов металлов, слагающих кристаллическую решетку. Они различаются на 5 порядков, т.е. в сто тысяч раз! Если представить протон в виде зернышка мака размером в 1 миллиметр, то атомы будут шарами с диаметром в 100 метров, в сечении это будет больше футбольного поля. При уплотнении металлов в 5 раз диаметр этих шаров будет 60 метров, т.е. будет все та же разница в 5 порядков между размерностью протона и атомами многократно сжатого металла. Теперь представьте себе, что практически вся масса атома сосредоточена в ядре (масса покоя электрона примерно в 1850 раз меньше массы протона или нейтрона), и ядро металла, в наших модельных представлениях, будет небольшой горошиной, которая затерялась где-то в центре футбольного поля. Получается, что весь объем заполнен электронами, представляющими собой непонятно что, но только не корпускулы, а скорее какие-то энергетические волны-вихри с эфемерной массой, да еще сильно растянутые по своим орбитам. Среди этих «футбольных полей» гуляет миллиметровая бусинка-протон с точечной концентрацией заряда и массы.

 

Вспомним, что внешняя электронная оболочка металла занимает преобладающую (в несколько раз) долю объема атома, а электронов в ней на порядок меньше. Что запрещает протону заходить в эту сравнительно слабо заселенную зону? «Кулоновский барьер» ядра (?), но он практически полностью экранирован внутренними плотными электронными оболочками. Диффузия водорода в металлах может на 7 порядков превышать скорость диффузии других элементов. Только представьте: водород за секунды проходит расстояние, на преодоление которого другому элементу требуются годы. И все это потому, что водород диффундирует в виде протона, размеры которого исчезающе малы в сравнении с атомами, составляющими решетку (маковое зернышко на футбольном поле).

 

Металловеды также установили, что скорость диффузии водорода одинакова, что через монокристалл, что через образец, в котором после холодной прокатки «набито» великое множество дислокаций, вакансий, границ зерен и др. несплошностей решетки, обычно являющихся путями ускоренной диффузии примесных атомов. Чтобы примесному атому переместиться в соседнее междоузлие, ему нужно преодолеть потенциальный барьер в виде плотно окружающих его атомов кристаллической решетки, на что требуется энергия (энергия активации диффузии). Поэтому примесные атомы для ускорения диффузии используют различные нарушения решетки, где эти барьеры ослаблены или отсутствуют. И совершенно очевидно, что протону эти барьеры не создают никакой преграды, он способен проходить сквозь сами атомы металлов, поскольку для него внешние электронные оболочки, по сути, пустота.

 

Но если протон проникает внутрь атома, то это равносильно увеличению эффективного заряда ядра. Внешние электроны будут подтягиваться внутрь, и атомный радиус уменьшится. Этому атому, внезапно похудевшему, уже гораздо легче проникнуть в соседнее междоузлие, тем более что такому же внезапному похуданию подвержены также атомы, создающие барьер для перехода (схлопотал протон — похудел, потерял — поправился, протоны не связаны химическими связями и гуляют в объеме металла). Короче говоря, наличие протонов в металле разрушает барьеры, препятствующие атомам кристаллической решетки переходить в соседнее междоузлие. Кристаллическая решетка теряет свою жесткость, начинает «оплывать», т.е. становится пластичной. Отсюда водородная пластичность металлов, и эта пластичность обусловлена резким увеличением способности атомов к диффузии. Без водорода такая пластичность наблюдается лишь при сильном нагревании металла (до размягчения), когда колебания атомов становятся столь энергичными, что кристаллическая решетка уже не в состоянии удержать их на своих местах.

 

Все это я поведал физикам, но только более строго, они не любят образности. Реакция опять была абсолютно негативная. Они сказали, что диффузионной пластичности при комнатной температуре быть не может. Скорее всего, всестороннее сжатие образца приводит к резкому увеличению плотности дислокаций, и, по их мнению, появляющаяся пластичность имеет обычный дислокационный характер. Идею о том, что протоны способны проникать внутрь электронных оболочек, физики обсуждать отказались, полагая ее бредовой.

 

Разумеется, вынесенный вердикт меня никоим образом не устраивал. Допустим, я могу объяснить жидкое состояние внешнего ядра планеты присутствием в металлах растворенного водорода, возможность этого показали эксперименты. Но мне обязательно нужно было внедрение протонов в электронные оболочки, чтобы последние подтягивались внутрь и в результате сокращались бы размеры атомов. Ведь внешнее ядро Земли не только жидкое, но и более плотное в сравнении с окружающей его металлосферой. Я спросил физиков, что могло бы поколебать их уверенность в невозможности проникновения протонов в электронные оболочки атомов. Ответом было: «Ну, к примеру, если вы докажете диффузионный механизм водородной пластичности». Схема изящного эксперимента возникла у меня мгновенно, но я благоразумно не стал тут же обсуждать ее с оппонентами.

 

Я решил вырастить алмаз в твердом металле из атомов углерода, содержащихся в этом металле в виде твердого раствора. И если я прав в своих построениях, то алмазы у меня должны вырастать «мгновенно» в твердой среде (в твердой кристаллической решетке металла). Из специальной литературы мне было известно, что введение водорода в металл резко снижает растворимость в нем углерода. Т.е. если в металле имеется твердый раствор углерода и мы введем в решетку водород, то углерод должен «выпасть из раствора» в виде самостоятельной минеральной фазы. И если давления низкие, то это будет графит, а если высокие — будет алмаз. Вместе с тем присутствие водорода в виде протонов обеспечит столь быструю диффузию атомов углерода, что алмазы должны вырастать в твердой решетке металла очень быстро, можно сказать, «невероятно быстро».

 

На ближайшей помойке валялась пришедшая в негодность батарея водяного отопления. Она была чугунная, а в чугуне в виде твердого раствора находится примерно 8—9% (ат.) углерода (что сверх этой концентрации, то присутствует в чугуне в виде графита). Я отколол от этой батареи кусочек, из которого выточил исходные образцы для эксперимента. В одном подмосковном научном центре нашлись люди, увлеченные синтезом алмазов. Они предоставили мне свою технику для создания высоких давлений и терпеливо научили на ней работать. Они же снабдили меня сведениями, согласно которым при 750 оС область стабильности алмаза появляется при давлениях порядка 35 килобар и выше. Вместе с тем меня просветили, что это согласно термодинамическим расчетам, поскольку при данных параметрах никто не синтезировал алмаз, т.к. кинетика процесса при такой температуре столь мала, что никакой жизни не хватит дождаться результата. И поэтому алмазы выращивают при температурах порядка 1200—1250 оС, при которых кинетика становится ощутимой для синтеза кристаллов. Данная ситуация меня вполне устраивала, т.к. я собирался ускорить кинетику (по сути, диффузию) на несколько порядков введением протонированного водорода в решетку металла.

В образец чугуна я заложил источник водорода, который должен был сработать при повышении температуры, и этот «сэндвич» был помещен в установку высокого давления. Сначала его «задавили», потом нагрели до 750 оС, подержали несколько минут, отключили нагрев, отключили компрессор, вынули, положили в пакетик и написали № 1. Затем то же самое еще 4 раза проделали с другими идентичными образцами. Итак, у меня 5 пакетиков и большой скепсис относительно результата, особенно в связи с малой продолжительностью опытов. Однако держать дольше не имело никакого смысла, т.к. водород очень быстро уходил из образца. Через некоторое время я уже был в химической лаборатории, где под тягой на электроплитке стоят 5 стаканчиков, в них в кипящей царской водке постепенно исчезает железо, а из него вываливается какой-то темный мусор. Этот мусор был промыт спиртом, высушен, и вот он уже у меня в виде «дорожки» под бинокуляром.

 

Перебираю эту грязь и меланхолично отмечаю: это графит из чугуна, это карбиды железа, это вообще «не знамо что». И вдруг в поле зрения появляется октаэдр, чистый, играющий всеми цветами радуги, завораживающий своей формой с идеальными треугольными гранями. Безусловно, это алмаз! И его появление среди бесформенного темного мусора казалось нереальным. Чтобы насладиться зрелищем, стал поворачивать его с боку на бок стальной иголкой, неосторожно прижал к стеклу, раздался щелчок, и он выскочил за пределы поля зрения. Я готов был убить себя за неосторожность, проклиная все на свете, вытащил из гнезда осветитель и стал подсвечивать все вокруг. Кристаллик выдал себя своей игрой со светом. Я водворил его на место и стал быстро-быстро просматривать дорожку дальше. Обнаружил еще с десяток монокристаллов с формой куб-октаэдра, размером от 0,3 до 0,7 мм, и десятка два сростков столь занимательной конфигурации, что ими можно было любоваться до бесконечности. Примерно такой же набор был найден еще в двух опытах, а два оказались пустыми. Предположительно, в пустых опытах водород нашел лазейку и вытек, минуя основной объем металла.

 

При давлениях порядка 35 кбар чугун плавится около 1200 оС. Это температура эвтектической горизонтали (Fe—Fe3C), и она на 450 оС выше температуры эксперимента, т.е. в моем опыте алмазы выросли заведомо в твердом металле, и выросли с такой скоростью, какой никто не ожидал, кинетика синтеза выросла на многие порядки. Кроме того, они (алмазы) не содержали включений железа, что также говорит о чрезвычайно эффективной диффузии.

 

Таким образом, мне удалось показать, что протонированный водород в металле действительно резко облегчает диффузию атомов в кристаллической решетке, как своих собственных, так и примесных. И скорее всего, это связано с проникновением протонов в электронные оболочки металлических атомов. По крайней мере, предсказанные на этой основе неизвестные ранее физические явления были установлены экспериментально. А как еще доказывать правомерность сделанных предположений? Но если протоны способны проникать в электронные оболочки атомов и вызывать тем самым сокращение атомных радиусов, то следствием этого должно быть повышение плотности и сжижение металла. Именно это и наблюдается во внешнем ядре планеты.

Теперь относительно электропроводности внешнего ядра, которая должна быть высокой, чтобы обеспечить генерацию магнитного поля. С этим вообще никаких проблем, поскольку внешнее ядро в нашей модели состоит из металлов. Более того, при образовании раствора водорода его атомы отдают свои электроны в зону проводимости металла, при этом, естественно, возрастает электропроводность. К тому же растворение водорода в металлах можно рассматривать как образование в объеме металла полностью ионизированной водородной плазмы, высокая электропроводность которой обеспечивается как подвижностью электронов, так и подвижностью протонов.

Надо сказать, что синтез алмазов оказался настолько захватывающим делом, что я уделил ему гораздо больше времени, чем предполагал вначале. При этом выявились удивительные явления. Началось с того, что полученные мной кристаллы я показал большому специалисту по синтезу алмазов, не раскрывая особенностей их происхождения. Он посмотрел на них и сразу сказал: «Давление можно существенно снизить, тогда будет меньше сростков и больше монокристаллов». Я последовал совету и, сохраняя температуру синтеза в пределах 700—750 оС, стал последовательно снижать давление сначала до 25 кбар, затем до 20 кбар и, наконец, до 16 кбар. И при этих давлениях у меня все равно из твердого раствора углерода получался алмаз, т.е. синтез так и не вышел из области стабильности алмаза, хотя последнее значение давления (16 кбар) на 14—15 кбар ниже кривой равновесия графит — алмаз. Я не знаю, сказывается ли в этом присутствие протонов в решетке металла или это просто следствие сбора кристаллов алмаза по атому из раствора, а не в результате трансформации решетки графита в структуру алмаза? В специальной литературе мне встречались данные о том, что присутствие протонированного водорода в решетке металлов и сплавов резко снижает температуру и давление фазовых переходов. В общем, получается, что алмаз может и не быть показателем высокого давления.

 

В одной серии экспериментов, которая проводилась в цехе предприятия по промышленному производству алмазов, я использовал многокомпонентный сплав, температура плавления которого была около 700 оС. По технологии сборки опыта этот сплав удобнее было использовать в виде порошка. Многокомпонентные сплавы обычно содержат хрупкие интерметаллические соединения, так что издробить их в тонкий порошок не составляет труда. Я обнаружил, что этот сплав активно взаимодействует с атмосферной влагой, а выделяющийся водород растворяется в металле. Чтобы избежать этого, порошок сплава хранился в герметичной таре и открывался только на время сборки опыта. И все же можно было видеть, что со временем его частицы покрывались тончайшей белесой пленкой окисла, а сплав, естественно, насыщался водородом (у порошков большая активная поверхность). Я знал также, что под давлением этот сплав, насосавшийся водорода, может стать жидким и это неминуемо вызовет разгерметизацию и выброс сжиженного металла наружу, что чревато всякими неприятными последствиями. Опыты проводились на большом прессе, и объем испытуемой навески составлял что-то около 15 см3, так что неприятности могли быть немалыми.

 

Я настойчиво предупреждал участников эксперимента о возможных последствиях, предлагал надробить свежего металлического порошка. Но они делали свою рутинную работу, только с другим сплавом, все шло как обычно, и мои страхи казались им необоснованными. В конце концов по своей технологии они всегда после набора давления включают нагрев и плавят металл навески, и если все собрано нормально, без нарушений отработанной технологии, то никаких выбросов не происходит. Я пытался объяснить им, что в своих опытах они плавят после набора давления, т.е. после того, как у них по всем щелям, под нагрузкой, растекся уплотнитель, все запечатал, градиенты уравновесились и давление стало гидростатическим. В моем же случае сплав станет жидким не от нагрева, а в процессе набора давления (на холоду), когда градиенты еще не уравновесились и выброс будет неминуемым, и что все зависит лишь от того, когда сплав накушается достаточно водорода. Однако мне опять не поверили, да и как поверишь в то, что металл может расплавиться без нагрева, на холоду. Но мне и самому стало любопытно узнать, чем все это закончится. Вместе с тем с началом каждого нового эксперимента я стал методично закрывать защитные стальные дверки, предохраняющие окружающих от прямого попадания.

 

Ждать долго не пришлось. В процессе набора давления грохнуло, и так хорошо, как будто выстрелили из чего-то крупнокалиберного прямо над ухом. Работники цеха списали это на изношенность оборудования, поставили новые вкладыши из карбида вольфрама, тщательно провели сборку опыта и снова начали набор давления. Тут уж я стоял и неотрывно следил за стрелкой манометра, хотел знать, при каком давлении произойдет сжижение металла. Нужно было набрать 30 тыс. атм., набрали 20 тысяч, и опять грохнуло. На этот раз навеску выбило струей в сторону зрителей, она ударилась в защитную дверку, сползла вниз и застыла в виде лужицы на горизонтальной поверхности на виду изумленной публики. Забавно было видеть недоумение присутствующих, взгляды которых метались от рубильника (которым включался нагрев) к лужице металла. На лицах читался вопрос: «Как же так, нагрев не включали, а металл навески оказался расплавленным, вот же она, застывшая лужица?». Кто-то, не веря своим глазам, стал осторожно щупать эту лужицу, как щупают раскаленную сковородку, затем осмелел, накрыл ее ладонью и с изумлением произнес: «Но она же холодная!?».

 

Я же стоял и сокрушался по поводу силы стереотипов в нашем мышлении, ну почему раньше мне не приходило в голову, что внешнее ядро планеты тоже может быть холодным (временами) и вместе с тем будет оставаться жидким, электропроводящим и плотным, в рамках моей концепции, разумеется. Позже мы еще поговорим об этом.

Автор: Admin | 2012-01-26 |

Биоинформационные ритмы общества и цивилизации. Часть VIII

Сломался новенький Ipad? Не беда, ведь именно для решения таких проблем и существует сервисный центр apple, который Вы найдете по адресу www.ymservice.ru!


Ельцин пошёл на такое преступление — он разрушил СССР. О последствиях, которые могли настигнуть миллионы людей, он не думал. На почве пьянства у него выработалась патологическая ненависть к людям, и поэтому миллионы людей для него ничего не значили. Только личная власть и, главное, ничем не ограниченная значила для него многое, если не всё. И вот этот «борец» с привилегиями возглавил сформировавшиеся в конце 80-х годов «демократические силы». Что они сделали с СССР, мы уже знаем. Но наиболее «яркие» действия под руководством Ельцина осуществили «демократические» силы Российской Федерации, ставшей после 12 июня 1990 года независимой, в столице СССР — городе Москве. Это они в августе 1991 года сделали государственный переворот, после которого были блокированы все органы управления СССР. Эти «демократические» силы рвали и топтали советские знамёна, сжигали перед телекамерами билеты членов КПСС, громили редакции советских газет, издевались над советскими и партийными работниками, сносили с пьедесталов памятники, переименовывали улицы и города. Свои «победы» эти «демократические» силы отмечали дикими воплями нанятых ими эстрадных отморозков на священном для каждого советского человека месте — Красной площади. Видимо старались разбудить юродивого Василия, прозванного в народе Блаженным, который спит вечным сном возле Красной площади под храмом, построенным на месте его захоронения и названным в его честь. Истеричные вопли и визги эстрадных «отморозков» стали для «демократических» дикарей, а точнее зверей в человеческом обличии, призывами к дальнейшим действиям. Дальнейшие действия не заставили себя долго ждать. Требовалось быстро покончить с противниками и сопротивляющимися новой власти, а также закрепить свою победу законодательно.

Для противников и сопротивляющихся новой «демократической» власти было устроено кровавое действо в октябре 1993 года. Во время этого действа «демократические» силы и её власть порезвились и повеселились по «полной программе». Всё было проделано в полном соответствии с заранее разработанным планом. Вначале «артподготовка», объявленная вождём «демократических» сил — Ельциным. Затем истеричный вопль «демократической» интеллигенции, далее призыв её представителей к вождю «раздавить гадину», и в заключение — акция по устрашению. Что было делать вождю, если призывают? Только действовать. После призыва «раздавить гадину» пьяный «гарант прав человека», он же президент, он же бессменный вождь «демократических» сил приказал пьяной солдатне и руководящим ею офицерам-предателям показать всему миру, что такое российская демократия. Пьяная солдатня — это уже не советские солдаты, охранявшие мирный труд советских людей, это были специально подобранные «отморозки», способные за бутылку водки расстрелять не только каких то там представителей законодательной власти — депутатов, но и своих матерей. Как эти «отморозки» зверствовали на стадионе «Динамо», куда привозили противников «демократических» сил, хорошо известно. Многие видели фотографию трупа молодой девушки, исколотой и обезображенной до неузнаваемости. Для «гаранта» и послушных ему отморозков она оказалась опасным врагом. За такие подвиги «героям» давали денежные премии и звания героев России.

Октябрь 1993 года покрыл народы России несмываемым позором. День 4 октября 1993 года стал датой окончательного завоевания России западными масонами, и началом уничтожения русского народа. Это уничтожение началось с навязывания русскому народу новой «демократической» конституции. Именно с навязывания, потому что доподлинно известно, что русский народ своей большей частью эту конституцию не принял и за нее не голосовал. В этой конституции нет ни одного упоминания о русском народе, как об обществообразующей — и государствообразующей нации. И это при 82 % русских в России. За 7 лет, с 1993 по 2000 годы, Ельцин и его подручные отобрали у этого народа принадлежащие ему природные ресурсы, разграбили и частично уничтожили его уникальное народное хозяйство. Путем создания невыносимых условий жизни для женской половины русского народа был нарушен генофонд русской нации и, в дополнение к этому, был разработан план полномасштабного уничтожения этой уникальной нации. С конца 90-х годов в отношении русского народа начался геноцид в полном смысле этого слова.

Такое будущее было явлено русскому народу в октябре 1993 года главной его святыней — иконой Владимирской божьей матери. Вынесенная во время «демократического» шабаша на Красную площадь и попавшая в руки «демократов», икона быстрее всех «узнала» о грозящей народу беде. После этого шабаша она почернела. Верный признак скорби по погибшим недавно и по тем, кто еще погибнет. С того времени народ ее больше не видел, так как ее от народа тщательно скрывают. Об этом явлении поведал телезрителям в своей передаче «Момент истины» тележурналист А. Караулов.

В 1999 году в России можно было всюду видеть необратимые последствия грандиозной социально-политической катастрофы 1991-1998 годов. Главные итоги этой катастрофы: русский народ полностью утратил способность к сопротивлению, превратился в Ивана, не помнящего свое родство, и смирился с участью раба. Видели это и его могильщик — Ельцин со своими покровителями -американскими масонами, которые в конце 1999 года убрали его с политической сцены чтобы замести следы его, и своих тоже, преступлений.

Нам остается рассмотреть последний вопрос: есть ли у русского народа возможность вернуть свое былое величие? Увы, такой возможности у него сегодня нет, и не будет в обозримом будущем. Восстановление того величия и общественного положения, какие были у русского народа в СССР невозможны по следующим причинам. Первая, и главная: русский народ находится в «демократическом» государстве — Российской Федерации под властью морально и нравственно разложившейся правящей элиты, которая в соответствии с ее состоянием не только не заинтересована, но и умышленно препятствует всем процессам, направленным на предотвращение быстро ускоряющегося вымирания этого народа. Объясняется это тем, что почти вся властная элита находится под жестким контролем американских масонов и вся ее деятельность этими масонами отслеживается. Американские масоны преследуют только две цели — уничтожение русского народа и захват освободившейся от него территории. Вторая причина: скорость уничтожения русского народа властной элитой совместно с масонами намного больше скорости стремления народа к организованному сопротивлению против его уничтожения. На сегодня, что реально видно, эта скорость близка к нулю. Иначе говоря, у народа почти нет желания спасать себя и свою страну. Третья причина: отсутствие всякой возможности появления в стране народного лидера, или вождя, способного возглавить русский народ в его борьбе за выживание. Сегодня в России очень многие начинают верить в чудеса и на этой вере строят свои утверждения о возможности появления у русского народа некоего вождя или даже Мессии. Однако, чудеса — это одно, а существующая в стране реальность — это другое. Чудесное спасение русского народа, и России в целом, возможны, если появится лидер способный сыграть роль вождя, или по результатам своей деятельности он может быть признан народом, как вождь. Именно так было со Сталиным. Но этого не произойдёт, ибо из морально и нравственно разложившейся властной элиты лидер с качествами вождя не появится. Может появиться только либо очередной алкоголик, либо горнолыжник, либо косноязычный болтун, но только не тот, кто нужен народу. В народных массах талантливых и умных людей, способных быть лидерами много, но из народа лидер с качествами вождя не появится, потому что властная элита убьет любого, кто сможет реально претендовать на роль народного вождя. Для этой элиты появление народного вождя — вопрос ее жизни и смерти. Ради своего господства властная элита России пойдёт на любое преступление. Причины можно перечислять и далее, но пора переходить к выводам. Главный вывод из всего, вышеизложенного, может быть только один: историю народов творят сами народы и они же своим творением ее и заканчивают. У народов СССР было время подумать над тем, что они творят с собой, и со своей страной, в конце 80-х годов XX века. Сегодня это время безвозвратно ушло. Завтра время безвозвратно уйдет для народов России, и история народов России закончится. Галактика давала возможность народам СССР и России построить Великую цивилизацию, но они этой возможностью не воспользовались. Галактику в этом случае винить бессмысленно, так как она всегда только предлагает, но не обязывает.

Автор: Admin | 2012-01-16 |

ЭВОЛЮЦИЯ РНК В МОЛЕКУЛЯРНЫХ КОЛОНИЯХ

ЭВОЛЮЦИЯ РНК В МОЛЕКУЛЯРНЫХ КОЛОНИЯХ

 

Таким образом, с одной стороны, молекулярные колонии нам помогли найти источник так называемого спонтанного синтеза РНК, а, с другой стороны, они подвергли сомнению эксперименты Сола Шпигельмана (Sol Spiegelman), которые были проведены сразу после того, как Qβ-репликаза была обнаружена, и которые до сих пор цитируются как эксперименты, в которых впервые была показана эволюция молекул в пробирке (Joyce, 2007).

Что было сделано Шпигельманом? Он брал в качестве исходной матрицы геномную РНК фага Qβ. Это длинная одноцепочечная РНК: более 4000 нуклеотидов. Добавлял сколько-то этой матрицы в пробирку с репликазой и нуклеотидами. Через некоторое время маленькую порцию переносил в следующую пробирку, потом в следующую, следующую, следующую… Таким образом, осуществлял последовательные пересевы. И оказалось, что если сделать 20-30 пересевов и проанализировать продукты синтеза, то в продуктах обнаруживается не высокомолекулярная РНК — та, исходная, 4000 нуклеотидов длиной, — а малые РНК, длиной около 200-300 нуклеотидов (Chetverin, 1997). Шпигельман и соавторы сделали вывод о том, что в их экспериментах путем спонтанных делеций происходили изменения РНК в направлении увеличения скорости репликации. И таким образом они имели, буквально, эволюцию в пробирке: у них из неэффективно реплицирующейся большой молекулы получились эффективно реплицирующиеся малые молекулы РНК.

 

 


Рис. 5. Отбор рекомбинантных молекул РНК по способности реплицироваться.

 

Однако в свете наших результатов о том, что так называемый спонтанный синтез вызывается загрязнениями РНК, присутствующими в воздухе, можно предположить, что в вышеуказанных экспериментах происходила не эволюция, а просто вытеснение одних малоэффективно реплицируемых молекул другими более эффективно реплицируемыми молекулами.

Все-таки, возможно ли создание новой генетической информации на уровне РНК? Мы попытались ответить на этот вопрос с помощью молекулярных колоний. С этой целью использовали два взаимодополняющих фрагмента реплицируемой РНК: 5′-фрагмент (то есть, 5′-концевой фрагмент) и З’-фрагмент. Qβ-репликаза может экспоненциально размножать целую молекулу РНК, но не может размножать ее составные фрагменты. Однако если между фрагментами произойдет реакция (ее называют рекомбинацией) таким образом, что образуется целая молекула, включающая оба фрагмента, то тогда, возможно, образуется реплицируемая молекула (рис. 5). Действительно, так и оказалось. Мы приготовили смесь фрагментов, посеяли ее на агарозу с репликазой, потом накрыли эту агарозу мембраной, пропитанной нуклеотидами — субстратами для синтеза РНК. Если только один фрагмент присутствовал в агарозе, то никаких колоний РНК мы не видели. Но если в агарозе присутствовали оба фрагмента, то колонии образовывались. Отсюда мы сделали вывод о том, что, действительно, между фрагментами происходит реакция таким образом, что из двух молекул получается одна, то есть образуется новый РНК-геном (Chetverin, 1997).

В вышеописанном эксперименте в реакции, в агарозе, присутствовала Qβ-репликаза. Поэтому было непонятно, кто осуществляет рекомбинацию? Сами по себе фрагменты реагируют друг с другом или Qβ-репликаза каким-то образом их соединяет? Мы несколько изменили постановку эксперимента. Оказалось, что если фрагменты окислить: обработать их перйодатом натрия таким образом, что будут уничтожены З’-гидроксилы, — то тогда Qβ-репликаза не способна промотировать рекомбинацию между такими фрагментами. Мы инкубировали смесь фрагментов в присутствии ионов Mg2+ без Qβ-репликазы, после чего окисляли реакционную смесь перйодатом, чтобы уничтожить гидроксилы (таким образом, дальнейшая рекомбинация была невозможна). Затем высевали смесь фрагментов на агарозу, содержащую Qβ-репликазу. Оказалось, что из нереплицирующихся фрагментов образуются реплицирующиеся молекулы, при этом число таких молекул, которое отражается в числе колоний РНК, зависело от температуры и времени предынкубации фрагментов до того, как они были окислены и смешаны с Qβ-репликазой (рис. 6). Это прямо говорило о том, что фрагменты РНК способны спонтанно реагировать в отсутствие всякого белка с образованием более крупной молекулы (Chetverina et al., 1999).

 

Рис. 6. Возникновение реплицируемых молекул РНК в результате спонтанной рекомбинации. Смесь фрагментов RQ РНК инкубируют в присутствии Mg2+, а затем окисляют перйодатом для уничтожения З’-гидроксилов. Это подавляет рекомбинацию в присутствии Qβ-репликазы, поэтому число колоний РНК становится зависимым от температуры и времени инкубации фрагментов до их контакта с репликазой. Скорость спонтанной рекомбинации — 10-9 ч-1 на нуклеотид.

 

На самом деле мы наблюдали ничто иное как эволюцию молекул РНК. Происходило образование нового качества, которое подвергалось отбору и побеждало постольку, поскольку обладало преимуществом — новым признаком: способностью к репликации.


Ваши моральные, идеалистические и вероисповедальные принципы не позволяют Вам покупать компьютерные диски? Тогда Вы просто обязаны знать, что можете совершенно безвозмездно скачать торрент файл необходимой вам программы, игры или фильма на максимальной скорости на сайте firebit.org.


РАЗМНОЖЕНИЕ ГЕНОВ В МОЛЕКУЛЯРНЫХ КОЛОНИЯХ >>

Автор: Admin | 2011-11-15 |

Долго ли живут протоны?

Долго ли живут протоны?

Мы, создатели «Руководства», считаем себя психологами-любителями1. Мы предполагаем, что люди увлекаются физикой, потому что боятся катаклизмов, черных дыр и конца света либо надеются все о них узнать. Ведь и вы, проезжая мимо автомобильных аварий, всегда притормаживаете, чтобы посмотреть, правда?

Мы не станем подвергать ваши стимулы сомнению, поскольку они такие же, как у нас, и неважно, здоровые они или нет. Мы уже уделили много времени разговорам об исчезновении черных дыр, которое ждет нас в далеком будущем, и о так называемом втором законе термодинамики, согласно которому с течением времени Вселенная превратится в тепловатый бассейн, в котором не будет никакой речи ни о структуре, ни о жизни в том виде, в каком мы ее знаем. Мы даже упомянули о том факте, что Вселенная подвержена бесконечному экспоненциальному расширению, вызванному темной энергией. Оно будет продолжаться, пока каждая галактика не превратится в остров, полностью отрезанный от остальной Вселенной. Трудно представить себе более унылое будущее.

Но когда общаешься с физиком, всегда следует ожидать худшего. Что если мы вам скажем, что с течением времени сама материя будет медленно выкипать и испаряться?

 


1И мамам своим мы звоним с завидной регулярностью, возможно, компульсивно, поэтому стараемся не слишком увлекаться психоанализом.


 

Конец материи

 

Да, мы знаем, что всерьез испортим вам настроение, поэтому первым делом поймите, что все это случится далеко не завтра. Когда речь идет о галактиках, черных дырах и испаряющейся материи, мы говорим даже не о миллионах и не о миллиардах лет. Мы говорим о периодах времени в триллионы миллиардов раз больше нынешнего возраста Вселенной. Учитывая, сколько гадостей произойдет за это время, гибель материи можно смело поместить в самый низ перечня ваших страхов.

 

Задаваясь вопросом о распаде материи, мы с практической точки зрения задаемся вопросом о распаде протонов. Мы уже говорили, что при всяком удобном случае нейтрон распадается на протон и кое-что еще, но только потому, что он тяжелее протона. Протон — самый легкий из барионов, поэтому мы ожидаем, что он сколько-то проживет.

Вопрос в том, сколько именно, и на это стандартная модель дает простой недвусмысленный ответ. Вечно. Протоны не распадаются, поскольку общее число барионов должно сохраняться. Поскольку протон — самый легкий барион, распадаться ему не на что.

Но если эта глава чему-то успела вас научить, так это тому, что стандартная модель отвечает отнюдь не на все вопросы. Если реакция идет в одном направлении, значит, должна иметь место и обратная реакция. Наверняка когда-то, еще во время Большого взрыва, было время, когда барионы создавались из ничего. С этой научной проблемой мы встретились в главе 7, когда обнаружили, что если бы барионы с антибарионами всегда создавались только парами, то и аннигилировать они должны тоже парами. Вы живое и ходячее доказательство того, что в какой-то момент все-таки имело место превосходство барионов над антибарионами! Вам повезло.

 

Представьте себе, что у вас есть собственная великая теория унификации (ВТУ). Первым делом мы бы спросили у вас, сколько, согласно вашей ВТУ, живет типичный протон. Согласно практически всем этим теориям до единой, протоны в конце концов распадаются на позитрон и еще одну частицу под названием пион. Главное различие между разными теориями — средняя продолжительность жизни протона. И это хорошо. Это значит, что если мы сумеем выяснить, сколько живут протоны, то у нас появится отменный критерий точности различных ВТУ — по крайней мере мы сможем тут же просеять эти теории сквозь частое сито.


Хотите всегда быть в курсе происходящих в мире событий? Нет ничего проще с порталом хороших новостей, освещающим все аспекты общественно, политической и культурной жизни. Найти этот портал Вы сможете по адресу www.wellnews.ru.


Где же он, распад протонов? >>

Автор: Admin | 2011-10-21 |

Могли бы инопланетяне посетить нас, если бы хотели?

Могли бы инопланетяне посетить нас, если бы хотели?

Представьте себе, что когда-нибудь set1 обнаружит внеземную цивилизацию, а она — ура! — окажется у нас буквально на заднем дворе. Предположим, мы захотим послать экспедицию к ним на Альфу Центавра, которая находится примерно в 4 (ну, в 4,3, но это мелочи) световых годах от Земли. Можем ли мы это сделать? На самом деле, конечно, нет, но не произойдет ничего страшного, если мы посмотрим, чем нам могла бы помочь инженерия научно-фантастического толка.

Двигателей деформации пространства для путешествий со скоростью больше скорости света у нас нет, поскольку это полная чушь, и мы не будем даже затевать разговоры о том, как непрактично было бы устраивать кротовую нору. Кроме того, мгновенно разогнаться до 99% скорости света мы бы не могли, даже если бы обладали соответствующей технологией: нас бы размазало перегрузками! Скажем, наш звездолет разгоняется с ускорением всего в 1 g, то есть с ускорением свободного падения на Земле. Будем лететь с полным комфортом. Первую половину пути нас будет тянуть к корме звездолета, но благодаря темпам ускорения искусственная гравитация будет казаться вполне земной. Вторую половину пути, когда мы будем замедляться, «низом» станет нос корабля. Есть еще вопрос энергии. Даже если бы наш звездолет состоял из одной кабины, в которой хватало бы места только на одного человека1, чтобы разогнаться до нужной скорости, потребовалось бы столько энергии, сколько потребляют все США за три месяца.

Но если отбросить все эти мелкие технические трудности, сможем ли мы добраться до альфы Центавра еще при нашей жизни?

Пожалуйста. Опустим вычисления и скажем, что на первый световой год уйдет всего около 1,7 года, а на второй — примерно 1,1 года. На полдороге мы будем лететь со скоростью 94% скорости света. Конечно, в этот момент нам надо будет замедлиться с ускорением в 1 g, иначе мы прибудем к месту назначения с околосветовой скоростью и разобьемся в лепешку. В целом путешествие займет около 5,6 года. Для научной фантастики цифра не слишком впечатляющая, но определенно реальная2.

Но есть одна трудность: время, проведенное в космосе,— это время, которое отмеряют наши друзья, оставшиеся на Земле. Как мы видели в главе 1, когда мы путешествуем со скоростью, составляющей ощутимую долю скорости света, время замедляется.

 

Согласно часам члена экипажа, путь займет всего 3,6 года — меньше четырехлетнего минимума, который можно было бы ожидать, если учесть, что Альфа Центавра находится в 4 световых годах от нас. Да-да, мы не ошиблись: мы будем лететь со скоростью меньше скорости света, но на такой громадной скорости искажаются и пространство, и время. Из-за эффекта расширения времени мы, в принципе, успели бы за свою жизнь долететь и до более далеких звезд. Беда в том, что для всех остальных время идет как положено, и они, вероятно, не станут нас дожидаться.


1 В общем, путешествие эконом-классом.

2 Серия 4182: бесстрашная команда наконец заканчивает партию в «Монополию», начатую в серии 1205!


Все новоиспеченные обладатели современных смартфонов и коммуникаторов рано или поздно начинают задаваться вопросом, где скачать программы на мобильный телефон? Наиболее полную информацию по данной теме Вы сможете найти на страницах сайта www. mobile-prog.ru.


Ну и где они эти… Инопланетяне? Часть II >>

Автор: Admin | 2011-10-10 |

Насколько пусто пространство?

IV. Насколько пусто пространство?

 

На последних нескольких страницах нас увело в сторону эзотерики — мы слишком много рассуждали о природе пространства и обо всем таком прочем, а теперь пора перейти к более конкретным разговорам. Так вот, давайте договоримся: если вы согласитесь, что галактики во Вселенной в общем и целом никуда не движутся, а Вселенная вокруг них расширяется, мы согласимся, что можно иногда предаваться невинным фантазиям, что мы-де находимся в центре Вселенной. Для подтверждения согласия как следует встряхните эту книжку.

Мы сочтем, что вы тем самым сказали «да».

И даже можем проделать кое-какие корректные физические выкладки на основе «центропупистской» модели. Начнем с основного вопроса — замедляется расширение Вселенной или ускоряется?

 

Посмотрите на это с точки зрения Вселенной и постарайтесь проделать следующий эксперимент:

 

1. Выйдите на улицу с футбольным мячом.

2. Бросьте его вертикально вверх.

3. Быстренько отойдите в сторонку.

 

Сколько бы вы ни повторяли эксперимент, происходит одна старая история — что взлетает вверх, то падает вниз.

Разумеется, причиной того, что мы сумели построить ракеты, которые летают на Марс, стало следующее: если запустить мячик или ракету достаточно быстро, они вырвутся из гравитационного поля Земли. Скорость, с которой можно улететь с Земли, составляет примерно 40 тысяч километров в час — это называется «вторая космическая скорость». Ракеты взлетают в космос, поскольку двигаются быстрее.

А на Луне вторая космическая скорость составляет чуть больше 8000 километров в час. То есть если бы вы стояли на Луне и запустили сверхскоростной мячик со скоростью 16 тысяч километров в час, то обнаружили бы, что он вышел в открытый космос. А если бросить мяч с той же скоростью с Земли, то он, в конце концов, с размаху шлепнется обратно. Еще один пример для наглядности: вторая космическая скорость у Деймоса — спутника Марса — около 21 километра в час. Даже мы могли бы запустить мяч с Деймоса в открытый космос! Ну, наверное.

Так чем же Деймос так отличается от Земли? Массой. У Земли масса гораздо больше, а значит, больше и гравитация. Чем меньше масса, тем меньше сила гравитации, которая притягивает мяч обратно к планете (планетоиду, спутнику и т.н.), вот почему вторая космическая скорость у Деймоса такая маленькая.

 

Для массивных предметов вроде галактик это тоже справедливо.

Если бы Вселенная была совершенно пуста (а это, к счастью для нас, совсем не так), то она бы расширялась вечно с абсолютно неограниченной скоростью. Не было бы материи, которая бы ее затормозила. Если бы у нас была настолько пустая вселенная, а мы поместили бы в нее немного вещества, то расширение бы немного замедлилось. Не забывайте: материя влияет на пространство, так что если бы мы поместили в эту вселенную целую кучу вещества, то она бы впоследствии схлопнулась.

Линия, отделяющая вселенную, которой суждено расширяться бесконечно, от вселенной, которой суждено схлопнуться, называется критической плотностью вселенной, и она гораздо ниже, чем вы думаете.

Обычно представление о том, насколько плотно космос набит материей, сильно преувеличено, поэтому, вероятно, нужно устроить проверку реальностью, и начнем мы с того, что происходит у нас по соседству. Вспомните сцену из «Звездных войн», когда Хан Соло на «Тысячелетнем Соколе» пробивается сквозь пояс астероидов. Тогда звездолет едва не развалился. Как вам, наверное, известно, у нашей Солнечной системы тоже есть пояс астероидов — между орбитами Марса и Юпитера (соответственно четвертой и пятой планетами, считая от Солнца). Что же произойдет, если вы преисполнитесь неблагоразумной отваги и рванете на своем звездолете к Юпитеру? Ничего особенного.

Хотя астрономы не уверены, сколько в точности там астероидов, разумная оценка — 10 миллионов — показывает, что среднее расстояние между этими каменюками — больше полутора миллионов километров. Если вы не представляете себе, сколько это, поясним: полтора миллиона километров — это примерно в четыре раза больше, чем до Луны, а настолько далеко забирались пока едва ли пара десятков человек.

Если мы покинем Солнечную систему и двинемся к другим звездам, окажется, что от ближайшей звезды Проксима Центавра нас отделяет расстояние в четыре световых года, а по пути все довольно пусто. В среднем каждый кубический сантиметр (средний размер игрального кубика) межзвездного пространства содержит всего один атом водорода. Для сравнения — это примерно в 1016 раз менее плотно, чем земной воздух, и примерно в миллион раз менее плотно, чем самый-самый чистый искусственный вакуум, которого мы способны добиться в лаборатории.

Пространство между галактиками, даже если бы Вселенная обладала критической плотностью, ещё в миллион раз менее плотно. Это значит, что на каждый кубометр пространства (это примерно объем вашего холодильника) приходится всего пять атомов водорода.

Вы, конечно, подозревали, что в космическом пространстве пусто. Потому-то оно и называется пространством. В некотором смысле.

Поскольку астрофизики не любят, когда у них в распоряжении остается так мало атомов, нас интересует, в сущности, только то, обладает Вселенная плотностью меньше критической или больше, поэтому мы определяем соотношение. Это соотношение сравнивает количество материи (любой материи) во Вселенной с количеством материи, которое мы ожидали бы при критической плотности. Это соотношение мы называем:

 

ΩM.

Если вы хотите рассказать маме, чему вас научила эта книга1, а картинку по телефону не покажешь или просто бумажки под рукой нет, имейте в виду, что это называется «омега материи».

А сейчас мы испортим весь сюрприз и скажем, что по самым точным оценкам Ом составляет 28% (плюс-минус, крохотулечная погрешность) материи — именно такая доля вещества во Вселенной заставит ее схлопнуться. По мере расширения Вселенной материя в ней становится все более диффузной, так что с течением времени Вселенная будет казаться все более пустой. А значит, плотность Вселенной будет уменьшаться (пространства становится больше, а новой материи не вырабатывается), поэтому соотношение тоже будет уменьшаться.

 


1 «Мам, привет, это я. Я тут читаю одну книжку про физику, так там говорится, как подсчитать плотность нашей Вселенной относительно критической».


 

Это очень важное число, особенно для чокнутых астрономов, и за последние два десятка лет основные усилия классической космологии были направлены на то, чтобы получить это число и еще несколько других1, из которых можно вывести возраст, судьбу, будущее и прошлое Вселенной. Но это число особенно важно, поскольку оно говорит нам, собирается ли Вселенная снова впасть в коллапс или будет расширяться бесконечно. Чтобы вычислить это соотношение, нам нужно измерить, сколько вещества нас окружает, и поэтому главный вопрос звучит так: как нам взвесить Вселенную?

В наблюдаемой Вселенной свыше 100 миллиардов галактик, и в них сосредоточена большая часть массы. Если мы сообразим, как взвесить галактики или скопления галактик, то просто сложим массу в пределах определенного участка пространства и вычислим таким образом плотность Вселенной.


Самое лучшее лекарство от скуки — это конечно же смешные анекдоты. Эти короткие сатирические истории способны развеселить даже самого грустного человека на Земле. Самые новые и смешные анекдоты Вы сможете найти на сайте mestyak.ru.


Где же находится все вещество? >>

Автор: Admin | 2011-09-19 |

Из чего состоит пустое пространство?

III. Из чего состоит пустое пространство?

 

Так, значит, Вселенная расширяется, однако галактики в ней практически не движутся. Как же это все на самом деле устроено?

 

 

Придется вернуться к эйнштейновской общей теории относительности. Джон Арчибальд Уилер блестяще описал эту теорию известным афоризмом: «Пространство диктует материи, как двигаться, а материя диктует пространству, как искривляться», и именно так и следует о ней думать.

Мы не забыли о своем обещании держаться подальше от математики, однако формулировка Уилера, по сути, — это сухое изложение главного уравнения общей теории относительности — эйнштейновского уравнения поля. Приводить его здесь мы не будем, но кое-что о нем нужно знать.

Левая сторона уравнения поля1 определяет, насколько две точки далеки друг от друга и в пространстве, и во времени,— эта величина называется «метрика»,— а если мы посмотрим, как метрика меняется в пространстве, то сможем описать, насколько оно искривлено.

 


1 Да, мы пишем слова вроде «левая сторона уравнения», чтобы не писать само уравнение. Иначе вы окончательно расслабитесь.


 

Метрике отводится настолько важная роль, поскольку частицы ленивы и выбирают именно тот маршрут, который позволяет минимизировать время на дорогу. В плоском (то есть лишенном гравитации) пространстве самый быстрый путь — прямая, как вы, вероятно, и сами догадываетесь, но если пространство искривлено гравитацией, все сильно осложняется.

Представим себе, что вы бросаете мячик приятельнице. Мячик хочет долететь до нее как можно быстрее, так что, вероятно, кратчайший путь — это прямая. Но постойте! Гравитация, как мы видели в предыдущей главе, заставляет время у поверхности Земли идти самую чуточку медленнее, поэтому мяч, вероятно, доберется до вашей приятельницы быстрее, если чуточку поднимется от земли и опишет дугу.

 

С другой стороны, если дуга окажется слишком крутой, мячу придется двигаться быстрее, а мы уже видели, что если мяч летит очень быстро, время для него замедляется. Начинается поиск компромиссов, и мяч следует кривой пространства-времени и летит по дуге. Понятно? Несмотря на все разговоры о релятивистском времени и искривленном пространстве, в слабых гравитационных полях вроде поля Земли гравитация ведет себя именно так, как предсказывал Ньютон.

Но если мы хотим разобраться, как развивается Вселенная в целом, придется вырваться из слабого поля Земли, а для этого нужно сказать два слова о метрике. Напомним, что метрика говорит нам, насколько далеко отстоят друг от друга две точки. Представьте себе, что у вас есть линейка, которая медленно сжимается. И если вы через некоторое время решите измерить, например, расстояние от вас до Парижа, то обнаружите, что оно постоянно увеличивается.

Именно это и происходит в настоящей Вселенной!

Забудьте, чему вас учили в школе: пространство не абсолютно. Мы уже видели, что пространство и время для движущихся наблюдателей и наблюдателей, которые находятся вблизи массивных тел, относительны. Теперь мы понимаем, что по мере старения Вселенной меняется само пространство.

А что же находится по правую сторону эйнштейновского уравнения поля? Уилер нам уже ответил: «Материя диктует пространству, как искривляться». Именно материя Вселенной и говорит Вселенной, как развиваться.

Как же мы разберемся во всем этом, если (на самом деле) даже не знакомы с уравнениями общей теории относительности? Не бойтесь. Помните, что, когда речь заходит о гравитаций, физическая интуиция и здравый смысл помогают даже лучше, чем вы думали.

Мы тут довольно бойко рассуждали о расширении пространства, но так ничего и не сказали о том, что же такое это самое пространство. Исаак Ньютон в своих Principia Mathematica много говорил о пространстве и придумал небольшой мысленный эксперимент, позволяющий пояснить, что это такое, на конкретном примере. Вернемся далеко назад — в главу 1, где Рыжий, Галилей и Эйнштейн (не обязательно в этом порядке) обнаружили, что наблюдатель не может определить, двигается он или покоится, если движение происходит равномерно. Играет роль исключительно динамика двух наблюдателей при их относительном движении.

Ньютон представил себе, что на скрученной веревке висит ведро, полное воды. Ведро удерживают в неподвижности, а затем отпускают, и веревка начинает раскручиваться, и ведро вертится. Поначалу вода хочет остаться на месте, и стенки ведра вертятся вокруг нее. Затем вступает в действие сила трения между водой и ведром, и вода начинает крутиться вместе с ведром. И при этом взбирается вверх по стенкам.

 

Да, понимаем — вы читаете и думаете: «Ну и что?».


Ваш блудный муж в очередной раз покинул свое родовое гнездо ради мимолетного увлечения, и Вы задались вопросом как вернуть любимого мужчину обратно в семью? С разрешением этой проблемы Вам поможет ясновидящая Куприянова Надежда Викторовна. Более подробную информацию Вы сможете найти на сайте www.silnaya-magiya.ru.

Автор: Admin | 2011-09-19 |
6 страница из 10« Первая...2345678910

GIF
Видео
Видео
Все обо всем
Забавно!
Иллюстрированные факты
Искусство
Истории
Все размещенные на сайте материалы без указания первоисточника являются авторскими. Любая перепечатка информации с данного сайта должна сопровождаться ссылкой, ведущей на www.unnatural.ru.