Необычный

Гиперреалистичные скульптуры Бруно Валпоса

Гиперреалистичные художественные произведения демонстрируют высшую степень мастерства художника, способного воссоздает реальность. Большинство из таких работ несут в себе множество подтекстов, однако современная публика, требующая лишь ‘хлеба и зрелищ’, успевает добраться только до яркой красочной обертки, под которой скрыты чувства, мысли, идеи и душевные переживания автора.

Сегодня я хотел бы познакомить Вас с творчеством Бруно Валпос (Bruno Walpoth), выдающегося (по мнению многих критиков) скульптора нашего времени, создающего невероятные скульптуры из дерева, которые просто невозможно отличить от живых людей.
Читать дальше>>

Автор: Admin | 2012-02-15 | Искусство

Космо-факты

Самые удивительные и невероятные факты о космосе.




1. Масса Солнца составляет 99.86% от массы всей Солнечной системы, оставшиеся 0.14% приходятся на планеты и астероиды.
Читать дальше>>

Автор: Admin | 2012-02-15 | Космос, Необычный Топ

Реактивный байк со стартером от истребителя F14

Рев двигателя этого супербайка, приковывающего взгляды своим внешним видом, легко спутать со звуком взлетающего истребителя.

Инженер Тони Пандольфо (Tony Pandolfo), по совместительству являющийся известным гонщиком на катерах, всю свою жизнь занимался улучшением сверхмощных лодок, мотоциклов и автомобилей. И сегодня 54-летний житель Орландо (Флорида) применил все свои знания для установки в Suzuki Hayabusa стартера реактивного топлива от истребителя F14.

Результатом стал абсолютно легальный реактивный байк за 60 000 долларов, который звучит как летящий на бреющем полете самолет.
Читать дальше>>

Автор: Admin | 2012-02-14 | Необычные вещи

ЗЕМЛЯ — НЕИСЧЕРПАЕМЫЙ ИСТОЧНИК ЭКОЛОГИЧЕСКИ ЧИСТОЙ ЭНЕРГИИ!

На сайте slotautomat.info Вы найдете список и подробное описание самых востребованных на просторах веб-сети казино. Вы сможете сразу же начать играть на деньги, либо сначала открыть виртуальный счет. Бесплатные игровые автоматы позволят Вам улучшить свои навыки игры, после чего Вы сможете перейти к реальным ставкам и выиграть целое состояние.


Наша концепция открывает совершенно новые перспективы в плане энергетических ресурсов планеты. И прежде чем мы начнем обсуждать новое, давайте сначала хотя бы перечислим те источники энергии, которые давно используются и стали традиционными, — это природный газ, нефть, уголь и атомная энергия. Эксперты полагают, что нефти и газа хватит примерно на 50 лет, уголь и уран закончатся лет через двести-триста или около того. Но буквально все специалисты единодушно заявляют, что при традиционных путях развития энергетики человечество не успеет исчерпать эти ресурсы, поскольку экологическая катастрофа наступит раньше. Существуют также возобновляемые энергетические источники: энергия ветра и воды, внутреннее тепло планеты, солнечный свет. Однако они, по мнению специалистов, как сейчас, так и в будущем будут играть лишь вспомогательную роль в балансе энергопотребления. Таким образом, перспективы безрадостные, если не сказать — мрачные.

 

У некоторых физиков теплится надежда на «термояд», и вроде бы уже собираются строить «пилотный» реактор, хотя технические проблемы еще не решены полностью, но их обещают «дожать» во время «рытья котлована». Надо сказать, эти обещания («дожать проблему» в самое ближайшее время) даются уже несколько десятилетий. Вместе с тем совершенно очевидно, что необходимая «периферия» для такого реактора, если он заработает, будет очень сложна, объемна и будет потреблять много энергии. У экспертов даже возникает вопрос: а будет ли «положительный выход», т.е. будет ли энергия, получаемая от реактора, превышать энергетические затраты на его обслуживание? И в связи с этим еще вопрос: если все же «положительный выход» будет, то во что обойдется такая энергия? Нам все время говорят о неисчерпаемости энергии «термояда», и это прекрасно, но хотелось бы услышать и про ее стоимость.

 

Потенциальные ресурсы нашей планеты в отношении нефти и газа в рамках новой концепции представляются совершенно иными. По числу атомов углеводородное сырье — это, прежде всего водород. В природном газе — метане (СН4) — на один атом углерода приходится 4 атома водорода. В нефтяных производных отношение Н/С варьирует в интервале от 2 до 2,5. Таким образом, «вечная» (для геологов) проблема происхождения нефти и газа сводится к проблеме источника водорода. Со школьной скамьи меня занимал этот вопрос, и маститые профессора снисходительно объясняли, как в нефтематеринском бассейне при диагенезе и катагенезе осадков водород отжимался из растительных остатков, скапливался в зоне нефтеобразования, где шли процессы гидрогенизации и получались углеводороды. Мысленно прокручивая эту схему, я недоумевал: почему это водород должен собираться с обширной территории в какую-то локальную зону, двигаясь, по-сути, в горизонтальном направлении, какой такой «таинственный магнит» его туда стягивает, ведь все градиенты указывают ему путь наружу, по вертикали?

 

Кроме того, я никак не мог понять, каким образом нефть может сохраняться с девона или карбона? Кайнотипные осадки за гораздо меньший срок геологического времени литифицируются, становятся палеотипными. Нефть — это ведь такая нежная субстанция, она так сильно пахнет (парит легколетучими составляющими) и, скорее всего, является лакомым блюдом для многих бактерий. Кроме того, литостатическое давление — фактор постоянный, под действием которого нефть просто обязана уплотняться, отщеплять водород и превращаться в битум или асфальт. Тем более что вмещающие породы отнюдь не являются непреодолимым экраном для водорода, за геологическое время он способен просочиться где угодно. Наконец, нефть — она ведь жидкая и легче воды. На живой планете не может быть мест с абсолютным тектоническим покоем. Даже на древних платформах происходят медленные (эпейрогенические) тектонические движения. В таких условиях за геологическое время нефтяные месторождения наверняка вытекут наружу (как вода из неплотно закрытой грелки при беспокойном сне пациента). Про природный газ — решайте сами.

 

В общем, нефть не может лежать миллионы лет, она либо вытечет, либо быстро усохнет, либо еще быстрее ее съедят бактерии.

 

Таким образом, в рамках традиционных представлений (ядро — железное, все остальное — силикатное), и появление нефти, и ее сохранение на протяжении геологического (!) времени следовало бы считать каким-то невероятным чудом. Но чудес в природе не бывает, если мы правильно понимаем, что в ней происходит в действительности. И в свете наших построений никаких чудес нет.

 

Во-первых, автоматически решается проблема источника водорода. По нашей модели он истекает из глубоких недр планеты и все время стремится собраться в струи. Там, где эти струи попадают в обогащенные углеродом толщи, идут реакции гидрогенизации, формируются нефтеносные провинции и месторождения природного газа. В данной связи углерод может быть любой — и в виде растительных остатков в осадочных породах, и в виде графита в метаморфических сланцах кристаллического цоколя платформ. По этой причине не следует удивляться, если в районах, где отсутствуют «нефтематеринские бассейны», вдруг обнаруживаются месторождения с хорошим дебитом. Был бы приток водорода с глубины — основного химического элемента нефти и газа, остальное (углерод по пути следования, ловушка на выходе) приложится, не здесь, так где-нибудь рядом.

 

Во-вторых, нефть и газ, в нашем понимании, образуются только тогда, когда идет дегазация водорода из глубинных зон планеты. Судя по общей геодинамической ситуации, в настоящее время де -газация водорода происходит в широких масштабах. Соответственно, нефть и газ должны генерироваться прямо сейчас и будут генерироваться завтра (здесь имеется в виду шкала времени человеческой цивилизации). Таким образом, углеводородное сырье, которое мы пользуем, скорее всего, образовалось совсем недавно, и, скорее всего, его запасы продолжают пополняться и сегодня. Примечательно, что Бакинские нефтепромыслы, заложенные еще Нобелем, до сих пор продолжают давать нефть. А бывает и так: месторождение открыто, разбурено, подсчитанные запасы полностью выбраны, а нефть продолжает идти. В данной связи следовало бы проводить тампонирование скважин на отработанных месторождениях в надежде на их восстановление в недалеком будущем.

 

В свете сказанного представления экспертов о полном исчерпании запасов нефти и газа (якобы не возобновляемых) к середине нынешнего столетия представляются «детской страшилкой». Согласно нашей концепции, эти ресурсы, во-первых, возобновляются, а во-вторых, их должно быть гораздо больше, чем предполагалось, и в ближайшем будущем нам не грозит энергетический голод*.

 

————————————————————————————————————————————

* Дорогой читатель, концепция изложена достаточно полно, и если вы ее поняли и захотели использовать в прикладном плане, к примеру, для поисков нефти и газа, то вам не составит труда самому определить, «где и как» выявлять перспективные районы. Отмечу только, что в моих «know how» по этой проблеме важное место занимают исследования глубинного строения подозреваемых территорий (вплоть до астеносферы).

————————————————————————————————————————————

 

 

 

В настоящее время техника бурения развивается поразительными темпами. Если дела так пойдут и дальше, то скоро скважины глубиной по 10 — 12 км будут рядовым событием. Тогда можно будет подумать о глубинном бурении территорий, продуктивных на нефть и газ, с целью перехвата струй глубинного водорода до того, как они израсходуют себя на образование воды и реакции гидрогенизации. Но это будущее, а водород хотелось бы получить сегодня.

Автор: Admin | 2012-02-13 |

Пояс астероидов

Приветствую всех начинающих сайтостроителей, которые стремятся постичь основы веб-программирования. Сегодня мы поговорим про флэш.

Для этого нам потребуется обратиться к материалам сайта www.flashmult.com, из которых мы узнаем как создавать swf-файлы и вставлять их на html страницы.


Минералого-петрографические особенности метеоритов показывают, что они в своей основной массе образовались в недрах достаточно крупного материнского тела, которое затем по какой-то причине распалось. В нашем понимании, распад был обусловлен химическим составом этой удаленной зоны (опять виновата магнитная сепарация элементов). В зоне пояса астероидов, согласно трендам относительной распространенности элементов, кислорода должно быть в 100 раз больше, чем на Земле. Следовательно, материнская планета была полностью силикатноокисной, и никаких гидридов в ней изначально не было.

 

Исходное содержание углерода в зоне пояса астероидов было не менее 3%. При таком содержании углерода количество карбонатов в теле материнской планеты могло достигать 25%. Карбонаты при достижении некоторого уровня температуры начинают разлагаться с выделением CO2. Минерал магнезит — MgCO3 (он преобладал среди прочих карбонатов в материнской планете) начинает распадаться при температуре 500 0С. Однако увеличение давления повышает температурный предел устойчивости карбонатов.

 

Теперь представьте себе, что эта материнская планета к концу аккумуляционного процесса была относительно холодной и в ее недрах прошли реакции с образованием карбонатов. Затем, по мере радиогенного разогрева, влияние температуры могло превзойти стабилизирующее воздействие давления, пошли реакции с разложением карбонатов и выделением большого количества углекислого газа, что и привело к распаду планеты. Или, например, имея уже хорошо прогретые недра, но все еще стабильные под литостатическим давлением, материнская планета испытала мощный удар другого космического тела («незваные гости» могли приходить из «занептунной» области в начальные полмиллиарда лет). По расколам, проникшим вглубь планеты, давление могло резко понизиться. В результате произошло бурное разложение карбонатов, и углекислый газ разорвал планету на отдельные фрагменты.


Содержание элементов в поясе астероидов относительно их распространенности на Земле.

Как мы видим, некоторые элементы резко выпадают вниз из общей совокупности. Следует отметить, что именно они (Ce, Nb, Ta, Th, P…) имеют геохимическую склонность концентрироваться в карбонатной фазе. В частности, этот набор характерен для земных карбонатитов, которые на нашей планете встречаются, но не очень часто. Соответственно, в недрах Фаэтона перечисленные элементы также должны были скопиться в карбонатных минералах при их образовании, тогда как силикатные минералы оказались обеднены ими. При разложении карбонатов и распаде планеты — церий, ниобий, тантал, торий, фосфор (и др. из этой геохимической компании) оказались не в силикатных обломках (метеоритах и астероидах), а среди космической пыли, которая за миллиарды лет успела рассеяться и осесть в различных частях солнечной системы.

 

Таким образом, магнитная сепарация, определившая особенности состава протопланетного вещества на различных расстояниях от центра, заложила тем самым «программу самоуничтожения» будущей планеты в этой удаленной зоне. Наличие пояса астероидов свидетельствует о том, что эта программа была выполнена.

Автор: Admin | 2012-02-13 |

Марс. Часть II

Если Вы считаете себя настоящим поклонником японской анимации, то, скорее всего, в закладках вашего браузера имеется несколько десятков сайтов с подписью: “аниме онлайн 2012”. Во главе этого списка я советую Вам поставить multikonline.ru, на котором Вы сможете найти самое свежее и популярное аниме этого года.


Поскольку Красная планета давно мертва в тектоническом отношении, то у нее не должно быть сейсмической активности. Она давно потеряла свой водород, стало быть, у нее не может быть астеносферы, и, соответственно, на Марсе не должно быть явления «изостазии». В данной связи нас не должны удивлять резкие аномалии в гравитационном поле и «вулканы» высотой до 28 км. Это очень много, даже с учетом того, что сила тяжести на Марсе составляет 0,38 от земной.

 

Концентрации радиоактивных элементов на Марсе ниже, чем на Земле, но все же они «в разы» больше метеоритных, и при мощной литосфере (с ее малой теплопроводностью) способны обеспечить разогрев планеты после ее тектонической смерти. Среди планет земной группы Марс получил наибольшую долю кислорода. По этой причине он оказался «обводнен» в гораздо большей степени в сравнении с другими планетами, расположенными ближе к Солнцу, что должно было также проявиться в большем содержании воды (гидроксильной, кристаллизационной, цеолитной) в породах его литосферы и осадочного чехла*.

 

————————————————————————————————————————————

* Сила тяжести на Марсе в 3раза меньше земной, но это сейчас. В давние времена, когда формировалась литосфера, сила тяжести на Земле была 3,5g. Расширением Марса можно пренебречь, и, следовательно, его литосфера создавалась при давлениях примерно на порядок меньших в сопоставлении с литосферой Земли. Это значит, что в марсианской силикатной оболочке могли образовываться минералы с меньшей плотностью, и прежде всего минералы, содержащие воду (гидроксильную, кристаллизационную…).

————————————————————————————————————————————

 

С началом «трупного разогрева» эта вода «отжималась» на поверхность планеты в виде термальных флюидных струй, для которых характерно стремление собираться в крупные «термогидроколонны». При выходе такой колонны наружу, где атмосфера очень разрежена, происходило бурное вскипание воды, вернее, водных растворов, они превращались в пену, объем которой катастрофически увеличивался.

 

Здесь будет уместно привести некоторые цифры. Давление марсианской атмосферы составляет 0,01 бара (в 100 раз меньше земного). Допустим, такая атмосфера была показательна и для прошлого времени мертвого Марса. Под давлением 0,01 бара вода закипает при температуре 6,7 0С, и из каждого см3 воды образуется 120 литров водяного газа (в условиях насыщения), т.е. происходит увеличение объема в 120 тысяч раз. Допустим, в верхней части термогидроколонны температура воды была порядка 100 0С, но она не кипела, будучи под давлением более 1 бара. После открытия дыры наружу вода оказывается сильно перегретой и вскипание должно быть очень бурным, больше похожим на взрыв. Однако парообразование весьма энергоемкий процесс, и там, где температура была 100 0С, всего лишь ~ 1/6 объема воды перейдет в пар, и температура уже упадет ниже точки кипения (6,7 0С). При увеличении объема пузырьков водяного газа происходило резкое охлаждение извергаемой пены, которая к тому же попадала в весьма холодную марсианскую атмосферу. В результате выброшенный материал быстро замораживался и выпадал на поверхность планеты в виде ледяной крупы и пыли. Выходное отверстие засыпалось этой же пылью, сильно охлажденной в атмосфере, и царящие на поверхности глубокие минусовые температуры быстро запечатывали его ледяной пробкой. Теперь должно пройти время, чтобы весь цикл повторился. По всей видимости, это было впечатляющее зрелище, чем-то напоминающее периодическую работу гейзера, только такого огромного, что его работу, пожалуй, можно было бы рассмотреть издалека (например, с Земли через хороший телескоп).

Так, раз за разом, возводились циклопические постройки — «вулканы» Марса («Олимп» и прочие), которые с нашей точки зрения могут оказаться наледями. Разумеется, они состоят не из чистого водяного льда, в нем должно быть много мусора в виде частиц дробленых пород, поскольку извержения должны были протекать весьма динамично (расширение газовой фазы в 120 тысяч раз!). Мне как-то довелось сидеть на кромке кратера (земного, разумеется), из которого била сверхзвуковая струя водяного газа с различными вонючими примесями. Диаметр этой струи был всего-то 50 метров. И что любопытно: такие скорости, но никакого свиста, только утробный рев на басах, и все вокруг трясется и осыпается. Как тут обойдешься без выброса мусора? Кроме того, жидкая фаза в фильтрующейся термогидроколонне наверняка содержала в растворенном виде разнообразные хлориды, карбонаты, сульфаты и др. соединения*.

 

————————————————————————————————————————————

* Температура кипения растворов несколько выше температуры кипения чистой воды. Но это никак не изменит сути описанного процесса.

————————————————————————————————————————————

 

Так что марсианские «вулканы», скорее всего, горькие на вкус и обладают сильным слабительным действием (вот будет подспорье для колонистов, у которых наверняка на первых порах будут проблемы с питанием).

 

В процессе дегидратации породы резко увеличивают свою плотность. Например, при переходе серпентина в оливин плотность увеличивается примерно на 27%. Поскольку объем дегидратированных пород многократно превышает объем «вулкана», то под ледяными вулканами Марса должна быть серьезная начинка с избыточной плотностью, которая в основном и создает мощные положительные аномалии в гравитационном поле. Расчеты возможных аномалий на основе этой модели показывают идеальное сходство с фактическими данными, полученными с орбитального спутника (спутник вращался на высоте 275 км и обнаружил над «вулканами» положительные аномалии до 1500 мгал).

 

Грандиозные ледяные «вулканы» на Марсе, скорее всего, могут быть только на континентах, вернее, на участках суши, торчащих из-под ледяной оболочки (застывшей гидросферы). Дело в том, что температура плавления водяного льда уменьшается с увеличением давления. И если мы подадим тепло из глубины и начнем плавить снизу марсианскую криосферу, то зона плавления будет распространяться по ее подошве (где максимальные давления), т.е. будет распространяться вширь по наибольшим глубинам. Вода из зон дегидратации будет просто растекаться по этим зонам плавления, и поскольку жидкая вода тяжелее льда, то у нее не будет никаких стимулов рваться наружу.

 

Могут ли марсианские «вулканы-гейзеры» порадовать нас извержениями в настоящее время? Это вряд ли, из-за существенного уменьшения генерации радиогенного тепла в связи с вымиранием радиоактивных элементов.

Автор: Admin | 2012-02-13 |

Марс. Часть I

Вы просто обожаете йогурты и хотите научиться готовить этот полезный кисломолочный продукт у себя дома. В этом вам поможет йогуртница Dex 107, приобретение которой благоприятно скажется не только на работе вашего пищеварительного тракта, но и на семейном бюджете, т.к. стоимость готового продукта в несколько раз ниже магазинного!

Купить йогуртницу и закваски к ней Вы сможете на сайте www.zakvaski.com.


Рассмотрим некоторые особенности состава и строения Марса. В свете выявленной нами магнитной сепарации элементов, мы действительно можем определить особенности состава этой планеты. Для этого сначала определим изначальную распространенность элементов в зоне пояса астероидов. По характеру распределения элементов на рисунке 4 мы можем провести тренд этой самой изначальной распространенности и на этот тренд помещаем химические элементы, согласно их потенциалам ионизации. Данная процедура выявляет изначальную распространенность элементов, т.е. обилие или дефицит элементов в зоне пояса астероидов относительно их содержания на Земле. Зона формирования Марса находится между Землей и поясом астероидов, и согласно магнитной сепарации тренд распространенности элементов в этой промежуточной зоне должен идти с меньшим наклоном (рис. 54) по сравнению с трендом астероидов. Так мы определяем, каких элементов на Марсе больше, каких меньше, а каких примерно одинаково в сравнении с Землей.

 


Рис. 54. Тренды относительной распространенности элементов в зависимости от их потенциалов ионизации.

Из этих различий в составе Земли и Марса вытекают многочисленные следствия. Прежде всего, доля кислорода на Марсе примерно на порядок больше, чем на Земле. Следовательно, там доля литосферы в объеме планеты значительно больше, ее средняя мощность должна быть порядка 350 км (радиус Марса — 3386 км). И, разумеется, на Марсе должно быть много воды. Толща гидросферы к концу активной стадии развития, видимо, измерялась километрами. Однако из-за малых масштабов расширения планеты океанических впадин не было, и, следовательно, в активную стадию Марс практически весь был покрыт водой и лишь кое-где торчали горные вершины.

 

Содержание углерода на Красной планете в несколько раз больше, чем на Земле. Стало быть, в активную стадию развития Марса в его атмосфере (ныне утерянной) присутствовало много углекислого газа. Это должно было вызвать парниковый эффект. Соответственно, в те теплые времена могли быть моря жидкой воды. Затем, в связи с исчерпанием водорода, планета умерла, отключилось магнитное поле, плотная атмосфера без эндогенной подпитки быстро сошла на нет, стало холодать, и наступило великое оледенение. Времени было достаточно, чтобы вся гидросфера промерзла и покрылась одеялом из марсианской пыли.

 

Эксцентриситет орбиты Марса определяет смену времен года, и в летний период температуры в экваториальной зоне могут превышать 0 0С, тогда как за пределами этой зоны они могут опускаться ниже минус 100 0С (такой разброс температур наблюдается в настоящее время). При малой плотности атмосферы водяной лед в теплой зоне не столько плавится, сколько возгоняется, и эти возгоны частично теряются, а частично конденсируются в зонах низких температур. По всей вероятности, такая ситуация после смерти планеты существовала весьма длительное время и обусловила перепады высот на некогда ровной поверхности замороженной гидросферы. Это, в свою очередь, обусловило течение льда и появление характерных форм ледникового рельефа. Следует отметить: как только появились хорошие фотографии поверхности Марса, специалисты сразу стали говорить именно о таком (ледниковом) характере рельефа.

 

На Луне излияния базальтов в Океане Бурь начались 3,2 миллиарда лет назад. Если считать этот рубеж началом «трупного магматизма», то активная стадия Луны продолжалась 1,3 миллиарда лет (4,5 — 3,2 = 1,3). Марс по массе в несколько раз больше Луны и во столько же раз меньше Земли, все еще активной. По всей видимости, продолжительность активной стадии Красной планеты была где-то между земной и лунной, т.е. порядка 2 — 2,5 миллиардов лет. Можно предположить, что в последнюю треть этого срока на Марсе существовали теплые моря и богатая кислородом атмосфера. На это указывает красновато-бурый цвет марсианской пыли, который свидетельствует о резком преобладании окисного железа над закисным. Временами такое бывало и на Земле, когда случались эпохи накопления красноцветов из-за повышения парциального давления кислорода в атмосфере.

 

Таким образом, плюсовая температура, теплые моря и атмосфера с кислородом существовали на Марсе достаточно длительное время, не менее полумиллиарда лет. А до этого периода, на этапе формирования силикатно-окисной оболочки, атмосфера состояла (как и на Земле на таком же этапе) преимущественно из метана, аммиака и сероводорода, (CH4, NH3, H2S,); к которым затем добавился угарный газ (CO). С точки зрения специалистов — это идеальные условия для зарождения жизни. Но случилось ли это на Марсе, а если случилось, то насколько преуспела эволюция? Ответы на эти вопросы могут дать только непосредственные исследования Красной планеты.

 

Дорогой читатель, при помощи тренда относительной распространенности элементов на Марсе (рис. 54) вы можете сами определить согласно своим интересам, что там может быть и чего не может быть. К примеру, калий, натрий и алюминий имеют малые потенциалы ионизации, и поэтому их должно быть в несколько раз меньше на Марсе (относительно Земли). По этой причине на нем мы вряд ли увидим обилие гранитов. На Марсе высокое содержание углерода, соответственно, там должно быть гораздо больше карбонатных пород. При этом будут преобладать карбонаты на основе магния, тогда как на Земле преобладающими являются карбонатные породы на основе кальция.

 

Несколько лет назад по средствам массовой информации прошла научная сенсация: оказывается, серы на Марсе в несколько раз больше, чем на Земле! Однако о том, что именно так и должно быть, я упоминал в своих предыдущих статьях задолго до появления этой «сенсации». И догадаться об этом было совсем просто, если знаешь о магнитной сепарации элементов, которая определила составы планет при образовании протопланетного диска.

 

Пониженные концентрации урана и калия на Марсе должны приводить к меньшей генерации радиогенного тепла. Вместе с тем если удастся замерить там тепловой поток, то он окажется науровне среднего Земли или даже немного выше! В рамках бытующих представлений этого не может быть никогда! Согласно нашей концепции, этот парадокс (пока еще не обнаруженный) объясняется тем, что Земля активно развивается, и девять десятых радиогенного тепла, генерируемого в теле планеты, расходуется на ее внутренние процессы, в основном на расширение. Марс давно закончил свою активную стадию развития, и все его радиогенное тепло должно выходить наружу.

Автор: Admin | 2012-02-13 |

Невероятные работы уличной ткачихи Агаты Олексиак

Проживающая в Нью-Йорке полячка Агата Олексиак (Agata Oleksiak), больше известная как Олек (Olek), претендует на звание первого в мире уличного ткача.

Да она вяжет крючком, но не на улице и не для людей, а для статуй, машин, канализационных люков, мусорных ведер, велосипедов, памятников… в общем, всего того, что можно найти на просторах современного мегаполиса. Читать дальше>>

Автор: Admin | 2012-02-11 | Искусство

Что произойдет, если на Земле не останется кошек?

Профессор ветеринарной медицины Алан Бек (Alan Beck) утверждает, что гибель всех кошек приведет к глобальной катастрофе? По его авторитетному мнению, кошки играют важную роль в сдерживании роста популяции грызунов и без них нашу планету за каких-то 50-100 лет полностью оккупируют крысы.

Каждое существо на нашей планете является важной переменной в уравнении нашей жизни. И исключение из него таких, казалось бы ленивых созданий, как кошки, которые целыми днями только и делают, что валяются на диванах, приведет к настоящей катастрофе, — говорит Бек. — Однако не все кошки такие же избалованные как ваша и добывают себе пищу сами, охотясь на крыс и мышей, которые промышляют в амбарах и зернохранилищах. Читать дальше>>

Автор: Admin | 2012-02-11 | Все обо всем

Картины свечной копотью

Как и многие другие художники, француз Стивен Спазак (Steven Spazuk) начинал свою карьеру со скетчей, потом перешел к написанию картин акварельными, а позже и акриловыми красками. В 1980 году он был очарован идеальными оттенками и плавными градиентами, которых позволяло добиться использование аэрозольных красок.

В 2001 году у него родилась идея, благодаря которой сегодня его называют мэтром современной живописи, на работах которого воспитывается новое поколение художников-авангардистов.

Однажды, тоскливым зимним вечером… а может и солнечным летним днем мне в голову пришла мысль: ‘Что произойдет, если я поднесу холст к источнику огня и попробую нарисовать картину пламенем?’. Ответом стало темное пятно копоти, в котором угадывались очертания моего родного города”, — меланхолично вспоминает Стивен Спазак.

Художник, закончивший Университет Лаваль (Universit Laval) и ставший в 1983 году бакалавром изобразительных искусств, создает как миниатюрные картины и гигантские мозаики, которые состоят из множества отдельных полотен. Читать дальше>>

Автор: Admin | 2012-02-10 | Искусство
61 страница из 70« Первая...102030...575859606162636465...70...Последняя »

GIF
Видео
Видео
Все обо всем
Забавно!
Иллюстрированные факты
Искусство
Истории
Все размещенные на сайте материалы без указания первоисточника являются авторскими. Любая перепечатка информации с данного сайта должна сопровождаться ссылкой, ведущей на www.unnatural.ru.