Необычный

Полет на Марс

Лето в самом разгаре, а это значит, что вместе с веселыми солнечными деньками пришла и жара, от которой невозможно спастись даже в собственной квартире. Но не торопитесь вбивать в Яндекс “кондиционеры киев”, потому что приобрести кондиционер по самой выгодной для Вас цене Вы сможете только на сайте kievclimate.com.



 

С.П. Королев хотел, чтобы планирование экспедиции на Марс было близко к идеалу, поэтому раз за разом возвращал готовый проект на доработку, сопровождая его записками, содержащими все новые и новые направления наших дальнейших действий. Для выполнения всех указаний Королева у нашей рабочей группы был месяц. Необходимо было провести анализ возможности марсианской экспедиции с использованием ЖРД в различных схемах полета и выбрать наиболее оптимальную. Лично мне пришлось просчитать 17 схем, а с учетом двух вариантов опорных орбит у Марса — 34. Расчеты проводились по формуле Циолковского на логарифмической линейке. С учетом вариаций по трем значениям удельной тяги — 315, 350, 440, по четырем значениям коэффициента воспроизводства продуктов в ЗБТК — от полного воспроизводства до полных запасов пришлось просчитать 408 вариантов. Для всех схем и вариантов были определены исходные весовые характеристики перед стартом на околоземной орбите и на всех этапах полета. Для общего представления на рис. 3.5.2 показано, какую массу должен иметь комплекс на исходной орбите спутника Земли для отправки 20 тонн в район Марса по различным схемам.

 


Рис. 1. Сводная таблица для выбора схемы полета на Марс с применением ЖРД

 

Для удобства сравнительного анализа результаты расчетов были сведены в таблицу (рис. 1.), в которой показаны все рассмотренные схемы, а также весовые характеристики межпланетного комплекса на всех этапах полета, для всех схем с учетом принятых вариаций. Результаты проведенного анализа были помещены в кратком отчете (инв. № — П583), основой которого была таблица, и содержались следующие выводы:

1. Исходный вес межпланетного комплекса на ОИСЗ для различных схем полета находится в диапазоне 1200-2000 тонн.

2. Оптимальная схема — с доставкой на ОИСМ всего комплекса и со спуском на поверхность планеты возвращаемого аппарата минимальной массы.

3. Возвращение экипажа на Землю должно происходить в спускаемом аппарате, без выхода на ОИСЗ, со второй космической скоростью.

4. Наивыгоднейший вариант — с аэродинамическим торможением для выхода на ОИСМ, что позволит в 2-3 раза снизить стартовый вес на ОИСЗ.

5. Главный вывод: основной элемент экспедиционного комплекса, независимо от схемы экспедиции, — ТМК необходимо создавать и отрабатывать на Земле и на ОИСЗ, как тяжелую орбитальную станцию (ТОС).

 

Королев, рассмотрев материалы, утвердил их и поручил готовить к заседанию экспертной комиссии.

 

В июле 1962 года в зале ОНТИ в ОКБ-1 собралась весьма представительная экспертная комиссия для рассмотрения эскизного проекта ракеты HI — основы марсианской экспедиции. Кроме председателя — президента Академии наук СССР М.В. Келдыша, присутствовали секретарь ЦК КПСС Д.Ф. Устинов, главнокомандующий РВСН Маршал Советского Союза Н.И. Крылов, министр Минобщемаша СА. Афанасьев, а также высокопоставленные лица из партийно-хозяйственного аппарата и элита ракетно-космической отрасли. Королев решил впервые познакомить собравшихся со своими межпланетными замыслами, не выделяя их из обширного перечня задач. Марсианское назначение носителя HI не акцентировалось — она представлялась как ракета многоцелевого назначения, в том числе для решения комплекса оборонных задач.

 


Плакаты по марсианской и лунной экспедиции я, как мне было сказано, развесил не на самом видном месте. На них были отражены схемы осуществления экспедиции, конструктивное решение внутренней компоновки ТМК, общий вид марсианского комплекса перед стартом с ОИСЗ для разных схем, компоновка межпланетного комплекса в варианте с аэродинамическим торможением. В таблицу «План освоения Марса и Венеры» была внесена строка, отражающая вариант экспедиции на ЖРД, и впервые обозначен срок осуществления первой марсианской экспедиции — 1974 год. Кроме моих, висели плакаты по освоению Луны, решению научных, народно-хозяйственных и оборонных задач.

 

Доклад Королева был очень ровным и спокойным. Он подчеркнул, что представляет только эскизный проект ракеты HI, а проекты остальных элементов программы требуют дальнейшей серьезной проработки. Об экспедиции на Марс он сказал очень кратко, но отметил, что она рассматривается с использованием ЖРД. У меня сложилось впечатление, что Сергей Павлович не ставил перед собой задачи вызвать большой интерес к марсианской теме и, по-моему, достиг этого. Думаю, у многих сложилось впечатление, что за нашими красивыми марсианскими плакатами нет никаких реальных проработок.

 


Выступивший после Королева его первый заместитель Василий Павлович Мишин с оптимизмом и уверенностью дополнил доклад по ракете, а по поводу марсианской экспедиции на ЖРД с широкой улыбкой произнес: «…Ну, здесь показано, как не надо летать на Марс — летать надо на ЭРДУ, но ее нет». Это было сказано не в порядке критики, а как заявление о том, что у нас еще и не такое есть. Похоже, что Мишин, загруженный проблемами по носителю HI, о наших последних планах по ЖРД не был осведомлен. Присутствующие понимали, что создание ЭРДУ не просматривается в ближайшее десятилетие и вполне могли после выступления Мишина воспринять марсианские материалы как весьма далекую перспективу.

 

Впечатление от представленного проекта приводит в своих воспоминаниях Б.Е. Черток: «Даже спустя 35 лет приведенный текст представляется удивительным каскадом задач, способных увлечь тысячи энтузиастов. Досадно, что все эти задачи не только не доводились до сведения общества, даже ученого, но закрывались грифом «совершенно секретно». Нас вправе были бы спросить: «Неужели в 1962 году вы не понимали, что кроме высадки на Луну и посылки автоматов остальные этапы следует планировать на XXI век?»

 

В четвертом томе своих воспоминаний — «Лунная гонка» — Черток не упоминает о работах по марсианскому проекту с использованием ЖРД. А ведь его кабинет находился в 20 метрах по коридору от кабинета Тихонравова! Похоже, что он, как и Мишин, не был осведомлен о наших действиях. Он действительно мог этого не знать, ведь все исследования и расчеты проводились тогда в обстановке повышенной секретности. Наша работа не афишировалась и не обсуждалась в курилках, а на совещаниях или не упоминалась, или не воспринималась всерьез людьми, не имевшими к ней непосредственного отношения.

 


Исходная масса на ОИСЗ для перемещения 20 т

 

Хочется еще раз подчеркнуть, что причина такой закрытости марсианской программы кроется не только в повышенной секретности. Королев опасался преждевременной недобросовестной критики в высших правительственных кругах со стороны главных своих оппонентов В.П. Глушко, В.Н. Челомея и М.К. Янгеля. Обстановка в тот период наверху была очень сложная. Шла жестокая, спровоцированная Н.С. Хрущевым, «война» за тяжелый носитель, а значит и за лидерство в перспективных космических программах.

 

 

О действительных намерениях Королева красноречивее моих черновиков свидетельствуют сохранившиеся подлинники его заметок по ТМК и ТОС, датированные 14.09.1962 года. Жаль, что о них также забывают поборники «лунного мифа». Эти записи поражают широтой видения всех проблем межпланетного полета и вместе с тем глубиной проникновения в их суть. А ведь сделаны они были всего через два месяца после заседания комиссии, после которого у многих участников, как и у Б.Е. Чертока, сложилось впечатление, что главная задача — это Луна, а значит — «лунная гонка».

 


Рис. 2. Проблемы экспедиции и пути решения

 

При подготовке к заседанию экспертной комиссии в дополнение к «Плану освоения…» была составлена таблица, в которой рассматривались проблемы предстоящего межпланетного полета и были показаны средства и способы их решения (рис. 2). Черновиков таблицы нет в моей рабочей тетради, поскольку она из-за ограничения по времени сразу выполнялась на секретном листе (подобные плакаты делались художниками по тексту из секретного блокнота, а рамку они потом рисовали сами). Поэтому она восстановлена по памяти. В графе «Пути решения» представлены события, совершившиеся в более позднее время. Таблица красноречиво демонстрирует, что все разработки Королева, как выполненные, так и планируемые, были неотъемлемой частью общего единого замысла — осуществления полета на Марс. С позиций сегодняшнего дня отчетливо видно, что в целом космическая программа Королева строго соответствовала главному принципу системного подхода — цели составных частей системы должны совпадать с целями самой системы.

Автор: Admin | 2012-07-08 |

Оценка и перспективы борьбы с космическим мусором. Часть II

Всем владельцам немецких автомобилей марки Mercedes-Benz стоит знать, что по адресу http://www.avilon.ru/_teh_center находится сервис Мерседес, опытные специалисты которого в кратчайшие сроки и по разумной цене смогут произвести технологическое обслуживание и ремонт любой сложности транспортных средств премиум-класса.



Все методы борьбы с опасностью КМ в ОКП можно разделить на три главные категории. Первая категория (так сказать, «эгоистическая») — пассивная, активная или операционная защита конкретного КА, направленная на устранение или смягчение последствий ударов, в основном, мелкого КМ, но никак не на замедление темпа и, тем более, не снижающая засоренности ОКП. Соответствующий результат достигается за счет бронирования КА, осуществления маневров уклонения от столкновения, активной контратаки на надвигающийся КО и т. п.

 

Методы второй категории имеют целью ограничение количества потенциально опасных КО, прежде всего, за счет пассивации КА и РН (что снижает количество взрывов в космосе) и сокращения выброса в космос сопутствующего миссиям мусора. Эти методы тоже не уменьшают текущей засоренности космоса.

Методы третьей категории направлены на снижение или ограничение общей массы и суммарной площади поперечного сечения КО путем снятия их с орбит или увода на другие, мало используемые орбиты отработавших КА и РН. В этом же направлении работает и тенденция миниатюризации новых запускаемых КА с применением мини-, микро-, и нанотехнологий.

 

Эти три подхода по-разному влияют на динамику засоренности ОКП и опасности КМ в краткосрочной и долгосрочной перспективе. Методы первых двух категорий могут значительно замедлить рост опасности КМ в краткосрочном плане и даже ограничить его накопление в некоторых орбитальных районах в дальней перспективе. Но это мало повлияет на замедление или предотвращение каскадного эффекта. Только ограничение и снижение общей массы и суммарной площади поперечного сечения орбитальной популяции сможет предотвратить или, по крайней мере, замедлить возникновение каскадного эффекта, уменьшить скорость его развития.

 

Снижение общей площади поперечного сечения популяции КМ играет важную роль в уменьшении долгосрочного потенциала возникновения и развития каскадного процесса столкновений, поскольку характеризует общую площадь цели для атаки со стороны КМ. Ограничение массы существенно потому, что в долгосрочной перспективе именно масса определяет максимальное число фрагментов, образующихся в результате столкновений, способных вызвать дальнейшие разрушения встречных КО.

 

Для оценки и прогнозирования перспективности и эффективности различных мер борьбы с засорением космоса можно использовать те же модели, что и для прогнозирования эволюции будущей популяции КМ. Они содержат много неопределенностей, снижающих точность прогноза, однако это не мешает получать пусть грубые, но сравнительные оценки возможностей различных методов сокращения или замедления роста популяции КМ.

 

Если бы в будущем популяция КМ пополнялась только за счет отработавших КА, РН, сопутствующего миссиям КМ, продуктов взрывов и деградации поверхности КО, она продолжила бы свой приблизительно линейный рост. Однако существующие модели прогноза засоренности ОКП, используя различные методологии, допущения, начальные данные, однозначно предсказывают, что столкновения между КО добавляют потенциально большое и экспоненциально растущее количество КО, переводящее процесс техногенного засорения ОКП в новое, отнюдь не вызывающее оптимизма качество. Хотя даже небольшие КО представляют значительную угрозу действующим КА, именно крупные объекты (такие как КА и РН) несут в себе потенциал возникновения и развития каскадного процесса столкновений.

 


Рис. 1. Прогноз распределений пространственной плотности крупных КО для различных сценариев борьбы с засорением ОКП

 

Долгосрочное прогнозирование процесса засорения ОКП свидетельствует, что даже при самых решительных мерах, таких как немедленное прекращение всяких запусков и деятельности в космосе, связанной с образованием КМ, стабильность космической среды не может быть обеспечена. Графики на рис. 1 показывают, что даже при самой жесткой политике борьбы с засорением космоса, остановить этот процесс уже невозможно. Можно только замедлить темп засорения ОКП, но не снизить общую массу КМ. Единственный реально действующий сегодня механизм удаления КМ из космоса — это естественный его вход в атмосферу. Предлагаемые радикальные меры удаления крупного КМ из ОКП крайне дороги при довольно низкой эффективности. Реальных способов удаления мелкого и среднеразмерного КМ вообще нет.


Расшифровку всех приведенных в статье условных сокращений смотреть здесь: «Исследование ближнего космоса: условные сокращения».

Автор: Admin | 2012-07-02 |

Пути уменьшения негативных последствий засоренности земной орбиты и снижения самой засоренности. Часть IV

Хотите провести незабываемый отдых на пляже, омываемом теплыми волнами Карибского моря? Тогда без промедления вбейте в Яндекс “Маргарита Венесуэла” или, не тратя времени, посетите сайт www.isla-margarita.ru, который расскажет Вам, чем так примечателен райский остров под названием Маргарита.



Рис. 2. Оптико-электронный комплекс по наблюдению за космосом «Окно»

 

Традиционные методы поиска плохо адаптируются к новым широкомасштабным популяционным изменениям в ОКП и нуждаются в совершенствовании с целью повышения их производительности и эффективности. В настоящее время назрела необходимость модернизации всего арсенала методов поиска КО и создания методологии обнаружения мелких и слабоконтрастных космических объектов (КО) на основе последних научных достижений в этой области. В частности [Вениаминов, 2010], предлагается новый теоретический подход к построению методов поиска таких КО по грубой априорной информации об их орбитах. Некоторые методы, основанные на этом подходе, успешно испытаны, показали высокую эффективность и уже используются в действующих системах (в российской СККП, в частности, в ОЭК «Окно» (рис. 2) [Tretyakov et al., 2005; Veniaminov et al., 2005]). Еще на этапе отработки с их помощью удалось обнаружить БЭКО типа «Молния», считавшиеся потерянными и в течение более полугода не кооперируемые операторами, а также успешно пронаблюдать заданные КО на ГСО бортовым телескопом с очень узким полем зрения в космическом эксперименте с орбитальной астрономической обсерваторией «Астрон» (рис. 3), проводившемся в течение более шести лет с марта 1983 г. под руководством академиков А. Б. Северного и А. А. Боярчука.

 


Рис. 3. Советская космическая обсерватория «Астрон» была запущена в 1983 году. Проработала вместо одного запланированного года шесть лет

 

За последние десятилетия создано много моделей засоренности ОКП, в том числе и для составления прогнозов на десятки и сотни лет вперед. Однако практически все они грешат достоверностью выдаваемой информации. Одна из главных причин в недостатке измерительной информации для калибровки этих моделей, особенно в части мелкого КМ.

 

Повышение эффективности решения проблемы КМ, оперативности получения соответствующих оценок и прогнозов требуют постоянного совершенствования динамических моделей состояния засоренности ОКП на базе современных научных исследований (в математике, физике, астрономии) и регулярного притока новых данных наблюдений КМ. Крайне актуально заполнение пробела в знаниях о связи между хорошо наблюдаемой крупноразмерной фракцией фрагментов разрушения КО и практически ненаблюдаемой мелкой фракцией с целью адекватной экстраполяции первой на вторую при моделировании разрушений.

 

Имеет смысл внимательно проанализировать архивные данные всех космических миссий, предусматривавших зондирование космоса разнообразными бортовыми СН в различных диапазонах длин волн при выполнении задач, не связанных с наблюдениям КМ. Новая информация о КМ будет получена фактически бесплатно и этим нужно воспользоваться.

 


Рис. 4. Радиолокационная станция GRAVES

 

Международное сотрудничество могло бы помочь улучшить качество каталогов КО без особых дополнительных затрат. Это, пожалуй, самый экономичный способ существенно поднять эффективность каталогов. В каждом из них есть объекты, отсутствующие в других. Кроме того, между каталогами есть противоречия, анализ которых даст возможность устранить ошибки в обоих каталогах. В принципе, такой обмен позволит улучшить и точность сопровождения КО. Идеальным шагом в интересах повышения качества мониторинга ОКП было бы объединение СККП России, США и создающейся сейчас европейской СККП. Однако первые две системы принадлежат Министерствам обороны России и США, а основа европейской СККП РЛС GRAVES (рис. 4) — Министерству обороны Франции. Поэтому существуют определенные режимные ограничения на выдачу информации, и в нынешней международной обстановке мало вероятно, что их удастся устранить.

 

Крайне важно договориться о запрете намеренных разрушений КО, в том числе в конце их активного существования, испытаний кинетического оружия (ИС, АСАТ, KKV). Этот вопрос в значительной степени политический и затрагивает такие деликатные аспекты интересов государств, как национальная безопасность. Если не удастся договориться о полном запрете, то можно попытаться склонить заинтересованные стороны к проведению испытаний по «разумным» щадящим сценариям, которые завершались бы минимальным увеличением засоренности космоса.

 

По мере нарастания угрозы техногенного засорения космоса и ее осознания широкими слоями общества все чаще слышны голоса из научных, общественных и государственных организаций о необходимости принятия более радикальных мер борьбы с этой угрозой, чем реально принимаемые или планируемые. Так, Международная академия астронавтики (IAA) после фундаментальных исследований, инициированных ею в конце 2006 г., пришла к выводу о необходимости сосредоточиться, в отличие от прежних, «пассивных» мер, на активном удалении из космоса больших и малых нефункциональных КО — отработавших КА, ступеней РН, сопутствующих космическим миссиям фрагментов, которые служат потенциальным источником дальнейшего развития каскадного эффекта.

 


Рис. 5. Прогноз распределений пространственной плотности крупных КО для различных сценариев борьбы с засорением ОКП

 

Основным инструментом исследований служила эволюционная модель НАСА LEGEND. В качестве критерия для выбора кандидата на удаление было принято произведение массы КО на вероятность столкновения — MPC. При этом рассматривались различные сценарии и нормы удаления: 5 (сценарий 1), 10 (сценарий 2) и 20 (сценарий 3) КО в год, начиная с 2020 г. На рис. 5 показан прогноз на 200 лет (на 2206 г.) распределений пространственной плотности крупных КО (<10 см) по высотам для этих сценариев. Нижняя кривая представляет распределение плотности на 2006 г., верхняя — прогноз на 200 лет при условии, что никакие меры по снижению засоренности ОКП приниматься не будут [Liou, Johnson, 2007].

 


Рис. 6. «Солнечный парус» на аппарате Космос-1, запуск которого состоялся в 2005 году с российской подводной лодки, но закончился неудачей и ракета-носитель вместе со спутником упали в океан

 

Главный вопрос стратегии активного удаления КО из космоса, как уже отмечалось, — рациональный выбор эффективных (или хотя бы физически реализуемых) и в то же время экономически оправданных (по крайней мере, щадящих) средств проведения этой операции. К их числу может быть отнесено использование направленной энергии, электродинамических и аэродинамических приемов (искусственное увеличение баллистического коэффициента), «солнечных парусов» (рис. 6), вспомогательных двигательных установок, тормозящих поверхностей, «захват» на орбите и пр. Проект IAA позиционируется как международный, у него 23 автора из девяти стран [Johnson, Klinkrad, 2009; Liou, Johnson, 2007a].

 

Заметим, что эта мера (активное удаление из космоса крупных объектов) постоянно предлагается в течение последних 30 лет. Однако принять ее к исполнению мешала дороговизна таких проектов. Сейчас, похоже, правительства космических держав (прежде всего США) готовы с этим смириться ввиду большой убедительности последних событий в ОКП.


Расшифровку всех приведенных в статье условных сокращений смотреть здесь: «Исследование ближнего космоса: условные сокращения».

Автор: Admin | 2012-07-02 |

Возможности и средства оценки повреждений космических аппаратов


Осмотр и первичный анализ повреждений от ударов КМ возможен непосредственно в космосе силами космонавтов. Так было на МКС, телескопе «Хаббл» и еще раньше на советских орбитальных станциях. Известно много случаев возвращения на Землю экспонированных в космосе поверхностей и самого тщательного их анализа в лабораторных условиях [LDEF., 1993]. Очень много полезной информации о воздействии КМ на космические аппараты дают наземные лабораторные испытания с применением сверхскоростных ударов. В качестве вспомогательного средства используется компьютерное (аналитическое и цифровое) моделирование.

 


Обшивка МКС, обстрелянная космическим мусором

 

В наземных лабораториях исследуются:

  • непосредственные результаты ударов КМ или его имитаций;
  • воздействие ударов КМ на функциональные характеристики КА и его компоненты, их надежность, живучесть;
  • эффективность методов противодействия повреждениям от ударов КМ (защитные покрытия, их материалы, конструкция, компоновка); воспроизведение разрушений КО (КА, РН, крупного КМ) в результате взрывов и столкновений, образование осколков.

 

При этом главный метод моделирования — экспериментальный сверхскоростной удар, а его цель — выяснение, как КА или его компоненты смогут перенести столкновение в космосе с КМ, а также уточнение влияния этих факторов на процесс засорения ОКП. Поскольку практически нереально и экономически накладно построить целый КА для последующего разрушения в лаборатории, испытания в основном проводятся на отдельных его компонентах и их сборках (топливные баки, связки проводов, изоляционные материалы, структурные блоки). Подробнее см. [Christiansen, 1990; Christiansen, Ortega, 1990; Orbital…, 1995; Schneider, Stilp, 1993; Whitney, 1993].

 


Модель микроспутника с солнечными батареями, основная миссия которого – изучение поведения космического мусора

 

В рамках сотрудничества японского университета Кюсю и подразделения НАСА по проблемам техногенного засорения космоса недавно было проведено семь ударных тестов, где целями служили уже натурные КА — микроспутники размерами от 15x15x15 до 20x20x20 см. Масса этих аппаратов составляла примерно 1,5 кг. Каждая цель была полностью оборудована функциональной электроникой (батареи, приемники, передатчики). В двух последних тестах на спутниках монтировались солнечные панели и многослойное защитное покрытие корпуса. Все цели были обстреляны снарядами различных размеров и при разных скоростях ударов. Образовавшиеся фрагменты размером до 2 мм были собраны, изучены и каталогизированы. Результаты тестов использованы для улучшения модели разрушений НАСА [Hanada, Liou, 2009; Murakami et al., 2009].

 

Многие аналитические теории предсказания повреждений от ударов км основаны, с целью упрощения вывода математических зависимостей, на предположении сферичности формы КМ. Однако реальный КМ характеризуется большим разнообразием форм. Удар несферического тела может причинить значительно большее повреждение во многих ситуациях. Например, глубина проникновения и объем кратера от удара в толстую плоскую мишень сильно зависят от длины снаряда вдоль его оси полета в момент удара [Gehring, 1970]. Плоские снаряды в виде пластинок приводят к большим повреждениям, чем сферические той же массы и при такой же скорости [Boslough et al., 1993].

 

Экономически нереально испытывать все компоненты при всех возможных условиях ударов КМ. Поэтому критические элементы подвергают испытаниям в номинальных условиях, а затем обращаются к компьютерному моделированию с целью распространения полученных результатов на космический аппарат в целом.

 

 

Компьютерное моделирование служит связывающим звеном между результатами обследования поверхностей, реально подвергшихся воздействию КМ в космосе, и предположениями ученых, проверяя и калибруя последние. Модели также позволяют экстраполировать данные, полученные в лаборатории в ограниченном диапазоне, на широкий спектр условий, которые невозможно воспроизвести в лаборатории.

 

При проверке надежности броневых покрытий также прибегают к сочетанию натурных экспериментов и компьютерного моделирования. Сочетание сверхскоростных тестов и компьютерного моделирования представляется довольно мощным инструментом оценки выживаемости КА и КС при ударах км.

 

Ударные испытания применяются и для исследования механизма образования осколков разрушения при сверхскоростном столкновении в космосе. Знать это очень важно для прогнозирования эволюции популяции КМ. Однако такие эксперименты очень дороги и их проведено немного. Конечно, полученные результаты можно экстраполировать с помощью компьютерных моделей, но со значительной степенью неопределенности ввиду ограниченности имеющихся данных.

 

Существует множество экспериментальных средств для моделирования и изучения ударов КМ, с помощью которых можно воспроизвести испытания с довольно крупными снарядами, разгоняемыми до больших скоростей. Однако есть определенные границы возможностей в этом направлении. Все разнообразие форм, размеров и состава КМ пока не может быть испытано во всех диапазонах скоростей. Имеются трудности с разгоном крупных снарядов до типичных скоростей столкновений в низкоорбитальной области ОКП. Эти ограничения затрудняют проектирование защитных покрытий, адекватных действительной космической среде, снижают точность предсказания ущерба от столкновения со сред-неразмерными КО, добавляют неопределенность в прогнозирование будущей популяции засоренности ОКП.

 

При испытании броневых покрытий КА в лабораторных условиях обычно используются ударные частицы размером от 1 мм до 1 см и массой до нескольких грамм, но вполне возможно провести тест и с более крупными снарядами, разгоняемыми до типичных скоростей столкновений на высоких орбитах.

 

Стандартная лабораторная двухступенчатая газовая пушка на легком газе может разгонять объекты размером до 50 мм до скоростей около 8 км/с. Некоторые пушки ускоряют, правда более мелкие объекты, до 10 км/с и выше. Стандартный снаряд — сфера, но возможны и другие формы — тонкие пластинки, длинные стержни, цилиндры [Piekutovski, 1986].

 

Поскольку легкогазовая пушка не может разгонять снаряд до скоростей, типичных для столкновения НОКО (10…15 км/с), были созданы ультрасверхскоростные пушки с расширенным диапазоном скоростей специально для изучения воздействия КМ на КА, способные доводить скорость небольших титановых пластинок до 15,8 км/с [Chhabilidas et al., 1992].

 

В России существуют также крупные камеры, в которых можно квазинатурно моделировать экспериментальные орбитальные взрывы и столкновения в контролируемой среде [Fortov, 1993].

 

Конструкторы защитных покрытий в работе используют (как вспомогательный инструмент исследований) аналитические методы, включающие уравнения «баллистического предела» [Herrman, Wilbeck, 1986; Reimerdes et al., 1993; Ryan, Christiansen, 2010]. С их помощью рассчитываются размеры частицы, останавливаемой данным конкретным щитом в функции скорости удара, его угла, плотности атакующей частицы и уравнения размеров щита [Christiansen, 1992]. Есть и аналитические модели для предсказания повреждений от ударов и их последствий, но они несколько сложнее.

 

К сожалению, не хватает моделей стандартизированных оценок рисков для определения вероятностей выхода из строя компонент КА вследствие удара км и стандартизированных моделей ухудшения рабочих характеристик компонент КА. Из-за этого последствия ударов КМ для КА и его выживаемость приходится оценивать косвенно, прибегая к рискованной экстраполяции [Orbital___, 1995].

 

Следует иметь в виду, что диапазон возможностей разгона частиц нужной массы и формы при моделировании ударов КМ пока ограничен. Эти ограничения затрудняют проектирование броневого покрытия КА, адекватного действительной космической среде, снижают точность прогнозирования ущерба, добавляют неопределенность в предсказание будущей популяции КМ.

 


Исследовательская орбитальная лаборатория LDEF

 

Другим слабым звеном в конструкции щитов от КМ часто бывает предположение, что крупный км состоит из алюминия, а мелкий из окиси алюминия. В реальности некоторые КО состоят из материалов более высокой плотности. При обследовании поверхности КА LDEF, как уже говорилось выше, обнаружены следы ударов частиц из нержавеющей стали, серебра, меди [Horz, Bernhard, 1992]. Щит, готовый выдержать удары алюминиевого КМ, может оказаться неспособным противостоять ударам более плотных тел.

 

Конечно, нереально испытывать щиты и другие компоненты КА на удары км всех возможных размеров, масс, форм, составов во всех диапазонах космических скоростей. Здесь нужно обращаться за помощью к компьютерным моделям, откалиброванным по достаточному объему экспериментальных данных, для экстраполяции на недостающие условия испытаний.


Расшифровку всех приведенных в статье условных сокращений смотреть здесь: «Исследование ближнего космоса: условные сокращения».

Автор: Admin | 2012-06-27 |

Различные виды последствий техногенного засорения околоземного космического пространства. Часть VI

Хотите отправиться в кругосветное путешествие? Тогда Вам просто необходимо выучить самый распространенный язык на нашей планете – английский. Курсы английского языка в киеве помогут Вам в этом, и уже после нескольких занятий Вы сможете бегло разговаривать на английском.
Для того чтобы записаться на курсы посетите сайт americanenglish.ua.



МКС за время своего существования породила множество сопутствующего КМ, из которого около 70 фрагментов было каталогизировано. Это и потерянные камеры, стаканы, сумка с инструментами, а 117 также намеренно выброшенное за ненадобностью оборудование и другие предметы — в среднем 10 объектов в год. Это не считая более мелкого КМ. К счастью, он существовал на орбите не более 15 месяцев [Aksenov et al., 2010; Johnson, 2009].

 

Американские шаттлы, находясь на орбите, совершили до 2008 г., по крайней мере, восемь раз маневр уклонения от столкновения [Ailor, 2008]. Причем в конце ноября 1991 г., когда на угрозы со стороны КМ практически не обращали внимания, шаттл миссии STS-44 настолько приблизился к опасному коридору полета советской отработавшей ступени РН, что был вынужден совершить маневр уклонения, запустив сразу два маневровых двигателя на 7 с.

 

Шаттлы неоднократно подвергались ударам частиц размером более 1 мм. В первых 33 полетах они получали повреждения черепичного покрытия снизу. Несколько термозащитных иллюминаторов пришлось заменить из-за повреждений. В 1983 г. во время миссии STS-7 удар всего лишь кусочка краски размером 0,2 мм при относительной скорости 3…6 км/с привел к образованию 4-мм кратера в иллюминаторе корабля, и его также пришлось заменить.

 

При осмотре иллюминатора № 6 миссии STS-50 был обнаружен кратер диаметром 1 мм от удара частицы размером 100.150 мкм (рис. 22). Химический и спектральный анализ показал, что этот след оставил продукт работы твердотопливного двигателя состава Al2O3 [Jackson, Bernhard, 1997].

 


Рис. 22. кратер на иллюминаторе шаттла миссии STS-50 от удара частицы, выброшенной из сопла твердотопливного двигателя

 

В июне 1999 г. шаттл «Дискавери» (миссия STS-96) осуществил первую стыковку с МКС. Послеполетная инспекция выявила множество повреждений, 64 из которых были исследованы очень тщательно специальными методами (рис. 23). Размер кратеров колебался от 0,125 до 4,0 мм. На иллюминаторе командного отсека выявлено 50 повреждений. Материал КМ, вызвавшего эти повреждения, включал кусочки краски (50 %), алюминий (40 %) и нержавеющую сталь (10 %). На панелях радиатора и гибком изоляционном поверхностном слое обнаружено 12 следов от ударов КМ и метеороидов. В кратерах обнаружены частицы краски и алюминия [Kerr, 2000].

 


Рис. 23. Повреждение на иллюминаторе кабины шаттла миссии STS-97 от удара частицы из нержавеющей стали [ISS Space…, 2001]

 

Послеполетное обследование шаттла «Дискавери» (миссия STS-114) выявило 41 след от ударов микрометеороидов или КМ. 14 ударов пришлись на лобовые иллюминаторы модуля экипажа. Повреждено пять окон из восьми. Самый крупный кратер обнаружен на окне № 4. Его размер — 6,6×5,8 мм. Он был вызван ударом частицы диаметром 0,22 мм. Окно пришлось заменить.

 

Радиаторы дверей отсека полезного груза выдержали 19 ударов КМ. Один из ударов вызвал перфорацию в лицевом щите диаметром 0,61 мм.

 

Размер частицы, виновной в этом, оценен в 0,4 мм. На внешнем покрытии двери обнаружено повреждение размером 5,8×4,5 мм [Hyde et al., 2006].

 


Рис. 24. Пробоина и трещина на панели радиатора шаттла миссии STS-115

 

После возвращения из полета шаттла STS-115 в космическом центре Кеннеди при обследовании правого борта была обнаружена крупная пробоина на 4-й панели радиатора двери грузового отсека [Hyde et al., 2007]. Диаметр пробоины — 2,74 мм. Рядом с пробоиной — трещина длиной 6,8 мм (рис. 24). Надо отметить, что после каждого возвращения шаттлов НАСА проводила тщательный лабораторный анализ повреждений, полученных от ударов КМ [Hyde et al., 2010].

 


Рис. 25. Повреждение панели радиатора шаттла «Эндевор» миссии STS-118 к МКС

 


Рис. 26. Повреждение термозащитного одеяла под панелью радиатора

 

В августе 2007 г. во время полета шаттла «Эндевор» миссии STS-118 к МКС были пробиты насквозь задняя левосторонняя панель радиатора системы охлаждения. Толщина панели радиатора составляла 12,7 мм.

 

Размер входного отверстия от удара — 7,4×5,3 мм (рис. 25). Ударившийся КО разрушился при ударе, его осколки нанесли множественные повреждения вокруг основного отверстия. Пробившие панель частицы повредили затем и термозащитное одеяло (рис. 26). Послеполетный анализ показал, что столкнувшийся с шаттлом элемент КМ состоял из титанового сплава со следами цинка и имел размер от 1,5 до 2 мм [Lear et al., 2008].

 

В ноябре 2008 г. во время полета шаттла «Эндевор» миссии STS-126 к МКС от удара частицы КМ на иллюминаторе образовался кратер размером 12,4×10,3 мм глубиной 0,63 мм. Это был наибольший кратер из всех, обнаруженных на иллюминаторах шаттлов (рис. 27) [Herrin et al., 2009].

 


Рис. 27. Крупный кратер на иллюминаторе шаттла «Эндевор» миссии STS-126

 

В результате послеполетной инспекции шаттла «Дискавери» STS-128 было обнаружено 14 следов ударов на иллюминаторах кабины команды, 16 на переднем срезе крыла и носовой поверхности, 21 на панели радиаторов контура охлаждения. Среди них был кратер, представляющий особый интерес. Он оказался не самым крупным, но находился в стратегически важной точке — на алюминиевой защитной пластине, непосредственно прикрывающей трубы контура охлаждения электронного оборудования. Если бы не эта пластина, была бы пробита труба и произошла утечка фреона. В этом случае шаттл должен был приземлиться в течение 24 ч. Кстати, последующее моделирование подтвердило, что без защитной пластины контур охлаждения был бы пробит. [Christiansen et al., 1993; Orbital., 2010] (рис. 28, 29). Подробно история повреждений поверхности шаттлов с 1992 по 2000 г. изложена в [Hyde et al., 2000].

 

Есть и военные аспекты последствий техногенной засоренности ОКП. Во-первых, в результате столкновений с КМ КА военного ведомства уже несут ощутимый ущерб, как это было с очень дорогим экспериментальным кА минобороны Франции CERISE в 1996 г. Довольно часто происходят сбои в работе военных спутников, которые операторы затрудняются объяснить. В конце концов, большинство экспертов склоняется к версии столкновения с КМ.

 

Во-вторых, незарегистрированное (недоказанное, «неофициальное») столкновение военного КА с элементом КМ, приведшее к внезапному прекращению его функционирования или выходу из строя хотя бы части его аппаратуры, может быть воспринято как нападение и спровоцировать военный конфликт со всеми вытекающими последствиями.

 


Рис. 28. Кратер от удара КМ в защитную пластину контура охлаждения

 


Рис. 29. 4-миллиметровый кратер от удара кусочка краски 0,2 мм в иллюминатор шаттла

 

В-третьих, с военной точки зрения, популяция КМ представляет собой мощную неуправляемую орбитальную группировку, которая представляет значительную опасность для функционирования не только национальных и зарубежных космических аппаратов, но и наземных объектов военного назначения.


Расшифровку всех приведенных в статье условных сокращений смотреть здесь: «Исследование ближнего космоса: условные сокращения».

Автор: Admin | 2012-06-21 |

Различные виды последствий техногенного засорения околоземного космического пространства. Часть IV

Замучили проблемы с желудком? Тогда Вам стоит знать, что кефир положительно влияет на всю микрофлору вашего организма, способен восстановить кислотно-щелочной дисбаланс и является действенным средством для борьбы с болезнетворными микробами.

Однако этот кисломолочный продукт из магазина не будет обладать теми же лечебными свойствами, что и тот, который Вы приготовите сами из заквасок Vivo, приобрести которые можно на сайте zakvaski.com.


 

Экипажи шаттла миссий STS-122 и STS-123 при внешнем осмотре МКС обнаружили целый ряд повреждений от ударов КМ [Hyde et al., 2008] (рис. 12).

 

В апреле 2010 г. экипажем шаттла (миссия STS-131) были доставлены для лабораторного анализа на Землю две защитные алюминиевые панели переходного шлюза МКС после почти девяти лет их пребывания в космосе. Размер каждой панели — 1,3×0,84 м, толщина —0,02 м. На них обнаружено 58 кратеров от ударов КМ (24 на одной и 34 на другой) размером от 0,3 мм и более. Самый большой кратер имел размер 1,8 мм. В кратерах обнаружены частицы силикагласса и тефлона. Возможно, это вторичные удары осколков от солнечных панелей, поврежденных КМ.


Шаттл «Дискавери»

 

В 1990 г. на орбиту с помощью шаттла «Дискавери» (миссия STS-31) был выведен телескоп «Хаббл» (Hubble Space Telescope, HST), предназначенный для наблюдения электромагнитного излучения, для которого земная атмосфера непрозрачна прежде всего в инфракрасном диапазоне (рис. 14). Конструкция телескопа довольно защищенная. По расчетам Института космических телескопов ее соударения с КМ размером 5 мм и более должны происходить один раз в 17 лет, а с более мелким, конечно, гораздо чаще. При этом 40 % конструкции, включая солнечные батареи, могли получить лишь незначительные повреждения [Portree, Loftus, 1999].

 


Рис. 14. Телескоп ««Хаббл»» космического базирования

 

В течение длительного функционирования телескопа он многократно подвергался ударам КМ. Естественно, к нему периодически направлялись команды специалистов для осмотра и проведения ремонтных работ.

 


Рис. 15. Распределение количества ударов элементов КМ в оборудование космического телескопа «Хаббл» по размерам (от 1 мм до 5 см) за семь лет полета

 

Ремонтная бригада космонавтов, прибывшая на межорбитальном корабле через семь лет полета «Хаббла», насчитала 511 следов от ударов частиц КМ размером от 1 мм до 5 см. На рис. 15 представлена гистограмма распределения количества ударов в обшивку и внешнее оснащение телескопа по размерам столкнувшихся с ним частиц [Ailor, 2008]. Из нее видно, что чаще всего случались столкновения с КМ размером от 1 мм до 1 см. Чем крупнее частицы КМ, тем реже столкновения с ними. Однако не следует думать, как может показаться из гистограммы, что столкновения с частицами мельче 1 мм происходили редко. Просто следы от очень мелкого мусора не вошли в выборку, по которой она строилась (рис. 16).

 


Рис. 16. Пробоины от ударов мелких частиц на поверхности HST, выявленные с помощью снимков Скотта Келли и измеренные в лаборатории НАСА

 

 

В июне 2007 г. во время специального осмотра экипаж МКС доложил 109 о повреждении от удара КМ на блоке радиатора термозащитного покрытия российского модуля «Заря», охарактеризовав его как похожее на пулевое отверстие (см. рис. 10 и 11). Размеры разрыва наружного слоя — 6,7×3,3 см, отверстий в нижних слоях многослойного «одеяла» — приблизительно 1,0×0,85 см. Последующий лабораторный анализ показал, что подобное повреждение мог нанести КО размером от 0,2 до 0,3 см, атаковавший модуль почти вскользь (~70° от нормали к поверхности покрытия) на скорости менее 6 км/с [Christiansen et al., 2007].

 


Рис. 13. одно из повреждений МКС на поручне D

 

Одно из повреждений на алюминиевом D-образном поручне (рукоятке) довольно сильное. Это кратер диаметром около 5 мм. Кроме того, на противоположной стороне от ударной волны образовался скол. Все это хорошо видно на рис. 13 [Hyde et al., 2008].

 


Рис. 17. В центре — радиатор камеры 2, возвращенный на Землю. Снимок сделан из грузового люка шаттла «Атлантис», пристыкованного к HST

 


Рис. 18. крупный план радиатора

 

В мае 2009 г. командой шаттла «Атлантис» миссии STS-125 был снят с телескопа и возвращен на Землю радиатор (размером 2,2×0,8 м) широкоугольной камеры (радиатор был экспонирован в космосе с 1993 г.). Ввиду относительно большой площади его поверхности и значительного времени экспозиции, он может служить уникальным интегральным детектором ударов микрометеоров и КМ в области высот 560…620 км. Послеполетный анализ поверхности с помощью цифрового микроскопа выявил 685 кратеров от ударов частиц размером 300 мкм и крупнее [Liou and team, 2010]. Расположение радиатора на космическом телескопе показано на рис. 17 и 18 [MMOD…, 2009]. На рис. 18 красными кружками помечены повреждения, обнаруженные еще в инспекционной миссии 2002 г., зелеными — новые кратеры, выявленные в 2009 г.

 

После первых 10 лет работы телескопа «Хаббл» в антенне КА обнаружили дыру размером около 2 см от удара КМ. Во время миссии STS-103 в 1999 г. был произведен осмотр поверхности HST с фотографированием отдельных участков. Астронавт Скотт Келли сделал 99 снимков специальной камерой через иллюминатор из кабины корабля. Впоследствии исследователи выбрали для подробного анализа 571 след от ударов КМ и микро-метеороидов. Наибольшее отверстие имело размер 2…3 мм, а большинство пробоин — от 1 до 2 мм. Вокруг каждой пробоины образовалась вмятина вдвое большего диаметра [New Report…, 2002; Survey…, 2002].

 

Примеры повреждений показаны на рис. 16. Наибольшая плотность ударов на обследованной в этой миссии поверхности HST составила 45 ударов на квадратный метр. Это кумулятивный результат за 10 лет полета HST.

 

То, что удалось вернуть с HST (и не только с него), обычно тщательно исследуется в наземных лабораториях [Anz-Meador, 2011; Klinkrad, Stokes, 2006; Opiela et al., 2010].

 


Расплывающийся тороидальный пучок орбит осколков от разрушения ИСЗ «Фенгюн-К» с интервалом шесть месяцев

 

В результате взрыва или столкновения образуется во много раз больше осколков, чем при любом другом событии в космосе. Эти осколки занимают все более расширяющийся спектр орбит, которые постепенно группируются в тороидальное облако, трансформирующееся тем стремительнее, чем больше разброс начальных векторов скоростей фрагментов. Все это можно видеть на примере разрушения китайского КА «Фенгюн-1С» (см. рис. выше).

 

Характерная черта засорения ОКП — постоянное возрастание вероятности столкновений и их катастрофичности даже при небольших размерах частиц мусора (из-за гигантских относительных скоростях во время столкновения). Например, алюминиевый шарик массой в 1 г, движущийся со скоростью 10 км/с, несет такую же разрушительную силу, что и 160-килограммовый сейф, летящий со скоростью 100 км/ч [Interagency Report…, 1995; Report…, 1989].

 

Высокая вероятность столкновения функционирующих КА с элементами КМ вынуждает конструкторов прибегать к весьма дорогостоящей защите — бронированию корпуса КА и выведению в космос значительно большей массы, чем это необходимо для выполнения целевой задачи. При этом дополнительная масса сама в конце концов становится вкладом в КМ.

 

Но бронирование может спасти только от столкновения с мелким КМ (<< 1 см). Что же касается крупного, то здесь никакая броня не поможет. Известны многочисленные факты потери дорогостоящих КА в результате столкновений в космосе. Например, французского CERISE, американского «Иридиум-33».

 

Вероятность столкновения в космосе — очень растяжимое понятие: оно имеет смысл лишь при задании эпохи, интервала времени, размеров и формы КО, параметров их орбит и т. д. Например, вероятность столкновения КО диаметром 10 м с каталогизированным КО (т. е. размером более 10 см) на высотах 800…1000 км в течение 1997 г. составляла 0,0004, а в 2000 г. — уже 0,01! На высоте 400 км эта вероятность в пять раз меньше.

 


Рис. 19. Распределение потока Ноко по высоте (по данным Kaman Sciences Corporation)

 

На рис. 19 [Orbital___, 1995] показано изменение потока каталогизированного КМ в области низких орбит в зависимости от высоты. Но при этом не учитывался некаталогизированный КМ, а наблюдения «Хэйстэка» показали, что распределение КО размером порядка 1 см аналогично распределению крупного КМ в значительной части области низких орбит. Например, на типичной для шаттла и МКС высоте 300 км поток как крупного, так и среднеразмерного КМ в 50 раз меньше, чем на 113 высоте 1000 км. Причем на этих высотах вероятность столкновения изменяется более чем в два раза, в зависимости от уровня солнечной активности.


Расшифровку всех приведенных в статье условных сокращений смотреть здесь: «Исследование ближнего космоса: условные сокращения».

Автор: Admin | 2012-06-21 |

Прогноз развития процесса засорения околоземного космического пространства в будущем. Часть II

Погрузиться с головой в сюжет кинофильма и испытать самые реалистичные ощущения от его просмотра Вы сможете, если посетите 5d кинотеатр.
Если Вы мечтаете стать не зрителем, а участником кинофильма, тогда прямо сейчас перейдите на сайт www.podarki.emprana.ru, где сможете приобрести сертификат на посещение пятимерного кинотеатра.


Итак, даже при самом бережном режиме (принудительно ежегодно удаляются пять крупных КО) на интервале прогноза произойдет 14 катастрофических столкновений, и при всех сценариях количество столкновений будет только возрастать.

 


Рис. 3. Изменение числа КО и количества столкновений для сценария 1

 

Модель SPDA [Иазаренко, 2010] дает следующие результаты при прогнозировании состояния засоренности ОКП и изменения количества столкновений на 200 лет. Сценарий 1 — полное прекращение запусков новых ИСЗ и исключение возможности взрывов в космосе. Для такого сценария модель предсказывает через 200 лет снижение количества КО размером более 20 см в два раза, но число их столкновений в год будет монотонно расти в течение этих лет, хотя и с небольшим замедлением за счет диссипативного эффекта у нижней границы области низких орбит. Число же столкновений объектов размером 10…20 см будет увеличиваться еще круче. Именно за счет возрастания числа столкновений будет расти и количество более мелких КО, в частности, количество КО размером от 1 до 2,5 см за 200 лет увеличится почти в пять раз (рис. 3). Это ничто иное как каскадный эффект или его непосредственный предвестник, причем даже в случае самого оптимистического сценария и для крупных КО!

 


Рис. 4. Изменение числа КО и количества столкновений для сценария 2

 

Сценарий 2 — запуски новых ИСЗ продолжаются с прежней интенсивностью, взрывы в космосе исключаются (рис. 4). В отличие от первого — рост числа крупных КО (>20 см) продолжится. Через 200 лет их будет в полтора раза больше, чем сейчас. Ежегодное число столкновений представлено уже не выпуклой, а вогнутой функцией (т. е. растет с ускорением), и оно через 200 лет будет почти в 3,5 раза большим, чем для первого сценария. Количество КО размером 10.20 см увеличится более, чем в три раза, мелких КО (<2,5 см) — до 20 раз [Назаренко, 2010]. Экспоненциальный характер роста числа столкновений крупных КО и общего количества мелких КО при весьма умеренном увеличении количества крупных (каталогизированных) КО — уже признак каскадного эффекта.

 

Итак, анализ результатов работы многих моделей техногенного засорения ОКП подсказывает неутешительный вывод. Если бы единственными добавками к популяции КМ в будущем были запускаемые новые КА и выводящие их на орбиты РН (остающиеся на орбитах по завершении своих миссий), сопутствующий миссиям КМ, продукты деградации поверхности КО и фрагменты взрывов (но не столкновений!), общая популяция КМ продолжала бы свой приблизительно линейный рост. Введение мер по снижению количества взрывов КА и РН и ограничение количества высвобождаемого в полете сопутствующего космическим миссиям мусора может привести к замедлению темпа роста популяции. Но он продолжится, оставаясь линейным. Уплотнение графика запусков ИСЗ приведет к ускорению темпа роста популяции. Столкновения КО, если они продолжатся (а они, без сомнения, продолжатся), потенциально опасны значительным, причем экспоненциальным ростом популяции КМ в будущем.


Расшифровку всех приведенных в статье условных сокращений смотреть здесь: «Исследование ближнего космоса: условные сокращения».

Автор: Admin | 2012-06-20 |

Распределение космического мусора. Часть III

А Вы никогда не думали, что у Вас за границей есть богатый дядюшка, который не знает, кому завещать свои миллионы?
Я настоятельно советую Вам попытать счастье и постараться найти своих родственников через сайт база-фамилий.рф, где хранятся данные о всех жителях планеты Земля!



Радар «Хэйстэк»

Самую полную измерительную информацию о среднеразмерном КМ на сегодняшний день дают кампании наблюдений наземными средствами и, прежде всего, с помощью РЛС «Хэйстэк» и ХЭКС.

 


Рис. 15. Распределение по высоте количества КО, обнаруженных радаром «Хэйстэк» в 547,6-часовом сеансе в парковом режиме при угле места 90°, и каталогизированных КО (данные НАСА)

 

На рис. 15 показано распределение обнаруженного в одной из кампаний (продолжительностью 547,6 ч) радаром «Хэйстэк» (в вертикальном парковом режиме) КМ размером от 1 см до 10 см по высотам в сравнении с распределением каталогизированных КО с дискретностью 100 км [Orbital…, 1995; Stansbery et al., 1994].

 

Бросается в глаза подобие этих двух распределений. Но есть между ними и различия. Объем популяции КМ, обнаруженного «Хэйстэком», ниже 1000 км с падением высоты уменьшается быстрее, чем количество каталогизированных КО, а в области 900_1000 км наблюдается явный пик в популяции КМ, обнаруженного «Хэйстэком», и такого пика нет (наоборот, имеется небольшой провал) в популяции крупных (каталогизированных) КО.

 

Первое различие вполне согласуется с предположением большей подверженности среднеразмерных КО, чем крупных, торможению в атмосфере, а пик в области 900_1000 км еще раз указывает на то, что источник образования частиц размером 1…10 см в этой области высот — скорее всего незарегистрированные разрушения крупных КО. Этим же можно объяснить и небольшой провал в распределении крупных КО.

 

Поскольку «Хэйстэк» позволяет оценивать также наклонение и эксцентриситет, его измерения свидетельствуют, что среднеразмерный КМ чаще, чем крупные КО обнаруживается на орбитах с меньшими наклонениями и большим эксцентриситетом. Кроме того, большое число КО, обнаруженных на высоте 900_1000 км, движутся по почти круговым орбитам с наклонениями ~65° [Stansbery et al., 1994]. После тщательного анализа результатов наблюдений «Хэйстэка» американские эксперты пришли к выводу, что большое количество КО на высотах 900…1000 км, имеющих наклонение орбит 60_70°, говорит о наличии мощного источника образования среднеразмерного КМ в этой области. Если бы этот источник был взрывом или столкновением крупных КО, то разброс параметров орбит КМ был бы гораздо шире, чем наблюдаемый, хотя в этой популяции могут быть и продукты неизвестных взрывов. Поляриметрические измерения «Хэйстэка» показывают, что частицы КМ из этой популяции имеют относительно гладкие и близкие к сферической поверхности, а не изрезанные, которые были бы типичны для продуктов взрывного разрушения. Анализ орбитальных и физических характеристик популяции показывает, что эти объекты могут быть десятками и сотнями тысяч капель диаметром 0,6_2,0 см натрий-калиевого охладителя, вытекающего из нефункционирующего реактора российского КА системы морской космической разведки и целеуказания RORSAT [Kessler et al., 1995; Stansbery et al., 1995].

 

Гораздо меньше наблюдений, свидетельствующих о возможных источниках других концентраций КМ, не предсказанных моделями. Таких, например, как концентрация КМ, обнаруженная «Хэйстэком» на наклонениях 25…30°. Это другой район, в котором наблюдалось очень мало разрушений [Kessler, 1993].

 


Космический аппарат LDEF выглядит как школьный автобус, но по сути является сверхсовременной экспериментальной лабораторией

В ОКП существуют весьма многочисленные популяции мелкого КМ (размером < 1 см и < 1 мм). О их наличии мы узнаем из анализа возвращаемых на Землю КА (LDEF, PALAPA, Solar Max и др.) и, в значительно меньшей степени ввиду их ограниченности, от активных бортовых датчиков (например, установленных на борту шаттла, ОС «Салют», «Мир», КА LDEF, 91 EURECA). Но все эти данные пришли с высот менее 600 км. Можно только предполагать, что на больших высотах из-за малого влияния атмосферы плотность частиц размером менее 1 мм должна возрастать с высотой.

 

Образование мелких техногенных частиц, так же как и среднеразмерных, связано либо с выводом и функционированием КА (окись алюминия и т. п.), либо с разрушениями крупных КО (взрывы, столкновения, старение поверхности). Продукты выхлопа твердотопливных двигателей имеют приблизительно сферическую форму и диаметр в среднем 10 мкм. Возмущающие силы действуют на мелкие частицы еще интенсивнее. В частности, из-за, как правило, большего отношения A/M у мелкого КМ, последний существенно подвержен воздействию давления солнечной радиации и сопротивления атмосферы. Анализ показывает, что менее 5 % окиси алюминия остаются на орбитах не больше одного года [Muller, Kessler, 1985], тогда как крупные продукты разрушений могут находиться в космосе годами.

 


Рис. 16. сравнение выхода фрагментов различных размеров в результате взрыва и сверхзвукового столкновения

 

Продукты разрушений по размерам охватывают все диапазоны (крупный, среднеразмерный, мелкий) и имеют значительное разнообразие форм. Различные виды разрушений характеризуются и разным соотношением образующихся крупных, мелких и среднеразмерных осколков (см., рис. 16, где сравнивается выход фрагментов различных размеров в результате взрыва и сверхскоростного столкновения КО). Предполагается, что мелкие осколки в момент образования характеризуются более широким диапазоном векторов начальных скоростей, чем крупные и среднеразмерные и столь же широким диапазоном начальных и эволюционирующих орбит.

 

В [Orbital___, 1995] приведен краткий обзор результатов экспериментов с LDEF. Подробный же отчет о результатах обследования поверхности этого КА содержится в выпущенном НАСА трехтомнике [LDEF_, 1993]. Измерения, полученные от активных датчиков с борта LDEF в первый период его полета (1984-1990), впервые указали на высоко динамичную природу популяции мелкого КМ. Это было подтверждено также экспериментом с КА HITEN [Munzenmayer et al., 1993]. Эксперимент с космической пылью [Mulholland et al., 1991] был единственным экспериментом в программе LDEF, в котором измерялось время удара. Оказалось, что большинство ударов было связано со скоплениями КМ. Это, конечно, не могла бы показать миссия с пассивными датчиками.

 

Эксперимент поучительный, так как продемонстрировал, что именно регистрация времени ударов открывает возможность отследить динамику популяции среднеразмерного и мелкого КМ. Если бы на пути этих потоков оказались бы СН, работающие в парковом режиме, они отметили бы увеличение интенсивности потока КМ на 3…5 порядков в течение нескольких минут. В процессе полета LDEF эти скопления обнаруживались снова и снова приблизительно в одной и той же точке орбиты LDEF, которая медленно перемещалась с характерной скоростью прецессии орбиты, что позволило вычислить параметры орбит скоплений КМ. Существование таких скоплений указывает на то, что в предыдущем, пассивном эксперименте с LDEF измеренный им, сильно усредненный за 6 лет полета интегральный поток КМ на самом деле мог быть очень зависимым от времени, особенно для мелкого КМ, из которого эти скопления преимущественно состояли.

 

Результаты экспериментов с LDEF заставили задуматься над возможными источниками образования обнаруженных роев КМ. Выдвигалось предположение, что они состоят из окиси алюминия — продукта работы твердотопливного реактивного двигателя. Однако такие частицы быстро сходят с орбиты, т. е. не могут существовать несколько месяцев. Дональд Кесслер предположил, что отработавшая ступень РН могла медленно испускать остатки пылевидных частиц и тем самым сформировать долго живущие скопления [Kessler, 1993]. Другим возможным источником могли быть кусочки краски, эродировавшие под действием атомарного кислорода с поверхности КО на высокоэллиптической орбите. Уже в другой своей работе Д. Кесслер показал, что для образования такого скопления КМ, какой наблюдался LDEF, требуется расход менее 1 г краски в год с поверхности КА или РН [Kessler, 1990]. Высказывалось также предположение, что наблюдавшиеся рои — продукты неизвестных разрушений. В работе [Potter, 1993] было показано, что малые частицы, образовавшиеся в результате сверхскоростных столкновений среднеразмерных и крупных КО, могут создавать скопления КМ с распределением размеров, аналогичных тому, который был у обнаруженных LDEF.

 

Все это очень интересно, но объективный вывод неутешительный: объем измерений малоразмерных частиц (<< 1 см), который к тому же удалось получить только на низких высотах, настолько незначителен, что нет оснований делать какие-либо выводы относительно распределения мелкого мусора по высотам. Кроме того, на самых низких орбитах, вследствие кратковременного орбитального существования КО в этой области, среда очень динамична и претерпевает существенные изменения в самый короткий период времени. Таким образом, для объективного описания малоразмерной популяции КМ в настоящее время недостаточен не только объем необходимых измерений, но и частота их обновления.

 

Наши знания о популяциях мелкого и среднеразмерного КМ составлены, главным образом, путем экстраполяции с использованием незначительного объема измерений и далеко не совершенных моделей. Улучшить модели помогло бы выяснение источников образования мелкого и среднеразмерного КМ.


Расшифровку всех приведенных в статье условных сокращений смотреть здесь: «Исследование ближнего космоса: условные сокращения».

Автор: Admin | 2012-06-16 |

Распределение космического мусора. Часть II

О Боже, Дин Винчестер снова попал… но уже не в ад, в чистилище! Хотите узнать, как наш герой выпутается из этой пренеприятнейшей ситуации и надерет задницы тварям из преисподней, тогда смотрите прямо сейчас самый очешуенный сериал в мире — Сверхъестественное 8 сезон.
Увидеть новые серии вашего любимого сериала Вы сможете только, если прямо сейчас посетите сайт supernatural-word.ru!


Анализ распределения КМ по различным параметрам приводит к следующим выводам.

 


Рис. 12. Каталогизированные космические объекты

 


Рис. 13. Космические объекты вместе с геостационарным кольцом. Вид с Северного полюса

 


Рис. 14. «Срез» каталога КО на фоне Земли

 

Крупный КМ достаточно хорошо описан в каталогах КО обеих СККП и в архивах результатов независимых от СККП наблюдений, поэтому о его распределениях можно говорить с наибольшей достоверностью. Общая картина пространственного распределения крупного КМ наглядно и с высокой достоверностью характеризуется рис. 12-14, представляющими собой временные срезы реального каталога в разных ракурсах.

 

Из гистограмм на рис. 3 и 4 следует, что явная концентрация КМ наблюдается на высотах ниже 2000 км, на 20 000 км и в геостационарном кольце. Причем ниже 2000 км распределение очень неравномерное: явные максимумы плотности наблюдаются на высотах от 900 до 1000 км и от 1400 до 1500 км. Значительной плотностью засоренности характеризуются также высоты от 700 до 900 км, от 1000 до 1200 км и от 1500 до 1600 км. Что касается состава КМ, то на этих высотах обращаются в основном осколки разрушений, случившиеся между 2000 и 18 000 км, сопутствующие выводу и функционированию космических аппаратов, а выше — отработавшие КА, РН и их крупные фрагменты.

 

Из рис. 1 видно, что большинство орбит, кроме ГСО, имеют сравнительно большие наклонения. Различие в наклонениях приводит к асимметричному распределению КО по широте. Например, орбиты с низкими наклонениями как бы «оттягивают» на себя КО из довольно переполненных высокоширотных областей.

 

Строго полярных орбит мало, поэтому над полюсами Земли плотность КО низка. Некоторое повышение плотности наблюдается на наклонениях 63…65°. Эту нишу заполняют высокоэллиптические орбиты аппаратов типа «Молния» и сопутствующий им КМ. Полусинхронные орбиты поделены между Россией и США. Орбиты американских КА имеют наклонение 55°, а российских — 65°.

 

Самая переполненная орбита — ГСО. Для сохранения выделенной КА долготы точки его стояния (если он функционирующий) осуществляются периодические коррекции орбиты, которые также поддерживают значение наклонения орбиты близким к нулю. Если этого не делать, то случится то же, что происходит с отработавшими (пассивными) КА (не переведенными на орбиту захоронения) или с фрагментами их разрушения и сопутствующим КМ. Орбитальная плоскость таких КО под воздействием несферичности Земли и возмущений от Луны и Солнца будет совершать колебания относительно плоскости Лапласа (наклоненной к экватору на 7,3°) с амплитудой около 15° и периодом 53 года [Сочилина, 1984a, б].

 

Кроме того, ввиду эллиптичности земного экватора пассивные КО на ГСО подвержены дрейфу вдоль нее и колебаниям относительно ближайшей стабильной точки (либо 75° в. д., либо 105° з. д.) с периодом два года. Под действием всех этих факторов КМ в геостационарном кольце имеет значительный разброс наклонений орбит (±15° и даже больше из-за разброса начальных скоростей осколков разрушения) и долгот их пересечения с экваториальной плоскостью.

 

Популяция среднеразмерного КМ изучена гораздо хуже, чем популяция крупного (каталогизированного). Доля некаталогизированных КО возрастает с ростом высоты даже в низкоорбитальной области. Оценки характеристик среднеразмерного КМ получены модельной экстраполяцией сравнительно небольшого объема измерений его представителей на низких высотах и сравнительно высоких наклонениях преимущественно наземными СН в режимах выборочного зондирования.

 

Экстраполяция — достаточно широко распространенный прием получения значений характеристик КМ в недоступной измерениям области. Но она оправдана лишь, когда с требуемой точностью выяснены истинные закономерности и связи между значениями характеристик в области с достаточным объемом их измерений и в интересующей нас области, слишком бедной измерениями (если они вообще есть). Другой вариант — модель, с помощью которой осуществляется экстраполяция, хорошо и своевременно откалибрована (т. е. с учетом возможной динамики этих закономерностей и связей).

 

В первом приближении можно допустить, что среднеразмерный КМ находится на тех же орбитах, что и породившие его крупные КО в результате их разрушения (включая деградацию). Но среднеразмерный КМ, порожденный разными категориями крупных КО, имеет разные начальные характеристики и ведет себя по-разному. Взрыв баков РН с остатками топлива в них может породить множество осколков с большим разбросом начальных векторов скоростей. Дальнейшая динамика параметров их орбит будет сильно отличаться от динамики орбит КМ, возникающего в результате «возрастной» деградации поверхности КО, или продуктов работы твердотопливных двигателей. Происхождение среднеразмерного КМ — самое темное место. О нем можно только догадываться по косвенным признакам. Даже эпизодические выборочные измерения этой категории показывают, что его количество значительно большее чем крупных КО. Оно не может быть исчерпано только сопутствующими миссиям объектами и фрагментами известных взрывов и столкновений. Остается предполагать, что большинство такого КМ — продукты незарегистрированных разрушений крупных КО.

 

Динамика характеристик популяции среднеразмерного КМ отличается от таковой крупного КМ еще и ввиду различного действия возмущающих сил на объекты с разными размерами, массой и формой поверхности. Среднеразмерный КМ обычно характеризуется большим отношением площади поперечного сечения к массе и, следовательно, больше подвержен воздействию атмосферного торможения.

Большое количество среднеразмерного КМ образуется в результате катастрофических разрушений, с огромным разбросом начальных скоростей мелких осколков (гораздо большим, чем у крупных обломков). Поэтому они выходят на орбиты с большим разбросом высот, наклонений и эксцентриситетов [Johnson, 1985].


Расшифровку всех приведенных в статье условных сокращений смотреть здесь: «Исследование ближнего космоса: условные сокращения».

Автор: Admin | 2012-06-12 |

Мониторинг мелкого космического мусора. Часть III

В жизни каждого мужчины наступает такой момент, когда он начинает задаваться вопросом: “Где купить виагру ?”. Отвечу: “На сайте www.indiapharm.ru”, где этот медицинский препарат можно приобрести с доставкой на дом, не отходя от своего компьютера!



Советская космическая станция «Салют-7». Ее основной миссией стало проведение различных (технических, физических, химических и т.п.) опытов в условиях невесомости

 

Активные технологии измерений in-situ используют специальные бортовые датчики ударов частиц КМ (конденсаторные, полупроводниковые, химические). Такие датчики регулярно применялись в течение многих лет. Они устанавливались на борту КС «Салют», «Мир» [Kuzin, 1993], на ИСЗ серий «Эксплорер-16, -23, -46», «Пегас» [Mulholland, 1993]. Например, на ОС «Мир» во время миссии шаттла STS-76 были размещены детекторы и коллекторы КМ. После 18-месячной экспозиции в космосе они были возвращены для анализа на Землю миссией STS-86 [Horz, 1999].

 

Простейшие и дешевые детекторы ударов (конденсаторные, акустические, пьезоэлектрические, датчики давления) просто регистрируют факт удара [PINDROP…, 2004]. Более сложные и высокотехнологичные детекторы (плазменные, химические, композитные, спектроаналитические, фотометрические) позволяют восстановить широкий диапазон характеристик ударившейся о поверхность КА частицы КМ. С помощью новейших активных детекторов можно измерять характеристики процесса удара во времени и динамике.

 


Рис. 2. Форма и размеры космического аппарата LDEF были таковы, что научное сообщества за глаза называло его школьным автобусом. LDEF стал экспериментальным стендом, на котором в течении 5,7 лет изучалось как воздействует открытая космическая среда на различные материалы

 

КА LDEF (Long Duration Exposure Facilit) (рис. 2) был оснащен простейшими активными детекторами — полупроводниковыми конденсаторами, которые разряжаются во время удара. Цель эксперимента — изучение концентрации скоплений КМ на низких высотах [Mulholland et al., 1991; Potter, 1993]. Вообще, для увеличения объема и разнообразия собираемых данных о КМ, целесообразно одновременно устанавливать различные типы детекторов.

 


КА «Кассини»

 

Удобство активных детекторов состоит в том, что нет необходимости возвращения их на Землю для анализа, большая часть которого выполняется на борту. Полученные данные (количество ударов в единицу времени и на единицу площади, время каждого удара, скорость, размеры и материал частиц) транслируются на Землю. Диапазон высот, на которых можно проводить измерения, по сути, ограничен только дальностью действия радиопередатчика. Сложные детекторы для определения относительной скорости при ударе, химического состава материала частиц КМ были установлены, например, на борту КА «Хитеи» (Япония) и «Бремсат» (Германия), а также на «Кассини». Их стоимость колебалась от 100 000 до 1 млн дол. [Hudepohl et al., 1992].

 

Для обнаружения скоплений кМ можно обойтись и более дешевыми детекторами, например, подобными установленным на LDEF. Такими детекторами, действующими по принципу емкостного разряда, была оснащена промежуточная ступень РН КА «Клементина-1». По периферии переходника ступени размещались детекторы с суммарной площадью активной поверхности 0,14 м2. Переходник был сброшен на высокоэллиптической орбите вокруг Земли. Счетчик метеороидов и частиц КМ имел массу всего 500 г [Kinard, 1993]. Эксперимент продолжался до тех пор, пока переходник не вошел в плотные слои атмосферы в мае 1994 г. Его стоимость составила 200 000 дол.

 

Кроме дороговизны, у активных детекторов есть и другие недостатки. Площадь экспонированной в космосе чувствительной поверхности датчика может составлять всего несколько сантиметров при значительной массе самого датчика (десятки килограмм). Нужна вспомогательная аппаратура для обслуживания датчика, которая опять-таки имеет массу и занимает немалый объем. Могут возникнуть проблемы с интерпретацией полученных данных, а также потребоваться многочисленные калибровочные тесты. Конечно же, ведутся интенсивные работы по преодолению этих недостатков [Mulholland, 1993]. Разрабатываются комбинированные системы детекторов с упрощенной методикой калибровки [Kassel, Wartman, 1994].

 

Очень большой недостаток активных датчиков — ограниченная площадь рабочей поверхности детектора. По этой причине размер наибольшей обнаруженной детекторами LDEF частицы равнялся 1 мм [See et al., 1990]. Дело в том, что плотность потока среднеразмерных частиц много меньше, чем мелких.

 


Сверху — спутник PALAPA-B2, снизу – шаттл «Челленджер»

 

Миссия STS-41C в 1984 г. возвратила на Землю около 3 м2 внешнего покрытия КА Solar Max после его более четырехлетнего пребывания в космосе. Эта же миссия вывела в космос спутник LDEF с поверхностью 130 м2. В ноябре 1984 г. миссия STS-51A возвратила на Землю ИСЗ PALAPA-B2 после девятимесячного его пребывания в космосе. Данные о 1600 ударах КМ в возвращенную часть поверхности Solar Max подтвердили значительное присутствие мелкого КМ в низкоорбитальной области. Обследование 1 м2 поверхности ИСЗ PALAPA-B2 выявило более 50 отверстий в термопокрытии и 8 кратеров глубиной до 0,7 мм в солнечных панелях. Изучение возвращенных из космоса поверхностей продолжается до сих пор. Оно уже позволило многое понять в происхождении мелкого КМ и степени его опасности [Bernhard, Christiansen, 1997].

 

Значительное увеличение площади рабочей поверхности детектора и времени его пребывания в космосе позволило бы не только существенно увеличить объем измерений самой мелкой фракции КМ, но и расширить возможность более полного изучения среднеразмерной фракции. Реальные возможности продвижения в этом направлении показаны в [Kuzin, 1993; Strong, Tuzzolino, 1989]. В этом отношении перспективны и не дороги тонкопленочные активные детекторы, генерирующие сигнал, будучи пробиты элементом КМ. К сожалению, проблематично обеспечение достаточной продолжительности их полета на низких орбитах (учитывая высокое отношение площади поперечного сечения к массе). Кроме того, они сами становятся источником возможного столкновения с другими КО [Orbital___, 1995].

 

 


Запуск КА ARGOS состоялся 23 февраля 1999 г.

 

В заключение статьи упомянем об интересном эксперименте, в котором Чикагский университет в феврале 1999 г. вывел в космос КА ARGOS (Advanced Research and Global Observation Satellite), оснащенный инструментом для регистрации космической пыли — SPADUS, на почти полярную орбиту высотой 830 км. В этом эксперименте впервые в истории освоения космоса бортовые датчики предоставили прямые свидетельства принадлежности субмиллиметрового КМ взрывам конкретных КО. Главная задача программы состояла в обнаружении малых частиц размером менее 100 мкм. В течение первого года полета SPADUS зарегистрировал 195 ударов таких частиц — в среднем по одному удару каждые два дня. В конце марта 2000 г. темп обнаружения ударов резко возрос, более чем на порядок, свидетельствуя о вхождении детектора в облако или поток мелкого КМ. 40 % из обнаруженных в конце марта ударов КМ было ассоциировано с разрушением третьей ступени китайской РН «Долгий марш 4В» [Opiela, Johnson, 2000; Tuzzolino, 2000].


Расшифровку всех приведенных в статье условных сокращений смотреть здесь: «Исследование ближнего космоса: условные сокращения».

Автор: Admin | 2012-06-11 |
5 страница из 812345678

GIF
Видео
Видео
Все обо всем
Забавно!
Иллюстрированные факты
Искусство
Истории
Все размещенные на сайте материалы без указания первоисточника являются авторскими. Любая перепечатка информации с данного сайта должна сопровождаться ссылкой, ведущей на www.unnatural.ru.