Необычный

Исторический треск

Твердо решили сбросить лишний вес и для этого начали активно заниматься спортом? Тогда Вам просто необходимо заглянуть в каталог каталог спортивной одежды, который Вы найдете на сайте www.addic.ru. Всего за 1500р Вы сможете приобрести полное обмундирование настоящего спортсмена и приступить к занятиям спортом!


В 1889 году инженер-электрик и изобретатель Уильям Прис сконструировал беспроводную телефонную сеть, которую Вы можете видеть фотографии ниже

В январе 1891 года сэр Уильям Прис, главный инженер британского почтового министерства, заявил в газетном интервью, что «в области беспроволочной телеграфии все возможное уже сделано». Прошло всего лишь десять лет, и на продуваемой всеми ветрами возвышенности на острове Ньюфаундленд Гульельмо Маркони поднес к уху телефонную трубку и услышал сквозь треск сигнал, переданный из бухты Польду в графстве Корнуолл. Передатчик и приемник разделяли 1800 миль (примерно 3 тысячи километров). В том своем интервью главный почтальон Англии Прис утверждал (и многие специалисты с ним соглашались), что связать два берега Атлантического океана радиоканалом — несбыточная мечта, поскольку «из-за кривизны Земли волны отправятся в космос». Прис, стоит заметить, к тому времени уже нажил себе сомнительную репутацию в деле предсказаний. После того как Александер Грейам Белл продемонстрировал свой первый телефон, Прис, присутствовавший при этом, выступил перед комитетом палаты общин и уверенно произнес: «Американцам это открытие нужно, а нам нет. У нас сколько угодно мальчишек-посыльных». Американцы, напротив, проявляли хоть и осторожный, но оптимизм. «Наступит день, — провозгласил мэр Чикаго после того, как ему продемонстрировали возможности телефона, — когда такая вещь будет установлена в каждом городе» С другой стороны, некий техасский сенатор, услышав, что штат Мэн и Техас скоро смогут поговорить друг с другом, воскликнул: «Да что может Мэн сказать Техасу!»).

 


Изобретатель радио Гульельмо Маркони, у которого даже не было школьного аттестата, превратил свое детище в успешное предприятие и ввел устройства беспроводной передачи сообщений в массы

 

Молодому, но весьма амбициозному Маркони было тогда 27 лет. Его Англо-американская телеграфная компания, обосновавшаяся в здании старой больницы, едва справлялась с долгами. Окна его лаборатории выходили на гавань Сент-Джонса. У Маркони была цель — зарегистрировать трансатлантический сигнал, однако в целях конспирации он рассказывал всем, что испытывает систему предотвращения кораблекрушений и хочет всего-навсего связаться с пароходом «Люцинда». Этим он никого не удивил, поскольку в те времена передать сигнал на расстояние в сотню миль было уже обычным делом. 12 декабря, в четверг, разыгралась жестокая буря, однако Маркони решил продолжать работу и поднял антенну, прикрепленную к воздушному змею, на высоту 120 метров. Телефонную трубку он выбрал потому, что, как ему представлялось, человеческое ухо лучше любого другого приемника различит на фоне шума сигнал в форме слабых щелчков, которые, надеялся он, все-таки пробьются сквозь потрескивание. Впоследствии Маркони вспоминал:

 

Внезапно около половины первого прозвучали три отчетливых коротких щелчка, какие издает телеграфный ключ. Это означало, что сейчас нечто произойдет. Я стал сосредоточенно вслушиваться.

 

Ошибки быть не могло: три коротких отчетливых щелчка, отвечающие трем точкам (то есть букве S в азбуке Морзе), прозвучали у меня в ухе несколько раз, однако я не мог считать себя удовлетворенным прежде, чем получу дополнительные доказательства.

 

Маркони передал трубку своему ассистенту Джорджу Кемпу, и он подтвердил, что слышит то же самое.

 

Теперь я мог быть уверен, что мои расчеты верны. Электрические волны, отправленные из Польду, пересекли Атлантический океан, невзирая на кривизну Земли (т.е. отразились от плотных слоев атмосферы), которую столь многие сомневающиеся считали неизбежным препятствием.

 

Когда о результатах объявили газеты, местные чиновники немедленно выдворили Маркони и его небольшую команду из города, поскольку Англоамериканская телеграфная компания, заявили они, не уполномочена передавать или получать сигналы на их территории. Более того, воодушевление, которое вызвали успехи Маркони, разделяли далеко не все. Что позволяет ему с уверенностью говорить, что он зафиксировал именно оригинальные щелчки, а не какое-нибудь атмосферное явление? К числу скептиков принадлежали и Прис, и сэр Оливер Лодж (физик, открывший радиоволны независимо от Герца), а неучтивый Томас Эдисон назвал новость «газетной уткой» Однако вскоре стало ясно, что Маркони прав.

 

Прошло время, Маркони стал маркизом и — вступил в фашистскую партию.

Автор: Admin | 2013-02-11 |

Оценка истинного мужчины

Спешу поздравить Вас с рождением тройни! Однако кроме радости на ваши плечи легло и много забот. И главной из них на данный момент является покупка детских подгузников в Москве, которая может очень сильно ударить по вашему семейному бюджету. И именно поэтому я хотел бы порекомендовать Вам приобрести качественные и недорогие фито-подгузники SUN HERBAL на сайте www.organicnatural.ru.



Исследования Пейн-Гапошкиной оказали огромное влияние на развитие одной из самых сложных и многогранных наук — физику звезд

 

Сесилия Хелена Пейн-Гапошкина (1900-1979) была великолепным астрономом и, несомненно, добилась бы большего, когда бы ее коллеги-мужчины не испытывали к женщинам-ученым такой острой неприязни.

 

 


Гениальный ученый Эрнест Резерфорд, открывший альфа и бета излучения, считал, что место женщины, что называется, на кухне, а не в научной лаборатории, поэтому всячески изводил свою единственную студентку, Сесилию Хелену Пейн-Гапошкину. Он не уставал повторять: «Если бы ей повезло родиться мужчиной, то она точно смогла бы стать великим ученым»

 

Поступив в Кембридж сразу после Первой мировой войны, Пейн сначала собиралась стать биологом, а физика для нее была всего-навсего одной из дисциплин, включенных в экзамен на получение отличия по естественным наукам. Но в конце концов она попала в Кавендишскую лабораторию, проникнутую духом женоненавистничества. Особенно этим отличался Эрнест Резерфорд, на лекциях которого ей как единственной женщине полагалось сидеть на переднем ряду и выслушивать его издевательства.

 

Лабораторный практикум был территорией доктора Сирла — он, этакая неуравновешенная бородатая Немезида, посеял ужас в моем сердце. Если кто-нибудь совершал промах, он тут же велел провинившемуся «встать в угол», как непослушному ребенку. Студенток он терпеть не мог. Сирл заявлял, что они дурно влияют на магнитные установки, и не раз я слышала, как он кричит: «Выйдите и снимите свои корсеты» — этим приспособлением в те времена пользовались большинство девушек, а тогда сталь как раз начала вытеснять китовый ус, из которого каркасы корсетов делались прежде. Несмотря на все свои выходки, Сирл блестяще обучил нас точным измерениям и обработке данных.

 

Прозрение пришло к Сесилии Пейн однажды вечером, когда, по ее словам, перед ней внезапно распахнулась дверь в новый мир:

 

В большом зале Тринити-колледжа должна была состояться лекция. Профессор Эддингтон собирался огласить результаты своей экспедиции в Бразилию (так написано у Пейн), предпринятой по поводу затмения 1918 года. Четыре приглашения на лекцию раздали студентам Ньюнхем-колледжа, и (по чистой случайности — просто один из моих друзей не смог пойти) одно досталось мне.

 

Большой зал был переполнен. Докладчик оказался стройным и смуглым молодым человеком. Он говорил, совершенно не глядя на публику, как-то отрешенно, словно для себя. При этом он кратко, доступным языком изложил суть теории относительности — и едва ли кто-либо справился бы с этим лучше него; рассказал про сжатие Лоренца—Фитцджеральда (известный релятивистский эффект), про эксперимент Майкельсона—Морли (измерение скорости света) и про выводы, следовавшие из него (в частности, устранение из физики понятия эфира, в строгом согласии с теорией Эйнштейна). Затем он перешел к смещению изображений звезд вблизи солнечного диска, которое предсказал Эйнштейн, и сообщил, как он проверял это предсказание.

 

После той лекции вся картина мира, существовавшая в моем сознании, полностью преобразилась. Я была потрясена — выходит, всякое движение относительно! Вернувшись к себе в комнату, я обнаружила, что могу по памяти записать лекцию, слово в слово… Кажется, потом я не спала три ночи подряд. Мой мир встряхнули с такой силой, что я пережила нечто похожее на нервное расстройство.

 

После той знаменательной лекции Сесилия Пейн погрузилась в астрономию с головой. Каждую книгу на эту тему, которую удавалось найти в библиотеке, она жадно прочитывала, а гигантский труд Анри Пуанкаре под названием «Космогонические гипотезы» стал для нее, как отмечала Пейн, постоянным источником вдохновения:

 

В обсерватории намечалась ночь открытых дверей. Я села на велосипед и, проехав Мэдинглей-роуд, увидела толпу, окружившую телескоп Шинкшенса — забавный инструмент, который, по словам Уильяма Маршалла Смита (астронома Лондонской обсерватории), «совмещал в себе все недостатки рефракторов и рефлекторов, вместе взятых»… Грубоватый, но благодушный Генри Грин, второй помощник астронома, настроил телескоп. И вот уже я рассматриваю двойную звезду, компоненты которой различаются цветом. «Как такое может быть, — спросила я, — если их возраст одинаков?» Грин не нашелся, что ответить, а когда я вконец доняла его расспросами, окончательно сдался. «Я, пожалуй, оставлю вас за главного», — сказал он и убежал вверх по лестнице. К тому времени он успел навести инструмент на спиральную туманность Андромеды. Я принялась разглагольствовать о ней (да простит Господь мою самоуверенность!), стоя с маленькой девочкой на руках и показывая ей, куда глядеть. Тут я услышала мягкий смешок за спиной и, обернувшись, увидела Эддингтона.

 

Как выяснилось, Генри Грин заявился к нему в «профессорский кабинет» и попросил помочь. Он сказал: «Там одна женщина задает вопросы». Мой час настал, и таким случаем нельзя было не воспользоваться. Я выпалила, что мечтаю стать астрономом. Интересно, тогда или все-таки потом он произнес фразу, которая впоследствии помогла мне пережить множество отказов: «Я не вижу непреодолимых препятствий этому». Тогда я поинтересовалась, что мне следует прочесть. Он упомянул несколько книг, и я поняла, что все их уже прочла. Поэтому он порекомендовал мне Monthly Notices («Ежемесячные записки») и Astrophysical Journal («Астрофизический журнал»). Их можно было найти в библиотеке обсерватории, которой, как он заявил, я теперь смогу беспрепятственно пользоваться. Перефразируя надпись на могиле у Гершеля, он открыл мне двери Царствия Небесного.

 


Английский астрофизик показал, что при определенных условиях с поверхности Солнца могут выбрасываться атомы. Описанный им механизм сегодня является ключевым моментом в теории звездного ветра

 

Энтузиазм и целеустремленность Сесилии Пейн заслужили уважение среди кембриджских астрономов. Вот как она познакомилась с одним из самых известных среди них:

 

Как-то днем я подъехала на велосипеде к Солнечной обсерватории; у меня в голове вертелся один вопрос. Там я увидела молодого человека, чьи светлые волосы ниспадали на глаза: сидя на крыше одного из зданий, он пытался ее отремонтировать. «Я приехала спросить, — прокричала я ему, — почему эффект Штарка (расщепление линий спектра в электрическом поле) не наблюдается в звездных спектрах?». Он слез с крыши и представился Эдуардом Артуром Милном, вторым человеком в обсерваторской группе. Позже он стал моим хорошим другом и вдохновлял меня своим примером. Но он не знал ответа на вопрос, который продолжал меня занимать.

 

Именно Пейн-Гапошкина определила состав Солнца и доказала, что у центральной звезды нет твердого железного ядра

Несмотря на поддержку Милна и Эддингтона, Сесилия Пейн не могла проникнуть в удушливый мир британской астрономии, и поэтому она отправилась в Америку, в Гарвард, где достигла карьерных высот. Самая знаменитая из ее работ посвящена химическому составу Солнца. Она показала, что общепринятая интерпретация линий в солнечном спектре — согласно которой в глубинах Солнца скрываются огромные запасы железа — неверна. Солнце, как ей удалось выяснить, состоит главным образом из водорода, а остальное — гелий. Этот результат, изложенный в ее докторской диссертации, был для гарвардской академической элиты тогда слишком революционным и вызывал только насмешки, особенно со стороны предводителя американских астрономов, высокопарного и могущественного Генри Норриса Рассела.

 

Но прошло несколько лет, и выводы Сесилии Пейн были подтверждены и приняты большинством ученых. Из ее работ вытекал простой ответ на вопрос, откуда у Солнца практически неисчерпаемый источник энергии. Этот источник энергии — термоядерная реакция. Теоретический анализ, подтвердивший правоту Пейн, проделал не кто иной, как сам Рассел. Наконец он стал воспринимать ее всерьез — но, разумеется, так и не извинился за прежнее недоверие. Руководство Гарварда не сочло нужным хоть как-нибудь облегчить жизнь автору громкого открытия, и, несмотря на масштабы ее достижений, Пейн загрузили преподаванием настолько, что она была вынуждена практически прекратить свои исследования. Ею восхищались как преподавателем, и в конце карьеры она успела поучаствовать в одном научном проекте со своей дочерью, которая вслед за ней увлеклась астрономией — правда, уже наступила более просвещенная эпоха. К тому времени сама Сесилия Пейн стала профессором, главой астрономического факультета Гарварда. Ее мужем был астроном из России, Сергей Гапошкин — она познакомилась с ним в Европе, когда ему решительно не везло. В конце концов он нашел место на ее факультете в Гарварде. Он так никогда и не стал кем-то большим, чем ассистент собственной жены, и, как рассказывают, однажды заметил, бессознательно преувеличивая: «Сесилия даже более великий ученый, чем я».

 

В своих воспоминаниях Сесилия Пейн советует тем, кто стремится стать ученым:

 

Молодые люди, а особенно молодые девушки, часто спрашивают у меня совета. Вот он — valeat quantum. Не стоит искать научной карьеры ради славы или денег. Есть более легкие пути добиться и того и другого. Идите в науку, только если ничто иное вас не удовлетворяет; потому что ничего иного, кроме собственного удовлетворения, вы и не получите.

Автор: Admin | 2013-01-28 |

Там, где живут пришельцы: Солнечная система

1. Марс




Начнем с краткого описания небесного тела планетарного типа, получившего название Марс:
диаметр 6792 км (0,53 диаметра Земли), гравитация — 0,37 (это значит, что на марсианской поверхности Вы бы ощущали только 1/3 своего веса и подросли минимум на 3 см за счет расправления позвонков вашего позвоночника), атмосферное давление в 80-160 раз меньше Земного. Сутки на красной планете длятся почти столько же, сколько и на нашей, а вот один оборот вокруг Солнца проходит за 687 земных дней.

Климат: Марс находится на границе так называемой «зоны жизни» (она же обитаемая зона). Это значит, что если бы каким-то волшебным образом Земля оказалась на орбите Марса, то она получала бы от Солнца ровно столько тепла, сколько необходимо для существования океанов из жидкой воды на экваторе. Однако из-за крайне разряженной атмосферы моря и реки на Марсе просто не могут существовать: вода частично замерзает, частично испаряется из-за низкого давления. Основная часть воды сконцентрирована под поверхностью планеты в районах полюсов. Тем не менее, видимые из космоса полярные шапки Марса состоят по большей части не из водяного льда, а из замерзшего углекислого газа, температура замерзания которого значительно ниже воды. Читать дальше>>

Как хорошо Вы знаете Солнечную систему?

Освежить свои познания в астрономии и поближе познакомиться с планетарной системой, в которой находиться наш маленький зеленый шарик, Вам поможет эта замечательная инфографика.


Читать дальше>>

Автор: Admin | 2012-10-28 | Иллюстрированные факты, Космос

Льды наступают. Часть I

Прекрасным подспорьем на пути к несметному богатству станут игровые автоматы без регистрации, которые позволят Вам легко и просто заработать ваш первый миллион.

Попытать свою удачу Вы сможете прямо сейчас, если посетите сайт www.igrovieavtomativulkan.com.


Неслышная поступь времени.

Эдмунд Берк (1729-1797)

 


Представьте снежно-ледяную пустыню, торосы, завывание морозного ветра, запредельные минусовые температуры. Картина настолько впечаталась в сознание, что кажется, витала в воздухе тысячелетиями. Однако еще несколько сотен лет назад жители Западной Европы в большинстве своем полагали, что мир существует каких-нибудь 6000 лет. И камни, и почву, и останки ископаемых принес на сушу, по их мнению, Всемирный потоп, описанный в Книге Бытия. Так гласило Писание. Однако сегодня в это мало кто верит всерьез. Что же изменилось? Почему мы так сжились с идеей ледниковых периодов? И дает ли это представление о том, что нас может ждать в будущем?

 

Не далее как в конце XVIII в. люди начали обращать внимание на свидетельства природных катаклизмов, встречающиеся по всей Европе. Они попадались всюду. Даже высоко в горах обнаруживались нагромождения валунов. Что еще могло лечь в основу «теории катастроф», кроме Всемирного потопа? Однако в 1787 г. швейцарский священнослужитель Бернард Кун осмелился помыслить иначе. Он высказал крамольную мысль, что валуны и обломки скал, отличающиеся по геологическому составу от окружающей местности, мог принести ледник. В валунах, которые в геологии называются «эрратическими», верующие видели прямое доказательство Всемирного потопа. Кун, однако, посчитал их следствием природного процесса.

 

Примерно в то же время шотландский геолог Джеймс Хаттон, один из основоположников геологии, выдвинул теорию, что сегодня мы наблюдаем геологические процессы, которые могут в дальнейшем (в очень далеком будущем) привести к образованию новых гор. В результате медленной эрозии, полагал он, образуются отложения, заполняющие дно озер и морей. Сегодня мы называем эту теорию «униформиз-мом» — но Хаттон в выборе слова не виноват, термин придумали уже после его смерти.

 

В 1795 г. он изложил свою тщательно аргументированную теорию в двухтомном трактате под названием «Теория Земли». Книга обрела известность как высоконаучный, но при этом абсолютно неудобочитаемый труд. Как заметил друг автора Джон Плейфэр, «вероятно, в силу своего большого объема и во многом вытекающей отсюда туманности изложения, труд этот был принят совсем не так, как того заслуживает». Те же, кто сумел одолеть трактат целиком, выяснили, что, по утверждению Хаттона, эрратические валуны появились в горах Юры благодаря леднику. Доводы Хаттона ставили под сомнение теорию катастроф. Современная картина мира, доказывал Хаттон, складывалась в результате естественных постепенных процессов, и для ее объяснения не обязательно искать катастрофы.

 

Несмотря ни на что, теория не сразу нашла приверженцев. На первых порах идея просто зачахла. И только в начале XIX в. дело сдвинулось с мертвой точки благодаря простому швейцарскому альпинисту Жан-Пьеру Перродену, который всю жизнь прожил в Швейцарских Альпах и периодически натыкался на скальные породы, словно изрезанные долотом. Перроден предположил, что это воздействие ледника, проползшего когда-то по ныне свободной ото льда поверхности. В отличие от Куна ему удалось разжечь достаточный интерес общественности, чтобы теория начала разрабатываться. Проявив большую настойчивость, он сумел уломать двух инженеров представить его концепцию на собраниях Швейцарского естественнонаучного общества в 1829 и 1834 гг. Один из слушателей пришел в такое возмущение после доклада, что решил опровергнуть доводы Перродена раз и навсегда. Звали его Луи Агассис. В свои 25 лет он уже считался восходящей звездой швейцарской науки.

 


Одним из самых крупных ледников нашего времени можно назвать «Перито-Морено», который возвышается над национальным парком «Ледники» в Патагонии

 

Однако надежды Агассиса не оправдались. К 1836г. результаты полевых исследований, проведенных в горах, кардинально изменили его точку зрения. Теперь он сам убедился, на что способны были древние ледники. На следующий год он занял влиятельную должность, придавшую его словам особый вес: он стал президентом Швейцарского естественно-научного общества. На ежегодной конференции он должен был выступить с докладом об ископаемых рыбах, будучи признанным авторитетом в данной области. Вместо этого он повел речь о «ледниковых периодах», впервые использовав данный термин на научном собрании. Агассис был настолько увлечен концепцией, что для большей убедительности вывел слушателей в горы. Среди прочего он продемонстрировал им борозды, оставленные на поверхности скал, по его предположениям, камнями, вмерзшими в ползущий по местности ледник. Консервативных ученых мужей это зрелище, впрочем, не убедило. Как знать, возражали они, с таким же успехом эти борозды могла оставить груженая повозка.

 

Однако неудача Агассиса не обескуражила, и в 1840 г. он написал книгу о ледниковом периоде, где выжал из данных всё. Там он доказывал, что жизнь с лица земли стерло стремительное массовое наступление ледников — «Большой ледниковый период». В том же году он выступил в Британии с докладами по теме, радостно рассказывая о мамонтах, которые замерзали в момент гибели. Несмотря на свои крайние взгляды и обвинения в приверженности катастрофизму, ему вскоре удалось привлечь на свою сторону самых выдающихся в то время британских геологов, в том числе Уильяма Бакленда и Чарльза Лайеля, о которых мы еще поговорим . Автор популярного труда «Основы геологии» Чарльз Лайель принадлежал к ярым сторонникам униформистской теории Хаттона и сначала никак не желал прислушиваться к катастрофистским доводам Агассиса о ледниковом периоде. Однако Бакленду, учителю и наставнику Лайеля, удалось его переубедить. В конце 1840 г. все трое уже выступали единым фронтом. Агассис прочитал доклад на собрании Лондонского геологического общества, где в его поддержку также вышли с докладами Бакленд и Лайель. Ледниковый период вступил в свои права.

Автор: Admin | 2012-10-07 |

Каменные аномалии

Заплыли жирком и, к своему немалому удивлению, начали стесняться собственно тела? Значит, пришло время приобрести тренажеры фирмы life fitness, которым отдают свое предпочтения многие именитые спортсмены всего мира!
На сайте www.lifefitness-wellmir.ru Вы сможете подобрать тренажер, который подходит именно Вам и приобрести его по самой выгодной для Вас цене!


Мир каменной природы разнообразен, удивителен, красочен и достоин восхищения.


Говорят, что в таких местах не за что уцепиться взгляду. А разве горы с их утесами не напоминают изощренную работу архитекторов, создающих храмы в готическом стиле? И разве нет тут живописных контрастов, как бы экспонатов из кунсткамеры или просто причуд времени, поработавшего вместе с ветром и потоками воды над скальным материалом?

Есть глубокая мысль о том, что камни и скалы, хоть в глубоких ущельях, хоть в пустынях, романтичны, дают пищу для философствования о силах природы и вечности ее стихий, загадках глубокого прошлого планеты и метаморфозах ее поверхности. Они одно из подлинных чудес света. Действительно, на равнинах и среди горных кряжей, под водой и в пустынях камни, обработанные силами природы — подчас художественное произведение. Природа-матушка всюду проявляет свою буйную фантазию. Своеобразным архитектурным чудом можно считать и уголок в одной из самых малоизученных пустынь Австралии, вошедшей в национальный парк Намбунг.

«Абсолютная геологическая аномалия», так назвал австралийскую пустыню шпилей на юго-западе континента американский геофизик, натуралист и автор природоведческих книг Томас Улсман,— Я повидал песчаные пространства практически всех материков, но такому нет аналогов на планете. Может создаться впечатление, что ее создал Сальваторе Дали как сюрреалистическое восьмое чудо света».


Пустыня расположилась в заповедном районе в 150 милях к северу от города Перт. Представьте себе равнину золотистого цвета, где из мелкого песка торчат тысячи каменных утесов, столбов, колонн, шпилей. Одни из них в рост человека, другие — не больше мизинца по высоте. Огромный парк каменных скульптур!

Если копнуть зыбкий фунт, можно убедиться, что все шпили уходят вниз на большую глубину. Сверху видны лишь вершины, как у айсбергов. Одни из них гладкие, другие шершавые, как наждак, третьи — пористые. Нет и двух похожих, все разные. Есть и такие, в которых ветер с песком уже проделали сквозные дыры.

По утрам, когда южное солнце дает этим островерхим камням длинную тень, картина просто фантастическая. Некоторым она видится, как распластанная шкура гигантской зебры.

Когда набегает редкое здесь облачко, начинается игра красок — картины из светлых становятся то коричневым гранитом, то сероватым мрамором с блестками. При закате они могут быть пурпурными, лимонными, фиолетовыми. Подобные цветовые метаморфозы еще не разгаданы.

Когда поднимается песчаная буря, картины тут приобретают вид кадров из кинофильма ужасов. Голубое небо багровеет, начинается чудовищно резкий рев, будто вопят сами колонны и шпили. Их вершины становятся как бы вулканами, извергающими вверх струйки оранжевого дыма. На самом деле это крутящиеся песчинки от причудливой стихии ветра. Бывают моменты, когда в этой пустыне будто звучит органная музыка…

Кончается налетевшая буря, и можно проводить инвентаризацию шпилей: одни ушли под барханы, а другие выросли на целый метр.

Нет, это не окаменевшие стволы деревьев прошлых эпох. И не развалины мегалитических построек. И не сталагмиты. Тут нечто совсем другое — игра сил природы на месте бывшего океанического дна.

Происхождение художественно выточенных шпилей геологи объясняют прозаически: результат вековых процессов эрозии массивной известковой плиты под дюнами. Дождевая вода проникала здесь вниз неравномерными ручейками, растворяя минеральную поверхность так, что на ней формировались островерхие колонны. Все это происходило под землей. Затем работа ветров с Индийского океана постепенно уносила верхний слой песков на север и восток — и вот из-под земли появились готические шпили.

Если разбить эти камни, естественно, в научных целях, внутри можно обнаружить остатки водорослей, кораллов, ракушек, морских животных. Все это свидетельствует о том, что известняк под песком — осадочная порода на дне океана на глубине примерно десять метров. Как утверждают геологи, непосредственно под известковой плитой и внутри нее находится богатая «руда» для палеонтологов. Но еще никто здесь глубоко не копал. Впрочем, мало было и ботаников, и зоологов До сих пор нет объяснения, почему в этот район редко заглядывают животные и птицы, охотно обживающие соседние пустынные районы, правда, без камней, торчащих из-под земли…

Возраст пустыни с колоннами и шпилями пока загадочен. Одни считают, что она сравнительно молода — ей всего 25 тысяч лет или чуть больше. Другие горячо утверждают, что говорить следует, по крайней мере, о двух миллионах лет. Ясно пока одно: большая часть песка здесь непрерывно обновляется, она привносится естественными силами со дна Индийского океана. И его масса из года в год прибывает — пустыня растет в северо-восточном направлении. двигаясь как бы к географическому центру Австралии. Увы, растет и Сахара, и Калахари, и Африка вскоре на 80% будет состоять из пустынь. И стоит здесь вспомнить слова Фредерика Жолио-Кюри, сказанные им более сорока лет назад: «Человечество должно тратить деньги не на атомные бомбы, а на борьбу с наступлением песков. Сахара могла бы быть одним большим цветущим оазисом».

Автор: Admin | 2012-08-29 |

Человечество вышло за пределы Солнечной системы: Вояджер-1 удалился от Земли на 17 970 000 000 км и подошел к границе, за которой начинается межзвездное пространство

Выход космического аппарата Вояджер-1 за пределы Солнечной системы можно без преувеличения назвать величайшим достижением рода человеческого.

Вы только задумайтесь на секунду: нам удалось создать аппарат, который был запущен с поверхности нашей планеты в бездонную глубину бескрайнего космоса, достиг самого края Солнечной системы и стал первым с момента Большого взрыва рукотворным объектом, ‘плывущим’ по волнам межзвездного пространства.

Космический зонд Вояджер-1 – детище небезызвестного «Национального управления по воздухоплаванию и исследованию космического пространства» (НАСА), запуск которого на земную орбиту был осуществлен 5 сентября 1977 года. За 35 лет своего существования Вояджер-1 преодолел 17 970 000 000 км и сейчас движется по ‘волнам’ космического вакуума со скоростью чуть более 10 километров в секунду!
Читать дальше>>

Автор: Admin | 2012-06-16 | Космос

ФИЗИЧЕСКИЕ ОСОБЕННОСТИ СОЛНЕЧНОЙ СИСТЕМЫ: КОМЕТЫ. Часть II

Если хотите порадовать свою вторую половинку и сделать ей незабываемый подарок, тогда советую преподнесите ей букет цветов. На сайте www.dostavka-buketov.spb.ru Вы сможете найти цветочные композиции, которые не смогут оставить равнодушной ни одну из представительниц слабого пола.



Энке — самая короткопериодная комета в Солнечной системе

 

Непрерывная потеря вещества через хвост, свойственная всем кометам, приводит к тому, что они сравнительно быстро уменьшают свою яркость. Например, ближайшая к Солнцу комета Энке, принадлежащая к семейству Юпитера, с периодом обращения в 3,3 года, за последние 100 лет вдвое уменьшила свою яркость.

 

Все это говорит о том, что кометы или должны были образоваться сравнительно недавно или же они, образовавшись в давние эпохи, двигались в отдаленных областях пространства, вдали от Солнца, и не испытывали на себе его разрушительного действия. Ряд авторов показал, что при больших размерах кометных орбит может сказываться возмущающее действие со стороны ближайших звезд, а это в отдельных случаях может приводить к преобразованию кометных орбит в такие, по которым они могут проникать во внутренние области Солнечной системы.

 

Можно задать вопрос: каковы могут быть последствия непосредственного столкновения кометы с Землей, что, согласно расчетам Г. Юри, должно было произойти уже сотни раз за последние миллиарды лет? Одно из подобных редких событий произошло 30 июня 1908 г. и известно как падение Тунгусского метеорита. Вместе с небольшим ядром кометы в земную атмосферу влетел ее пылевой хвост, который задержался на короткое время на высоте до 600—800 км и произвел очень сильное свечение ночного неба в ночь с 30 июня на 1 июля. Ядро кометы, в противоположность крупным метеоритам, полностью затормозилось в воздухе, далеко не достигнув земной поверхности, и взорвалось с огромной силой, причем соответствующие воздушные волны, вызванные этим взрывом, были отмечены на многих станциях земного шара.

 

Вблизи Берлина, на Потсдамской обсерватории, была зарегистрирована как прямая, так и обратная воздушная волна, и это позволило с большой точностью определить скорость распространения волны и показать, что взрыв должен был произойти на высоте около 6—7 км над земной поверхностью. — Твердые продукты взрыва сравнительно медленно распространились во всей атмосфере и примерно через две недели начали достигать западного побережья США, где было отмечено заметное ослабление солнечной радиации. Общая масса подобного распыленного взрывом вещества должна была составить примерно миллион тонн.

 

Если бы подобная колоссальная масса была сосредоточена в одном оплошном теле, аналогичном метеориту, то она легко прошла бы сквозь земную атмосферу и образовала довольно значительный кратер или целую группу кратеров, как это неоднократно бывало ранее. Кометное же ядро, представляющее тесное скопление мелких частиц, занимающих объем в данном случае диаметром порядка одного километра, не могло произвести ни малейшею нарушения рельефа местности и, конечно, не сопровождалось выпадением каких-либо крупных осколков. Единственным веществом, найденным в месте падения, были микроскопические шарики металлической и силикатной природы, которые, вследствие своей малости, были разнесены ветрами на значительные расстояния и только в ничтожном количестве обнаруживаются и «поныне в месте падения или на расстояниях от него в десятки километров.

 

Какое значение для нашей планеты могут иметь подобные встречи с кометами?

 

По-видимому, как указывают различные специалисты, это могло быть весьма важным лишь в том отношении, что земная атмосфера постепенно обогащалась таким путем различными углеводородными соединениями, приносимыми кометами из отдаленного межзвездного пространства, где, как можно полагать, происходит образование подобных тел.

 

Как указывает советский академик А. И. Опарин (р. 1894), для возникновения жизни на первобытной Земле необходимо было предварительное обогащение земной атмосферы различными углеводородами. Он предполагает, что это могло произойти в результате воздействия воды на химические соединения углерода с различными металлами и путем образования углеводородов в кристаллических породах. Однако несомненно, что совершенно неизбежные столкновения комет с Землей должны были обогащать нашу планету этими необходимыми для нее веществами, из которых, как показывают лабораторные опыты, могут возникать все более и более сложные органические соединения. Но даже и при столь активной помощи со стороны комет жизнь на Земле, определенно, могла развиваться лишь за последний миллиард лет ее существования после того, как по крайней мере 3 млрд. лет прошло в безжизненном состоянии со времени ее образования как планеты.

 


Комета Галлея

 

Другая роль комет заключается в том, что они наполняют межпланетное пространство мелкой метеорной пылью, которая представляет результат их полного распада. Имеется много примеров того, как почти на глазах наблюдателя кометы разделялись на самостоятельные части и порождали метеорные потоки. По существу, значительная доля действующих метеорных потоков связана с определенными кометами: августовский поток Персеид1 — с кометой 1862 II, майский поток Акварид — с кометой Галлея, ноябрьский поток Леонид, который в 1799, 1833 и 1866 гг. давал поразительное зрелище звездных дождей, связан с кометой 1866 I и т. д. Но и эти потоки также отличаются весьма непродолжительным существованием. Быстро разлагаясь, растягиваясь вдоль своих орбит и рассеиваясь в пространстве, они в конце концов смешиваются с общим пылевым фоном, образованным в прежние эпохи существовавшими ранее метеорными потоками, и поступают, как можно фигурально выразиться, в общее кладбище комет.

 

—————————————————————————————————-

1Свои названия метеорные потоки получают по названиям созвездий, из которых происходит вылет метеоров — падающих «звезд»: Персеиды — из созвездия Персея, Аквариды — из созвездия Водолея, Леониды — из созвездия Льва.

—————————————————————————————————-

 

Итак, межпланетное пространство заполнено пылевой материей, которая концентрируется к плоскости земной орбиты и проявляет себя тем, что заметно рассеивает солнечный свет. И действительно, в южных широтах Земли после захода Солнца, с наступлением темноты, можно видеть при отсутствии посторонних огней широкую светлую полосу, проходящую через зодиакальные созвездия и быстро убывающую по яркости и ширине с удалением от Солнца. Это свечение, называемое зодиакальным светом, было известно еще в древности. На чистом небе Египта весной и осенью пояс зодиакальных созвездий поднимается высоко над горизонтом, и зодиакальный свет четко бросается в глаза, намного превосходя своей яркостью самые яркие области Млечного Пути.

 

Наблюдения и расчеты показывают, что плотность межпланетной пылевой материи зодиакального света возрастает обратно пропорционально расстоянию от Солнца, но что общая ее масса, заключенная в пределах земной орбиты, все же очень мала и сравнима с массой одного лишь астероида диаметром около 10 км и плотностью около 3 г\см3. Это вещество может быть видимо только потому, что находится в мелкораздробленном пылевом состоянии. Самые мелкие пылинки, размером 0,1 микрона, быстро выталкиваются из Солнечной системы действием лучевого давления, а более крупные, напротив, испытывают торможение и постепенно выпадают на Солнце, сгорая в его огненном горне. Можно считать, что все вещество зодиакального света должно обновляться каждые 100 000 лет.

Автор: Admin | 2012-05-17 |

ФИЗИЧЕСКИЕ ОСОБЕННОСТИ СОЛНЕЧНОЙ СИСТЕМЫ: МЕТЕОРИТЫ


5,7% из всех упавших метеоритов состоят из железо-никелевого сплава. Ярчайшим представителем таких метеоритов является Вилламетт, изображенный на фотографии выше

 

Внутреннюю структуру железо-никелевых метеоритов можно назвать показательной, т.к. в большой степени ее структура зависит от относительного содержания никеля: чем меньше никеля, тем метеорит имеет более грубую структуру. Протравливая серной кислотой отполированную поверхность метеорита, можно легко обнаружить на ней своеобразный рисунок, называемый видманштеттеновыми фигурами, по имени австрийского ученого А. Б. Видманштеттена, получившего эти фигуры в 1808 г. при нагревании поверхности одного из железных метеоритов. Видманштеттеновы фигуры имеют вид треугольников, квадратов и других геометрических фигур, в зависимости от структуры! метеоритов и содержания в них никеля.

 


Так выглядит видманштеттенова структура

 

Можно заключить, что подобная структура могла возникнуть только в достаточно крупном космическом теле при сравнительно высокой температуре и давлении. Отдельные особенности химического состава и структуры метеоритов заставляют заключить, как это показано советским исследователем А. А. Явнелем, что они распадаются по крайней мере на 4—5 отдельные групп и что, следовательно, могли возникнуть путем распада не одного-единственного, но по крайней мере 4—5 различных родоначальных тел.

 

Малые планеты из-за большой вероятности пересечения их орбит должны довольно часто сталкиваться между собой с небольшими относительными скоростями. При этих столкновениях первоначальная структура получающихся обломков-метеоритов остается ненарушенной. Вследствие этого возраст вещества метеоритов, получаемый по радиоактивному методу путем сравнения содержания в метеоритах начального радиоактивного вещества [урана, тория, рубидия, калия 40] с конечным продуктом его распада (свинец 206, свинец 208, стронций, артон), характеризует именно промежуток времени с момента формирования соответствующего астероида, что принимается также за возраст всей Солнечной системы), в том числе и нашей Земли. По всем исследованиям метеоритного вещества этот возраст оказался равным примерно 4—5 млрд. лет.

 

С другой стороны, факт образования метеоритов при дроблении из астероидов очевиден по космическому возрасту — так называется возраст самих метеоритов, определяемый по выделению легкого гелия из ядер тяжелых химических элементов.

 


Сихотэ-Алиньский метеорит

 

Так, например, оказалось, что Сихотэ-Алиньский метеорит, выпавший 12 февраля 1947 г. на Дальнем Востоке, образовался всего около 170 млн. лет назад, в то время как другие метеориты имеют совсем иной космический возраст. Каменные метеориты, вероятно, вследствие их гораздо большего количества, имеют и меньший космический возраст. Самый молодой метеорит из известных в настоящее время, называемый Рамсдорф, образовался при астероидальном дроблении 2,4 млн. лет назад. Несомненно, что процесс дробления астероидов и образования метеоритов происходит и в настоящее время, причем образуются не только мелкие камни, но и огромные глыбы весом во много миллионов тонн. Подобные глыбы, двигаясь по самым разнообразным орбитам, могут с известной вероятностью встречаться с Землей, и в этом случае действительно происходят большие нарушения известных участков земной поверхности. Наиболее заметным свидетельством таких бомбардировок являются метеоритные кратеры (рис. 1), которые могут сохраняться в течение многих тысяч лет, в особенности в сухих безводных районах. Наиболее изучен из них метеоритный кратер в Аризонской пустыне (США) диаметром в 1200 м, возраст которого оценивается приблизительно в 25 000 лет. В окрестностях этого кратера найдено большое количество типичных осколков железных метеоритов; вес некоторые осколков достигает нескольких тонн. Целая группа подобных кратеров (наибольший около 100 метров в диаметре) находится на острове Саарема (Эзель). На всей Земле известно 14 вполне достоверных кратеров метеоритного происхождения, по большей части относящихся к совсем недавнему геологическому времени.

 


Рис. 1. Один из кратеров, образованных падением Сихотз-Алиньского метеорита 12 февраля 1947 г.

 

Естественно, что вследствие непрерывной деятельности ветра й воды метеоритные кратерьи исчезают сравнительно быстро по сравнению с огромными геологическими периодами, и поэтому кратеры, образовавшиеся в далеком прошлом, могут быть обнаружены сейчас лишь с большим трудом. Однако по ряду признаков можно утверждать, что так называемое кольцо Вредефорта около Претории (Южная Африка) есть остаток древнейшего метеоритного кратера диаметром около 50 км. Предполагается, что примерно 250 млн. лет назад астероид размером в полтора километра ударился в этом месте о земную поверхность с космической скоростью в десятки километров в секунду. Получившийся взрыв был, вероятно, в миллион раз более мощным, чем известное извержение вулкана Кракатау1 в 1883 г., когда половина горьи взлетела в воздух, а мелкая пыль плавала в высокой атмосфере в течение нескольких лет.

 

—————————————————————————————————-

Находится в Индонезии, в Зондском проливе, между островами Явой и Суматрой.

—————————————————————————————————-

Автор: Admin | 2012-05-17 |

Земной дефектоскоп. Часть I

Хотите быть самой неотразимой этим летом? Тогда Вам определенно точно стоит посетить сайт vsemay.ru, где Вы найдете прикольные майки для девушек, которые пренепременно станут отражением вашей яркой личности, задора и компанейского характера.


Даже врач не может обойтись без сейсмической разведки: специальным молоточком или крепко согнутым пальцем постукивает он по груди больного, определяя границы его сердца. А ведь ему нужно «заглянуть» всего лишь на глубину в несколько сантиметров! Ультразвуком «просвечивают» металлурги особо ответственные большие отливки — нет ли пустот, нет ли раковин.

 

Сходный принцип положен в основу сейсмической разведки земных недр. Но было бы сложно разобраться в путаной картине, получающейся, когда многократное волновое эхо придет от разных подземных слоев. Ведь мы, чтобы лучше услышать обычное эхо на прогулке, не кричим длинных фраз, а стараемся крикнуть короткое слово или лучше — хлопнуть в ладоши. Короткий хлопок не заглушит возвращающихся через малый промежуток времени отраженных волн.

 

В сейсмической разведке таким хлопком служат небольшие заряды взрывчатых веществ, а ловится эхо земных глубин не ухом, а специальным прибором — сейсмоприемником. Принцип его устройства очень прост: на небольших пружинках внутри металлического стаканчика подвешена гирька, к которой прикреплена катушка со многими витками провода. Катушка входит в зазоры магнита, скрепленного со стаканчиком. Стаканчик сейсмоприемника плотно укрепляется на грунте. Когда снизу приходит упругая волна, стаканчик и магнит двигаются вместе с поверхностным слоем почвы, а грузик и катушка в силу инерции в первый момент остаются на месте, а потом, при следующих колебаниях, как бы отстают от движения стаканчика и магнита. Поэтому все время, пока колеблется грунт, катушка сейсмоприемника перемещается относительно магнита, и в ней возбуждается слабое переменное электрическое напряжение. Больше амплитуда колебаний почвы—больше и напряжение. Напряжение это подается на ламповый или полупроводниковый усилитель, усиленный во много раз сигнал подается на шлейфовый гальванометр — обычный зеркальный гальванометр, но только с очень коротким периодом собственных колебаний (или, что то же самое, с высокой частотой собственных колебаний). При прохождении тока рамка гальванометра колеблется, и тонкий световой луч, отраженный зеркальцем на движущуюся фотобумагу, записывает на ней движение грунта. Обычно в схему включаются еще и фильтры — для того чтобы пропустить на гальванометр только полезные колебания. Что же «видит» эхо сейсморазведки в слоях Земли? И прежде всего, почему вещество Земли залегает слоями?

 

Ранее мы уже говорилось вскользь о том, какие процессы формируют поверхность Земли. Внешние процессы — это работа ветра, осадков, замерзающих в трещинах горных пород, рек и ручьев, переносящих и перетирающих продукты их разрушения, работа прибоя, разрушающего берега, осаждение на дно озер и морей бесчисленных остатков живых организмов, выпадение из растворов солей и т. д. Внутренние процессы — это медленные перемещения участков земной коры, образование гор, землетрясения, извержения вулканов и внедрение магмы в земные слои.

Внешние геологические процессы и разрушают горные породы, и создают их вновь. Сложные и взаимосвязанные процессы разрушения и созидания непрерывно идут вблизи поверхности Земли. И везде, где идет образование новых горных пород, — на дне ли океанов, в торфяных озерах или в низовьях рек — под действием земного притяжения осадки откладываются ровными горизонтальными слоями. Когда постепенно меняются условия, одни отлагающиеся породы сменяются другими: поверх толстого слоя мельчайших известковых раковин может начать отлагаться песок или глина, и так далее. Год за годом, тысячелетие за тысячелетием идет время, и постепенно в понижениях земной поверхности накапливаются мощные толщи осадочных пород, А если к тому же эти участки медленно и постепенно опускаются, тогда толща осадков может достигать огромной мощности. Так, в районе нижнего течения реки Куры и в прилегающих частях Каспийского моря мощность толщи осадков превышает 15 км!

 

Погруженные на большую глубину осадочные породы испытывают огромное давление вышележащих пород, действие высокой температуры, горячих растворов циркулирующей воды. Постепенно слои мельчайших известковых скелетов морских животных превращаются в известняк, песок — в песчаник, глина — в сланцы. И где-то среди этих слоев оказываются включенными участки с повышенным содержанием того или иного нужного людям химического элемента — месторождения полезных ископаемых.

 

Внутренние геологические силы тоже могут привести к образованию горизонтальных слоев породы. Так бывает, когда на широкие пространства изливаются базальтовые лавы вулканов. Но внутренние процессы подчинены не только действию равномерно распределенной силы земного притяжения — здесь процессы сложней и разнообразней. Под действием глубинных сил большие участки — блоки — земной коры испытывают поднятия и опускания, здесь возникают сильные боковые движения — и горные породы сминаются в складки, образуют горные цепи. Слои, залегавшие на ‘большой глубине, вновь поднимаются к поверхности и вновь подвергаются действию ветра и поверхностных вод. На крутых, берегах рек, в горах и на морском берегу часто можно видеть уже не горизонтальные, спокойно залегающие слои, но мощные складки каменных пород, изогнутые и смятые некогда в земных глубинах.

Наблюдая и сопоставляя между собой такие оголенные участки, где видны слои пород разного возраста и происхождения, находя в этих слоях окаменевшие остатки древних животных и растений, геологи научились определять время и условия образования этих пород. Составлены геологические карты, показывающие, какие породы залегают непосредственно у поверхности Земли, подслоем почвы. На основании геологических данных выделяются участки, перспективные для поисков полезных ископаемых.

 

Геологу, однако, приходится при своей работе довольствоваться тем, что можно заметить на поверхности и в береговых обнажениях. И вот, когда надо детально проследить ход пластов в глубине земли, на помощь приходит сейсморазведка.

 

Задача не проста. Ведь если в изучаемом районе есть несколько различных слоев, да к тому же не известна скорость воли в них, как определить их глубину, как разобраться во всей путанице волн? Сейсморазведчики поступают так: запись взрыва производится не одним сейсмоприемником, а несколькими (обычно 12 или 24), расположенными по прямолинейному профилю на некотором расстоянии друг от друга. Запись движения почвы во всех точках их размещения производится на одну полосу фотобумаги. Теперь уже легче отличить случайное колебание от прихода нужной волны: необходимые для интерпретации вступления волн легко сопоставляются (как говорят, коррелируются) по всем каналам записи.

Автор: Admin | 2012-04-28 |
5 страница из 9123456789

GIF
Видео
Видео
Все обо всем
Забавно!
Иллюстрированные факты
Искусство
Истории
Все размещенные на сайте материалы без указания первоисточника являются авторскими. Любая перепечатка информации с данного сайта должна сопровождаться ссылкой, ведущей на www.unnatural.ru.