Цифры на рисунке 8 — это абсолютно точные цифры, полученные от страховых компаний. В этом случае интерпретация имеющихся данных затруднена по двум причинам. Первая, менее важная, связана с тем, что ураганная активность колеблется от десятилетия к десятилетию. Другая, более важная причина заключается в том, что использование прибрежных регионов, на которые обрушиваются ураганы, кардинально изменилось. В прибрежных регионах проживает гораздо больше людей. Это, в свою очередь, означает, что риску разрушения подвергается гораздо большее количество ценных объектов и владений. Если учесть этот факт при анализе и допустить, что динамика ураганов в США оставалась неизменной с 1900 года, но при этом в отношении ценности разрушаемого имущества на протяжении всего столетия сохранялась ситуация 2005 года, то мы придем к совершенно иным результатам, как это можно видеть на рисунке 9.
На протяжении всего прошлого столетия наблюдались значительные колебания, и отдельные ураганы наносили огромный ущерб.
Рис. 8. Суммарный годовой ущерб от ураганов на побережье США в период с 1900 по 2005 год. Источник: Pielke et al., op. cit.
Самый большой однократный ущерб был нанесен, по-видимому, ураганом в Майами в 1926 году (тогда это был еще маленький тихий городок). Ураган Катрина стоил американцам 81 млрд долларов, в то время как ураган 1926 года мог бы причинить Майами ущерб приблизительно в 130 млрд долларов, если бы Майами тогда был таким крупным городом, каким он является сейчас.
Майами, ураган 1926 года
Исходя из графиков 8 и 9, можно нарисовать две разные картины. Рисунок 8 сообщает нам о том, что ущерб от последнего урагана достиг беспрецедентного размера и что это изменение объясняется беспрецедентным уровнем ураганной активности. В этом случае в последующие годы и десятилетия можно было бы ожидать ее дальнейшего роста. Рисунок 9 говорит нам, с одной стороны, о том, что с 1992 года ураганы наносили значительный материальный ушерб, однако его масштабы сопоставимы с ущербом от предыдущих ураганов. С другой стороны, этот рисунок показывает нам, что данных за 50 лет недостаточно для того, чтобы оценить все возможные последствия.
Добиться временной репрезентативности сложно, так как на любой хронологической шкале наблюдаются колебания по всем основным климатическим переменным. Инструментарий с высоким временным разрешением показывает, что скорость ветра или температура меняются на шкале времени с секундным делением точно так же, как на шкалах с делением на недели, годы или десятилетия.
Рис. 9. To же, что и на рисунке 8, с тем лишь изменением, что в отношении численности населения, благосостояния и ценности владений жителей американского побережья взяты данные за 2005 год. Источник: Pielke et al. [2005].
Очевидно, необходимо определить такие числовые показатели, которые бы описывали, в каком интервале колебаний обычно варьируются изменения и с какой вероятностью встречаются крайние значения. Только на основании подобных измерений «нормальных» колебаний мы можем решить, действительно ли в данном случае речь идет об изменениях, вызванных человеческой деятельностью.
В этой ситуации имеет смысл обратиться к статистической терминологии. Мы исходим из того, что климат действительно варьируется на всех временных*, но после аппроксимации эти колебания могут рассматриваться как случайные, если не принимать во внимание упомянутые выше регулярные годовые или дневные циклы. Если говорить точнее, мы рассматриваем отклонения от средних значений годового или суточного хода — так называемые «аномалии» — как случайные. Это допущение представляет собой математическую абстракцию, с помощью которой мы можем описать кажущуюся нерегулярность. В ходе погоды и климатическом режиме не бывает случайностей в строгом смысле этого слова**. Однако их динамика складывается из многих «нелинейных» процессов, которые могут порождать крайне изменчивые структуры.
Наложение этих многочисленных «хаотичных» и «нехаотичных» процессов друг на друга получается настолько сложным, что становится невозможным в полной мере учесть отдельные процессы, и общий ход уже сложно отличить от статистических колебаний.
Теперь мы совершим небольшой экскурс в статистику.
Под случайным процессом мы будем понимать процесс, порождающий числовые ряды, значения которых соответствуют случайному распределению. Наиболее известным является гауссово распределение. Оно сообщает нам, с какой вероятностью переменная принимает то или иное возможное значение. Такие распределения можно описать при помощи нескольких характерных величин — среднего и среднеквадратического отклонения.
Среднее значение есть арифметическое среднее всех наблюдений, т. е. в большинстве случаев половина всех полученных в ходе наблюдений результатов ниже среднего, а другая половина — выше***.
———————————————————————————————————
*Когда был изобретен гармонический анализ, разлагающий все ряды на периодические компоненты, предпринималось множество попыток зафиксировать и обособить периодические компоненты в погоде — подобно тому, как это делается в финансовых науках и других областях. Через несколько десятилетий выяснилось, что таким образом можно разбить даже абсолютно случайные ряды данных, но что добавление всего лишь одного дополнительного показателя нарушает все построение. И если в изучении действительно периодических явлений, например, приливов и отливов, эта концепция может быть очень полезной, в контексте климата эти допущения ведут к артефактам. Тем не менее, гармонический анализ широко распространен, особенно среди невежд.
**В принципе здесь не играет никакой роли, говорим ли мы о «подлинной» случайности в значении брошенного Господом богом жребия. Достаточно заметить, что множество нелинейных, зачастую хаотических процессов в климатической системе демонстрирует такие долговременные характеристики, что их сложно отличить от математической конструкции случайности. Следовательно, «случайность» — это удобный и эффективный инструмент, позволяющий вместить климатические колебания в одном понятии.
***Строго говоря, это верно только тогда, когда мы имеем дело с симметричным распределением.
———————————————————————————————————
Годовой и суточный ход на рисунке сверху представляет собой как раз среднюю величину (рассчитанную для каждого календарного месяца / каждого часа в отдельности).
Среднеквадратическое отклонение или его квадрат (дисперсия) показывает меру разброса случайных величин. В двух третях всех случайных выборов мы попадаем в интервал «среднее значение 0 среднеквадратическое отклонение», а в одной трети случайных выборов мы получаем значения больше или меньше, чем «среднее значение ± среднеквадратическое отклонение». Частота подобных существенных отклонений от среднего значения измеряется с помощью перцентилей. Перцентиль 90% больше, чем 90% всех наблюдений, перцентиль 10% меньше, чем 10% всех наблюдений. Если в нашем числовом ряду речь идет о максимальной скорости ветра в течение года, то перцентиль 99% описывает максимальную скорость ветра, которая была превышена в среднем один раз в сто лет.
Случайность не означает, что следующие друг за другом числовые показатели абсолютно не зависят друг от друга. Скорее, здесь — именно в климатологическом контексте — мы наблюдаем такую ситуацию, когда значение климатической переменной в какой-то момент времени частично определяется предшествующим моментом времени: «Завтра погода будет в сущности такой же, как сегодня». Отсюда следует, что значение переменной в последующий момент времени все еще будет частично детерминировано настоящим значением, однако чем дальше мы продвигаемся по шкале, тем меньше будет эта детерминированность. Так что значение, которое переменная примет через большой промежуток времени, не будет иметь ничего общего с нынешним значением. Отсутствие связи между ними можно понимать таким образом, что, случайным образом изменив последовательность ряда, мы никак не изменим характер этого ряда. Последовательную детерминацию можно понимать как память случайного процесса.
На практике мы не встретим ни распределений, ни памяти в этом смысле. Поэтому характерные величины приходится выводить из наблюдений. И тогда встает вопрос: сколько нужно провести наблюдений, чтобы полученные результаты имели смысл? Если мы будем наблюдать за температурой в течение двадцати лет и рассчитаем среднее значение для первых и последних десяти лет, то эти средние значения будут различаться. Чтобы результаты были репрезентативными, разница не должна быть слишком большой.
Автор: Admin |
2012-03-08 |
|
Если Вы без ума от карточных игр и всего, что с ними, так или иначе, связано, то просто обязаны приобрести на сайте www.cardician.ru набор под названием «покер 300 фишек«, благодаря которому ваша уютная квартира преобразиться в казино, а игроки смогут почувствовать себя в роли настоящих профи.
Рис. 3. Осадки, дневные и ночные температуры, зафиксированные на отдельных метеостанциях
С тех пор как климатология достигла такого уровня, что может выразить категорию климата в количественных показателях, приходится решать вопрос о том, что из огромного количества данных имеет информативную ценность для общества и науки. Другими словами, необходимо ограничивать число возможных наблюдений такими переменными, которые могут быть измерены надежными методами, обладают практической ценностью и репрезентативны для той или иной области и временного промежутка.
Наряду с важнейшими (био-) климатическими переменными, такими как (приземная) температура и осадки, ведутся регулярные наблюдения влажности, ветра, облачности, продолжительности солнечного сияния. Еще одна климатическая переменная, наблюдаемая уже не метеорологическими, а гидрографическими службами, — это уровень воды у побережий океанов, внутренних морей и рек.
Научное изучение климата легло в основу надежного описания климатических переменных и привело к применению в этой области языка цифр. Начались поиски методов, которые бы позволили измерить климатические переменные таким образом, чтобы полученные числовые данные были, с одной стороны, воспроизводимыми для того или иного региона, а с другой стороны, сопоставимыми с другими регионами.
Эта задача сложнее, чем кажется на первый взгляд. Так, например, среднее значение дневной температуры может меняться просто потому, что измерения проводились не в 6.00, 12.00, 18.00 и 24.00, а в 7.00, 13.00, 19.00 и 1.00. По приблизительным расчетам, проведенным в начале 1940-х годов, температура поверхностных вод в океане понизилась почти на полградуса, но связано это с тем, что в эти годы для измерения температуры поверхностных вод использовали не ту воду, которую черпали за бортом судна, а охлаждающую воду в моторном отсеке.
История метеорологии и океанографии пестрит подобными случаями «неоднородности» результатов наблюдения. Нередко статьи, привлекающие внимание общественности, отражают изменения не в самой климатической системе, а лишь в способе сбора и обработки данных. Использование информации из Интернета лишь усугубляет эту проблему.
——————————————————————————————
*Описание работы этого общества см. в: Kington John A. The Societas Meteorologica Palatina: An eighteenth-century meteorologica! society / / Weather. 1964. Nr. 29. P. 416-426; Ludecke C. The monastery of Andechs as station in early meteorological observational networks // Meteorologische Zeitschrift. 1997. Nr. 6. S. 242-248.
——————————————————————————————
Рис. 4. Динамика изменения давления в декабре 1775 г. в Лондоне, Регенсбурге и Санкт-Петербурге по результатам измерений Societas Meteorologica Palatina (Источник: Ludicke 1997).
Ниже мы приводим некоторые примеры подобной «неоднородности* климатологических данных, отражающих несуществующие тенденции. Их появление связано не с изменением климатических условий, а с введением новых техник наблюдения и другими изменениями в окружающей среде.
В первом примере речь идет о наблюдении сильных ветров в Гамбурге. Результаты наблюдений представлены в виде средних значений за десять лет, обобщающих количество дней с силой ветра в 7 баллов и более в каждый год (рис. 5). Согласно графику, в период с 1951 по 1960 год частота сильных ветров резко сократилась: с 90 до 10 сильных ветров в год. Этот спад, однако, никак не связан с изменениями в климате, а объясняется изменением процедуры наблюдения, а точнее, перемещением пункта наблюдения из морской метеорологической службы в Санкт-Паули в аэропорт Фульсбюттель. Следует отметить, что эти наблюдения верны, но они явно не репрезентативны в отношении ветрового климата Гамбурга. Представленные на рисунке 5 данные в такой форме не могут быть использованы для того, чтобы ответить на стандартные климатологические вопросы: «Насколько высок риск сильного ветра в Гамбурге?» или «Меняется ли частота сильного ветра в Гамбурге?».
Рис. 5. Средний показатель годовой частоты сильного ветра (сила ветра более 7 баллов) в Гамбурге за 10 лет. Резкое снижение частоты в районе 1950 года вызвано сменой места проведения наблюдений, т, е. данные не репрезентативны для Гамбурга.
Второй, похожий пример связан с наблюдениями торнадо в Соединенных Штатах Америки (см. рис. 6). До 1870 года сообщения о торнадо появлялись лишь время от времени и обычно носили характер занимательных историй. Лишь впоследствии служба связи американской армии начала систематический сбор сообщений о торнадо. Правда, в тот момент эти меры пришлись не ко времени с политической точки зрения, так как эти страшные природные явления могли отпугнуть переселенцев. По этой причине в конце 1880-х гг. наблюдалась тенденция занижать уровень опасности торнадо, но через несколько лет такой подход снова был откорректирован.
Рис 6. Частота зафиксированных в США торнадо. Источник: Harold Brooks
Третий пример — это так называемый «эффект города». Уже давно известно, что температура в городах выше, чем за пределами городской застройки. В городах воздух охлаждается медленнее, чем в сельской местности, так как в городе меньше участков с открытой почвой и, соответственно, меньше испарений*. В Центральной Европе эта разница может превышать 1 градус. Проследим данный эффект на рисунке 7У
на котором отображены температурные ряды для двух соседних населенных пунктов в канадской провинции Квебек. Метеорологическая станция «Шербрук» фиксирует климатические условия постоянно растущего города Шербрука, тогда как станция «Шоиниган» отображает климат сельского региона вокруг местечка Шоиниган. В 1966 году станция «Шербрук» переместилась из центра города в расположенный за его пределами аэропорт. Очевидно, именно после этого произошло резкое изменение в измерениях, схожее с тем, которое мы наблюдали в связи с ветровым климатом Гамбурга: станция Шербрук перестала быть репрезентативной для территории города Шербрука и тем более для его пригородов.
——————————————————————————————
*См., например: Cotton W. R., Pielke R. A. Human Impacts on Weather and Climate. ASTeR Press. 1992. P. 288 и далее.
——————————————————————————————
В городе, за исключением резкого понижения температуры в 1966 году, мы видим постоянное потепление, в отличие от сельской метеостанции. Таким образом, метеостанция «Шербрук» тоже не пригодна для климатологических исследований, поскольку отражает климатические условия исключительно того места, где проводятся измерения. Их результаты не могут быть использованы ни для планирования сельскохозяйственных работ, ни для обоснованной оценки того, в какой мере актуальные колебания климата свидетельствуют о систематических изменениях климатических условий. Одним из следствий систематического потепления в черте города является то, что наблюдения за температурой на городских станциях не могут использоваться для определения средних значений для региона и тем более для всего земного шара. Поскольку ранние метеонаблюдения (самые первые из которых относятся к XVII веку, в частности, наблюдения в Болонье) проводились в основном в городах, климатология, реконструируя климатические колебания в прошлом, вынуждена отказываться от важного материала, что весьма досадно, так как оценить нынешнее потепление можно лишь сравнив его с прежними тенденциями потепления, обусловленными естественными процессами. Для этого необходимы данные, фиксирующие температурные ряды для максимально продолжительного периода в прошлом, когда еще не было повышенной концентрации парникового газа.
Наконец, последний пример отсылает нас к широко известному анализу ущерба от ураганов. Он содержится, в частности, в третьем докладе Межправительственной группы экспертов по изменению климата (МГЭИК). Активисты, призывающие к принятию государственных мер по ограничению выброса парниковых газов, охотно используют его в качестве аргумента*.
На рисунке 8 показан ущерб, причиненный ураганами, имевшими место на протяжении всего побережья на территории США с 1900 года. Размер ущерба выражен в долларах, за базисный период взят 2005 год. На графике можно совершенно четко проследить увеличение размера ущерба, причем пик приходится на 2005 год, когда на Нью-Орлеан обрушился ураган Катрина. Этот пример мы приводим для того, чтобы соотнести рост общей суммы ущерба с повышением температуры поверхностных вод в Мексиканском заливе, которое, к тому же, является одной из причин глобального потепления.
——————————————————————————————
*Разбирая этот случай, мы не собираемся спорить о том, может ли повышенная концентрация парниковых газов в атмосфере, связанная главным образом с деятельностью человека, изменить климат. Мы также не оспариваем тот факт, что эти изменения могут нанести серьезный вред экологии и что необходимо сокращение выбросов парниковых газов. Мы лишь хотим показать, что использование этих конкретных аргументов в данном случае ошибочно.
——————————————————————————————
Рис. 7. Среднегодовые значения дневного минимума околоземных температур для двух соседних метеостанций в Шербруке и Шоунигане в канадской провинции Квебек. Шербрукская метеостанция до 1966 года находилась в центре города, а затем была перенесена за городскую черту, на территорию аэропорта. Станция в Шоунигане на протяжении всего рассматриваемого периода находилась в одном и том же месте в сельской местности. Источник: Storch, Zwiers, 1998.
Автор: Admin |
2012-03-04 |
|
Найти ответы на все интересующие Вас вопросы по теме “регистрация ООО” Вы найдете на сайте www.mregistr.ru, предоставляющем наиболее полную и исчерпывающую информацию для людей, желающих организовать общество с ограниченной ответственностью.
Климат открывается человеку только в виде совокупности погодных явлений в месте его проживания, поэтому с точки зрения восприятия окружающей среды климат — это «типичная погода». Так, мы замечаем, что в какие-то годы лето было очень теплым и сухим, а в какие-то — дождливым, что время от времени случается сразу несколько сильных бурь, а в отдельные зимние периоды бурь не бывает вовсе. Не стоит путать понятие «типичная погода» с понятием «средняя погода»: первая определяется частотностью экстремальных явлений, последняя есть математический артефакт, не существующий в реальности.
Наш опыт наблюдения за типичной погодой служит основой для хозяйственной деятельности. Для некоторых поселенцев недавно открытых земель этот опыт был болезненным. Понаблюдав за погодой в течение первых нескольких лет, они сделали преждевременные выводы относительно последующих лет. Опыт такого рода ограничивается доступными для наблюдения частями населенной местности, а также часто используемыми судоходными путями. Восприятие климата в этом значении не выходит за рамки процессов и явлений у поверхности земли, таких как температура, ветер, осадки, солнечное сияние. Выражаясь научным языком, понятие климата сводится к пограничному слою атмосферы, как правило, в средних широтах.
Термометр, изобретенный около 1600 года Галилео Галилеем, и барометр, сконструированный в 1643 году Эванджелистой Торричелли, стали первыми техническими приборами для первого этапа, продлившегося вплоть до 20-х годов прошлого столетия. Это был период инструментальных метеонаблюдений, ограниченных земной поверхностью. Поистине революционные изменения в этих инструментальных наблюдениях начались в 1920-х годах с использования воздушного шара для измерения климатических переменных на различной высоте. В этом направлении климатология развивается до сих пор. Сегодня важным источником информации являются спутниковые измерения.
Еще несколько десятилетий назад климатология была дескриптивной дисциплиной, в задачи которой входило составление разного рода карт и таблиц. Выдающийся метеоролог конца Х1Х-начала XX века, профессор Венского университета Юлиус фон Ханн (1839-1921) в первом издании своего, долгое время считавшегося хрестоматийным справочника по климатологии1 пишет: «Наука о климате … имеет своей задачей познакомить нас со средними состояниями атмосферы над различными областями земной поверхности».
В самосознании метеорологов прошлого века климатология понималась как один из аспектов географии. Метеорология — как раньше, так и теперь — есть нечто отличное от климатологии, поскольку метеорология занимается главным образом физикой процессов в атмосфере. Прогноз погоды — по общему мнению, основная задача метеорологов — долгое время составлялся при помощи довольно сомнительных, с современной точки зрения, методов (например, на основе классификации метеоусловий или выискивания схожих ситуаций в прошлом). Лишь с появлением ЭВМ в конце 1940-х годов метеорология обрела более прочный научный фундамент.
В основном повседневный опыт наблюдений связан с суточным и годовым ходом: утром, до восхода солнца холоднее всего, влажность воздуха максимальна, и происходит конденсация влаги. На рисунке 1 показан суточный ход погоды летом в Германии. Максимальная температура достигается около 14 часов, до 6.00 отмечается самая низкая температура. Разница температур около 5° в прибрежном регионе близ Варнемюнде гораздо меньше, чем в глубине материка в Потсдаме: там амплитуда дневных колебаний температуры — примерно 7 °С.
Годовая динамика температуры, т. е. увеличение или уменьшение теплоты воздуха, лежит в основе различения времен года. На рисунке 2/3 выборочно отображены климатические диаграммы дневных и ночных значений средней нормы осадков и средних температур в течение года.
——————————————————————————————
*Напп J. Handbuch der Klimatologie. Bd. 1. Allgemeine Klimalehre. Stuttgart, Engelhorn, 1908.
——————————————————————————————
Рис. 1. Ход среднесуточной температуры в июле в Варнемюнде (на побережье Балтийского моря) и в Потсдаме
В нашем сознании самый холодный и самый теплый месяц ассоциируется с зимой и летом. На самом деле «официальные» времена года определены астрономически. Это определение полностью соответствует метеорологической дефиниции, хотя в контексте метеорологии правильнее было бы, наоборот, называть месяцы декабрь-январь-февраль зимой, март-апрель-май — весной и так далее. Слово «зима» следовало бы заменить словом «северная зима», так как в южном полушарии декабрь, январь и февраль, разумеется, в среднем самые теплые месяцы в году.
Поскольку деление года на четыре сезона базируется на наблюдении за изменениями температуры, оно не совпадает с динамикой долготы или краткости дней. Дело в том, что в умеренных климатических зонах Земли минимальные температуры не выпадают на самый короткий день, точно так же как максимальные не выпадают на самый долгий. Эту разницу легко объяснить с точки зрения физики: максимальная температура воды в ванной достигается не тогда, когда поступает самая горячая вода, а когда поступающая вода теплее, чем вода в ванной (если пренебречь другим процессами).
Характерная динамика температур в течение года для некоторых точек земного шара показана на рисунках 2 и 3. На примере Гамбурга (Германия) и Хобарта (Австралия) четко прослеживается противоположность северного и южного полушарий, равно как и отсутствие явно выраженного годового цикла в тропических регионах, например, в Дарвине на севере Австралии или в Боготе на севере Южной Америке.
Рис. 2. Осадки, дневные и ночные температуры, зафиксированные на отдельных метеостанциях
В умеренных климатических зонах северного и южного полушария четыре времени года прослеживаются более или менее отчетливо. Для тропических зон или для регионов вблизи полярных кругов это деление уже не действует, так как динамика температур в этих областях выглядит иначе. В тропиках, где осадки имеют гораздо большее значение, чем температура, во многих областях вместо «годового цикла» с годовым минимумом или максимумом существует «полугодовой цикл» с двумя годовыми минимумами и максимумами. Это связано с тем, что там дважды в год солнечные лучи падают на Землю под прямым углом. Примером таких регионов могут служить Мумбаи в Индии, Рангун в Мьянме или Дарвин в Австралии.
На графиках 2 и 3 отображено среднее количество осадков, которое также может сильно варьироваться от станции к станции. Для регионов с муссонным климатом, в частности для Мумбаи, характерно чередование двух сезонов — сухого и влажного. В других регионах, например, в Гамбурге, Хобарте или Нью-Йорке, наблюдается умеренное количество осадков. Бимодальное распределение с двумя минимумами и двумя максимумами прослеживается на диаграммах Найроби в Восточной Африке и Боготы.
Таким образом, времена года в значении универсального климатического ориентира были изобретены людьми, населяющими умеренные климатические зоны. В повседневной жизни смена времен года многими воспринимается положительно. Те, кто родился в зоне умеренного климата, а проживает в другой климатической зоне, где нет четко выраженных времен года, считает их отсутствие едва ли не недостатком своей новой окружающей среды.
Утвердившийся в конце прошлого столетия научный подход к климату стал причиной того, что субъективные, неопределенные классификации климатических условий, выраженные, например, в таких фразах, как «Зимой в нашем регионе суровый климат» или «Летом погода здесь переменчивая, и часто идут дожди», сменились объективными инструментальными наблюдениями. Одним из первых примеров методологически обоснованной техники и процедуры измерения можно считать результаты, полученные вышеупомянутым обществом «Societas Meteorologica Palatina»* в 1775 году в период Рождественских праздников в различных городах Европы.
Автор: Admin |
2012-03-04 |
|
На сайте www.droidgeek.ru Вы сможете ознакомиться с детальным обзором планшета Kindle fire, стоимость которого составляет всего 200 долларов. Вы узнаете все плюсы и минусы данного устройства и решите для себя: стоит ли Kindle своих денег.
Наблюдения и объяснения климатических процессов в самом общем виде можно разделить на три важных этапа. Эти этапы не только приходятся на различные исторические периоды и имеют разную продолжительность, но, кроме того, выражают разные интересы, методики наблюдения и подходы к объяснению, имеющие свою определенную аудиторию.
Интерес человека к вопросам климата возник очень давно. На первом этапе в центре внимания находился человек, т. е. первоначально люди были заняты поиском механизмов влияния климата на сущность человека, его характер и здоровье.
Лишь на исходе XIX века, по крайней мере в науке, утверждается чисто физический подход к изучению климата. Одновременно с этим начинает формироваться особая наука, занимающаяся исследованием климата. Это второй этап развития представлений о климате. С точки зрения общества, такого рода наука была важна тем, что она предоставляла таблицы, карты и атласы, описывающие средние климатические условия, а также характер и частоту экстремальных явлений. Все это находило практическое применение в сфере планирования. На данном этапе климат трактовался как объективный феномен, тогда как на первом этапе он рассматривался в качестве ресурса, приносящего либо ущерб, либо пользу людям, живущим в определенной климатической зоне.
Сегодня мы переживаем третий этап, когда климат уже не является просто данностью, но в какой-то мере может быть изменен самим человеком. Происходит своего рода возврат к темам первого этапа. Поскольку климат меняется — будь то по антропогенным или естественным причинам — неравномерно, он снова утрачивает свою «беспристрастность».
На географической карте можно выделить тех, кто «выиграл» от климатических изменений, и тех, кто «проиграл», или же определить, кто «проиграл» больше, а кто меньше. «Изменение климата» превратилось в политическую категорию, причем знания об этом процессе служат аргументом в процессе внедрения социальных стратегий и ценностей. Исследования механизмов изменчивости климата становятся менее важными, чем исследования воздействия климата на экологические и социальные системы. Само слово «климат» покинуло башню из слоновой кости, в которую его поместила сначала дескриптивная, а затем аналитическая естественная наука. Среди современных исследователей климата все реже можно встретить оторванных от практики ученых и все чаще — экспертов, которые выступают по радио и телевидению и рисуют картину безрадостных перспектив, заставляя общественность замирать от страха.
Александр Гумбольдт (1769-1859) относится к числу заинтересованных наблюдателей климата первого этапа. В первом томе своего произведения «Космос: план описания физического мира» (1845) он так описывает климат:
«Выражение «климат» в самом общем смысле обозначает все изменения в атмосфере, которые видимым образом воздействуют на наши органы: это температура, влажность, изменение давления на барометре, спокойное состояние воздуха или воздействия разнонаправленных ветров, сила электрического напряжения, чистота атмосферы или смешение ее с более или менее вредными газообразными эксгаляциями, наконец, степень обычной прозрачности или ясности небосвода, что важно-не только для усиленного теплового излучения почвы, органического роста растений и созревания плодов, но и для чувств и общего состояния души человека».
В своем описании климата Гумбольдт, с одной стороны, обращает внимание на возникновение и состояние климата в зависимости от определенных геофизических и атмосферных процессов, а, с другой стороны, указывает на влияние климата на человека в целом и на его самочувствие.
Наступивший в конце XIX века перелом в понимании климата и связанная с этим постановка климатических исследований на научную основу привели к возникновению нового понятия климата. В нем акцент делается на том обстоятельстве, что климат, как писал известный австрийский метеоролог Юлиус фон Ханн (1839— 1921), охватывает всю «совокупность метеорологических явлений, характеризующих среднее состояние атмосферы на том или ином участке земной поверхности».
Интерес к физическим, психическим и социальным влияниям климата ослабевает, а на первый план выходит описание климата на основе инструментального определения его переменных. Отныне различают климат и погоду. Погода — это мимолетное состояние атмосферы в данном месте в данный момент. По сравнению с погодой, климат гораздо менее изменчив, охватывает большие временные промежутки и, как правило, простирается на большие географические территории. Серии измерений и наблюдений атмосферных переменных, в первую очередь температуры и осадков, на протяжении продолжительных промежутков времени позволили представить климат в виде количественных и статистических величин. Особую роль, начиная с этого момента, играет статистический метод наблюдения климата в значении среднего состояния атмосферы. Таким образом, изучение климата заключается прежде всего в сравнительном измерении и классификации средних показателей изменяющихся погодных условий на протяжении длительных периодов времени. В результате климат оказывается более или менее статичным и ограничивается ближайшими к земле слоями атмосферы. Глобальный климат есть не что иное, как сумма всех региональных климатов.
Когда в 20-е годы прошлого века благодаря техническим инновациям отпала необходимость ограничивать эмпирическое наблюдение климата поддающимися измерению состояниями атмосферы непосредственно у поверхности Земли, начался третий этап изучения климата. Климатология окончательно утвердилась в статусе специальной науки, занимающейся едва ли не исключительно физическим описанием климатических процессов. Физики стали все чаще обращаться к исследованию атмосферных и океанических явлений. Традиционная связь с географией ослабевала, давая простор для новой дисциплины — физики атмосферы и океана. Вследствие этой смены концепций вопросы влияния климата на биосферу и человека все больше отходили на задний план. В этом переходе климатологических исследований на новую научную основу можно выделить три особенности:
1) Расширяются наши знания о будущих и прошлых климатических условиях на Земле. На смену концепции более или менее постоянного — по крайней мере, в исторический период — климата, долгое время доминировавшей в науке ХХ-го века, пришло понимание того, что климат необходимо рассматривать как переменную величину применительно к любому отрезку времени. Такой подход, наряду с анализом факторов воздействия на климатическую систему, ведет к осознанию того, что климат может меняться под влиянием человеческой деятельности. И действительно, сегодня многие исследователи климата полагают, что за последние 100 лет климат уже существенно изменился вследствие человеческой активности и будет меняться дальше.
2) Климатическая система теперь может быть измерена на больших территориях при помощи спутников. Правда, пока динамические ряды данных, полученных через спутник, ограничиваются небольшими временными промежутками, так что их использование в исследовании долгосрочного развития климата тоже ограничено. Становится возможным квазимоментальное «синоптическое» отображение по крайней мере физического состояния атмосферы (погоды). К этой цели еще в конце XVIII века стремилась метеорологическая сеть «Societas Meteorologica Palatina» (1781-1792), учрежденная Маннгеймской академией наук. Сегодня это совершенно обычная процедура, без которой был бы невозможен ежедневный прогноз погоды.
3) Математизация физики повлекла за собой математизацию океанографии и климатологии. Атмосферные и океанические процессы описываются при помощи математических уравнений. До изобретения ЭВМ эти уравнения могли быть решены лишь в весьма упрощенном виде, поэтому исследовались только самые важные взаимосвязи. Развитие ЭВМ позволило реализовать более сложные климатические модели, с помощью которых можно максимально приближенно к реальности показать природные процессы и степень их подверженности антропогенным воздействиям. Данные климатические модели в исследованиях климата выполняют функцию экспериментальных построений*.
После того как благодаря новым методам было достигнуто более глубокое понимание процессов в климатической системе и в динамике климата, климатология в последние годы оказалась в центре внимания науки и общественности.
———————————————————————————————————————————
*Концептуальное рассмотрение моделей в климатологическом исследовании см. в: Miiller P., von Storch Н. Computer Modelling in Atmospheric and Oceanic Sciences — Building Knowledge. Springer Verlag Berlin-Heidelberg-New York, 2004. P. 304 и далее. На самом деле модель — это сложное понятие, которое может иметь различные значения в социальных и естественных науках. В климатологии модель — это математический конструкт, который представляет функцию всей системы через комбинацию компонентов, объясняющих совокупность всех значимых процессов, главным образом используя базовые категории, такие как масса или сохранение энергии.
———————————————————————————————————————————
Автор: Admin |
2012-03-02 |
|
Отличить рамфоринха от птеродактиля можно с одного взгляда. У всех рамфоринхов был длинный хвост, а у птеродактилей — или очень маленький, или совсем никакого. Рамфоринхи древнее. Они жили в триасовом и юрском периодах мезозойской эры, примерно 270-150 млн лет назад. Птеродактили появились в юрском, а вымерли в меловом периоде, на 100 млн лет позже, чем рамфоринхи.
Эудиморфодон
Самый древний из известных рамфоринхов называется эудиморфодон. Его имя говорит о том, что у него были хорошо развитые зубы двух видов. Одни — длинные хватательные, чтобы выхватывать рыбу из воды. А другие — короткие зазубренные, чтобы удерживать ее в пасти. Длина каждого крыла у эудиморфодона была 50 см, примерно таким же был и хвост. Ящер использовал его для баланса. Самого первого ископаемого эудиморфодона ученые нашли в 1973 году в Италии, неподалеку от города Бергамо. Но затем оказалось, что эти рамфоринхи жили также на территории современной Австрии, в Гренландии и в Северной Америке примерно 220 млн. лет назад.
Диморфодон
Мери Эннинг
История изучения следующего рамфоринха — диморфодона — началась гораздо раньше, в первой половине XIX века. Она связана с именем одной англичанки. Звали эту женщину Мери Эннинг. Она была ровесницей Пушкина — родилась в 1799 году. Ее отец умер, когда девочке было всего десять лет. Ей пришлось начать зарабатывать деньги, чтобы прокормить себя и мать с маленькими братьями
и сестрами. Вид заработка она выбрала довольно необычный. Маленькая Мери торговала различными ископаемыми остатками доисторических животных. В то время в Англии окаменелости были в большой моде и на них был хороший спрос.
Мери Эннинг жила в графстве Дорсет. В ее родных местах остатки разных доисторических животных находили довольно часто. Мери еще в раннем детстве научилась отыскивать и откапывать их. Поэтому ее бизнес был весьма успешен. Однако со временем ей стало скучно просто находить и продавать окаменелости. Став постарше, она познакомилась с настоящими учеными-палеонтологами, которые нередко приезжали в Дорсет для своих исследований. Они многое объяснили ей про разных вымерших животных. Впредь Мери Эннинг всегда сообщала ученым о каждой своей находке — вдруг та имеет какую-то ценность для науки… И действительно, когда Мери было всего 12 лет, она откопала целый скелет ихтиозавра. До этого этих ящеров никогда не находили в Англии. В 1828 году Мери Эннинг обнаружила в Дорсете скелет летучего ящера, которого сначала, по ошибке, назвала птеродактилем. Затем палеонтологи установили, что на самом деле это рамфоринх. Его назвали диморфодо-ном, потому что у него тоже были зубы двух видов, как и у эудиморфодона. Только жил диморфодон гораздо позже — в начале юрского периода, примерно 190 млн лет назад. По размеру он был примерно такой же, как и эудиморфодон, — с размахом крыльев в 1 м. Но череп его был гораздо крупнее, и пасть устроена иначе. Не исключено, что диморфодон питался не рыбой, а мелкими наземными животными — рептилиями или примитивными млекопитающими.
В конце юрского периода — 150 млн лет назад — жил рамфоринх, научное название которого так и звучит — рамфоринхус. Именно этот вид и дал название всей группе летучих ящеров. Это слово — «рамфоринхус» — означает что-то вроде «клюворыл». Ящер обладал не клювом и не пастью, а чем-то средним. Зубы у него были все одинаковые, зато много — целых 360! Длина крыла у рамфоринхуса была около 40 см. На конце длинного хвоста был характерный кожистый ромб — клюворыл балансировал им в полете.
Все рамфоринхи вымерли к началу мелового периода мезозойской эры. К тому времени достигла расцвета другая группа летающих ящеров.
Автор: Admin |
2012-03-02 |
|
Если Вы обожаете спортивные автомобили, то просто обязаны занести в закладки своего браузера сайт autotuni.ru, со страниц которого Вы узнаете, что на днях были объявлены цены на новые кроссоверы acura RDX, а в Чикаго дебютировала представительская модель Acura ILX 2013.
Лабиринтодонт — один из возможных предков сегодняшних позвоночных, в том числе и птиц
Слово «птерозавр» означает «крылатый ящер». Птерозавры жили на нашей планете примерно тогда же, когда и динозавры, — в мезозое. Так называется эпоха в истории Земли, которая началась 250, а закончилась — 70 млн. лет назад. В мезозое разнообразие рептилий достигло своего максимума, но к концу эры большинство видов вымерло. Почему? Точного ответа на этот вопрос пока еще никто не знает, но большинство ученых склоняется к версии, что массовое вымирание мезозойских пресмыкающихся произошло из-за резкого изменения климата на планете.
Птерозавры не динозавры, а лишь родственники их. Те и другие произошли независимо друг от друга от более древних архозавров. Главное отличие птерозавров от прочих рептилий — это наличие крыльев и способность к активному полету.
Крылья у всех птерозавров устроены сходным образом. Однако прежде, чем познакомиться подробнее с этим уникальным летательным приспособлением, нам нужно взглянуть на… собственные руки!
Скажете: «Что мы их не видели, что ли? Чего на них смотреть-то? » Но взглянуть на собственные ладони можно по-разному. Одно дело, когда мы смотрим, достаточно ли они чисты, чтобы садиться за стол или браться за книжку. Это скучно. Но совсем другое дело, если мы посмотрим на наши руки, как на типичные конечности четвероногого существа. Вот так приехали! Какие же мы четвероногие существа?
И рука человека, и лапы лягушки, и крыло птицы, и копыто лошади устроены в принципе одинаково
Оказывается, с научной точки зрения, очень даже четвероногие. Все наземные позвоночные животные, включая нас с вами, построены по единому плану. Так уж случилось в истории развития животного мира, что первые существа с костным скелетом, которые вышли на сушу, были четвероногими. От них произошли все более поздние наземные позвоночные, включая птерозавров и людей. Поэтому наши конечности имеют в основе единый план строения. Трудно поверить в это, сравнивая переднюю лапку лягушки, крыло птицы и копыто лошади. И тем не менее это так. Все разнообразие ног наземных • позвоночных животных можно вывести из одной типичной базовой формы, которая называется «пятипалая конечность». И во что уж совсем трудно поверить, так это в то, что «пятипалая конечность» произошла от плавника рыбы. Но поверить придется. Больше ей просто неоткуда было взяться.
Наши с вами «пятипалые передние конечности», то бишь руки, конечно, не очень похожи на ту изначальную базовую форму, но все же подойдут для простого сравнительного анализа, которым мы с вами сейчас займемся. Главное, что у нас все пять пальцев на месте, а это, как мы увидим в дальнейшем, в природе бывает далеко не всегда.
Вернемся к птерозаврам. Их крылья представляли из себя видоизмененные передние конечности. Чтобы понять, как именно они были видоизменены, нужно для начала пересчитать наши пальцы. Ну-ка, начинаем от большого: первый, второй, третий, четвертый. Стоп. Дальше можно не считать. У птерозавров на четвертом пальце все заканчивалось, пятый отсутствовал вовсе, как будто его никогда и не было. На самом деле, он был, но птерозавр утратил его в процессе эволюции.
Теперь посмотрите внимательно на свой четвертый палец. Его еще называют безымянным. Как вы думаете, можно ли, пользуясь исключительно этим пальцем, поднять в воздух наше тело? Чушь какая! Действительно, наш безымянный палец — довольно слабая конструкция. Сам по себе он мало на что способен, даже при работе с компьютерной клавиатурой от него толку меньше, чем от указательного, среднего и большого. Одни лишь скрипачи да пианисты, наверное, его ценят.
Рыбьему плавнику соответствует птичье крыло
А вот у птерозавров четвертый палец передней конечности был самым главным. Именно на нем они и летали. Кости «безымянного» пальца птерозавров были примерно в двадцать раз толще и длиннее, чем кости прочих. Этот палец служил опорой переднего края крыла ящера, основой его каркаса. Три прочих пальца с когтями на концах были хорошо видны на передней стороне крыла. Птерозавры использовали их для цепляния за разные поверхности, на которые они приземлялись.
Кожистая перепонка крыла была прикреплена к телу в основании передних конечностей, затем по всей длине четвертого пальца и к боковой поверхности тела. Основная плоскость крыла птерозавров не имела никаких дополнительных опорных структур. Она была подобна мягким парусам воздушного змея, которых делают обычно из бумаги или полиэтилена. Закрепленные на жесткой рамке, сами по себе они остаются эластичными и могут выгибаться под напором воздуха в любую сторону. Также и крыло птерозавров. Без дополнительных опорных структур оно было недостаточно жестким для сложного маневренного полета.
И как только птерозавры могли довольствоваться таким несовершенным летательным аппаратом на протяжении миллионов лет? Впрочем, объясняется это просто. Им не от кого было улетать. Ни одно живое существо тогда не могло представлять для птерозавров серьезной опасности в воздухе. Поэтому естественный отбор не был направлен на усовершенствование их крыльев.
Тело у всех птерозавров было покрыто не чешуей, как у многих других рептилий, а шерстью. У них была мощная мускулатура и развитая дыхательная система. Черепная коробка крупная, что говорит о большом мозге. Глаза были также немаленькие. Скорее всего, птерозавры вели дневной образ жизни. Жили они возле водоемов и питались в основном рыбой.
Палеонтологи разделяют всех летающих ящеров на две группы — рамфоринхов и птеродактилей. Остановимся на некоторых представителях тех и других подробнее.
Автор: Admin |
2012-03-02 |
|
Любите ли вы пускать мыльные пузыри? А запускать воздушного змея? А делать бумажные самолетики? Как вы думаете, почему все они летают? Ну, пузыри — понятно — потому что очень легкие. Змея поднимает и держит ветер. А бумажные самолетики взмывают в воздух, когда мы придаем им ускорение. Но потом падают. А может ли пузырь, воздушный змей или бумажный самолетик полететь туда, куда ему захочется? Нет, конечно. Смешно и спрашивать.
Вот и в природе есть такие же пассивные летуны. Летят не туда, куда хотят, а куда ветер дует. Особенно много их в растительном царстве.
Парашютики одуванчика знают все. Стоит ветру посильнее задуть над летней белоголовой лужайкой, — и полетел пушистый десант. Высоко в небо может подняться, но рано или поздно все равно на земле окажется. Там новые одуванчики и прорастут.
Похожие воздушные семена есть у многих растений. Парашюты козлобородника, на первый взгляд, производят впечатление гигантских. Они как у одуванчика, только в три раза больше. На больших пушинах-пара-шютах летают также семена бодяка и иван-чая. А семена ломоноса летают на длинной опушенной нитке.
У некоторых деревьев семена снабжены крылатками, которые способны вращаться в полете. Подобно маленьким пропеллерам они ввинчиваются в воздух. Все видели, как осенью крутятся над землей носики клена. Есть крылатки у ясеня, липы и вяза. Бывают и более экзотические «пропеллеры», например у тюльпанного дерева и китайского ясеня айланта.
Растительные «летательные аппараты» могут показаться на первый взгляд слишком примитивными и бессмысленными. Действительно, зачем семечку одуванчика улетать с родной лужайки неизвестно куда? Ведь оно может упасть в воду, на голые камни или на птичий двор — курам под ноги.
Парашютики одуванчика и козлобородника летят не куда хотят, а куда ветер дует
Сидело бы себе дома — целее было бы. На самом деле, полет семян имеет огромное биологическое значение. Представьте себе, что все одуванчики мира живут на одной лужайке. Если все будет хорошо, то рано или поздно им станет тесно, они начнут попросту давить друг друга. А вдруг с лужайкой что-то случится? Например, зальет водой. Или приедет трактор и вспашет ее всю, ни одной травинки целой не оставит. Что тогда? А тогда не будет больше в мире ни одного одуванчика. Они вымрут. Понятно теперь, зачем семенам летать? Они тем самым дают растениям шанс на выживание, что бы ни случилось там, откуда они родом.
В роли пассивных летунов часто оказываются и животные. В начале осени иногда можно увидеть «летучих» пауков. Маленькие черные комочки несутся по ветру на длинной паутинке. Это молодые паучки «ищут счастья» в далеких краях.
На собственной паутине умеют летать многие гусеницы. А некоторых мелких насекомых ветер уносит просто потому, что они очень легкие и не могут ему сопротивляться. На большой высоте в воздухе можно встретить, например, бескрылых тлей. Сильный ветер может поднять в воздух и перенести на большое расстояние даже относительно крупных животных. Помните сказочный дождь из мышей и лягушек? Такое вполне могло случиться на самом деле. Вот только шансов остаться целыми и невредимыми при падении на землю с большой высоты у таких животных мало. Все-таки, они довольно тяжелые. Не поэтому ли мы никогда не найдем у крупных животных каких-либо приспособлений для исключительно пассивного перемещения по ветру? Только люди отваживаются на такое. Наполненный теплым воздухом или легким газом, разноцветный шар поднимает высоко в небо смельчаков в корзине. Но такой летательный аппарат хорош только при тихой погоде. Ураган может забросить его неизвестно куда. Помните, как это произошло с героями романа Жюля Верна «Таинственный остров»?
Лучше, конечно, летать не куда ветер дует, а куда захочешь. Активный полет гораздо совершеннее пассивного. Растения вовсе к нему не способны, а животным, чтобы летать направленно, требуются специальные приспособления.
«Летают» даже бескрылые насекомые
Самая простая разновидность активного полета — планирование. Отличным его примером служит полет летяги. Это небольшой зверек с пушистым хвостом, близкий родственник белки. На боках у летяги — между передними и задними лапами — тянутся особые складки кожи, покрытые мехом. Оттолкнувшись от ветки дерева, летяга расправляет эти складки. Они позволяют ей значительно удлинить прыжок, превращая его в небольшой полет. Его рекордная дальность у нашей обыкновенной летяги — 50 м. Зверек легко может перелететь через небольшую лесную прогалину и «оторваться», таким образом, от хищного преследователя — соболя или куницы. Планируя, летяга всегда немного теряет высоту и не может изменить направление полета. Это основные недостатки самого простого способа полетать.
Белка летяга
Веслоногие лягушки
Позвоночных животных, умеющих планировать, немного. Зато есть удивительные!
Например, веслоногие лягушки из Юго-Восточной Азии. Эти небольшие амфибии ведут древесный образ жизни и умеют перелетать с ветки на ветку и от ствола к стволу, подобно летяге. Только летают они «ногами»! Растопыривают перепонки между пальцами и планируют на них.
Есть и еще один уникальный природный планер — ящерица летучий дракон. Живет во влажных лесах на Филиппинах, в Малайзии и Индонезии. Эта рептилия почти всю жизнь проводит на верхушках деревьев, где охотится на насекомых.
Летучий дракон
С дерева на дерево перелетает, планируя на кожистых перепонках, расположенных по бокам тела. В обычном состоянии перепонка сложена, прижата к телу и практически незаметна. Прыгая, летучий дракон расправляет кожистую складку, которая поддерживается «ложными ребрами» — кожными косточками, не связанными со скелетом тела. Ложные ребра для « крыльев » летучего дракона — все равно, что спицы для зонтика.
Шерстокрыл
В тех же тропических лесах живут шерстокрылы. Их принцип планирующего полета тот же, что у летяги. Правда, летательная перепонка гораздо шире — она поддерживается не только передними и задними лапами, но и хвостом животного. Шерстокрылы крупнее летяги. Длина тела больше 40 см, вес почти 2 кг. Несмотря на такую увесистость, шерстокрыл способен пролететь над землей 140 м. Зато по земле продвигается только ползком и очень медленно — перепонка мешает.
Принцип полета летяги, шерстокрыла и летучего дракона люди использовали в конструкции дельтаплана. В отличие от воздушного шара этот аппарат летит направленно — туда, куда толкнет его пилот, начиная движение с вершины холма. Но летит он не очень долго. Его полет — это просто длинное планирующее приземление. Для того чтобы во время полета менять высоту и направление по своему усмотрению, необходим мотор. Хотя иногда дельтапланеристы попадают в восходящие потоки и могут долго оставаться в воздухе.
У животных роль мотора выполняют мышцы. Самый совершенный полет в природе — это полет с помощью активно двигающихся крыльев. В настоящее время им владеют многие насекомые, птицы и летучие мыши. В середине мезозоя — 170 млн лет назад — «похвастаться» способностью к полету с помощью крыльев из крупных животных могли только птерозавры — летающие ящеры. Однако не они первыми на Земле покорили воздушную среду. Пионерами воздуха были насекомые.
Первые крылатые шестиногие появились на нашей планете примерно 350 млн лет назад — на 150 млн лет раньше, чем птерозавры. Нам как представителям позвоночных животных может это не понравиться, но придется признать: полет насекомых гораздо совершеннее, чем полет наших более близких родственников: птиц, летучих мышей и уж тем более — птерозавров. Насекомые — вот истинные короли воздуха!
Крылья насекомых устроены принципиально иначе, чем крылья всех позвоночных. Мы не будем подробно останавливаться здесь на их устройстве. Скажем только, что скорость движения крыла может доходить до 1000 колебаний в секунду. Отсюда и необыкновенная маневренность маленьких летунов в воздухе. Насекомые могут резко менять направление движения под любым углом, летать задним ходом с той же скоростью, что и передним. Скорость полета насекомого достигает 15 м в секунду.
Меганевра — гигантская стрекоза
Ну вот, скажете вы, если летающим ящерам далеко в полете до каких-то букашек, стоит ли тогда и читать про них? И уж тем более интересоваться ими как летательными аппаратами, если по сравнению с насекомыми они — просто неуклюжие этажерки? Так-то оно так, но есть одно «но». Насекомые, действительно, непревзойденные летуны, но лишь в рамках своей весовой категории. У самых крупных насекомых в истории Земли размах крыльев был не больше 80 см. Размах крыльев летающих ящеров достигал 12 м. Чувствуете разницу? Одно дело поднять в воздух существо весом самое большее в 100 г и совсем другое — стокилограммовую махину. Природе — как авиаконструктору — пришлось, по меньшей мере, дважды решать проблему освоения воздушной среды. Первый раз — мелкими и легкими животными, а второй — крупными и тяжелыми. Разные задачи потребовали принципиально разных решений.
Эти существа с помощью крыльев освоили воздушный океан
Что общего у птерозавра, птицы и летучей мыши? Все они «летают руками», то есть — с помощью передних конечностей — этим и отличаются от насекомых, крылья которых не имеют к конечностям никакого отношения, а формируются из покровных тканей. Интересно, что полет птиц, летучих мышей и летающих ящеров возник совершенно независимо. Но тем не менее у всех этих «летательных аппаратов» много общего, хотя есть и различия. Попробуем разобраться в их конструкциях.
Автор: Admin |
2012-03-02 |
|
![]() |
Модель транспортного марсианского корабля |
В космическом центре имени Маршалла сотрудниками НАСА создаётся космический корабль, основной миссией которого станет транспортирование людей на Марс. Детали и элементы, используемые при сооружении указанного корабля применяются из числа отработанных на Международной космической станции, некоторые элементы взяты из музея космической техники. Даже учитывая, что конструкция аппарата столь пестра, создатели уверяют, что будущий космический корабль будет способен доставить астронавтов на Марс.
Читать дальше>>
Посредством телескопа Кеплер учёные – астрофизики приступили к поиску сфер Дайсона и внеземной жизни
![]() |
Космический телескоп Кеплер ведет одновременно наблюдение сразу за более чем 100 000 звезд |
Фонд Джона Темплона выделил руководителю SETI Джеффу Марси гранд на общую сумму 200 тысяч долларов, на исследование космического пространства, с целью поиска сфер Дайсона. Пятьдесят лет назад учёный Фримен Дайсон выдвинул гипотезу о том, что существуют звёздные системы, окружённые колоссальной энергией, излучаемой центральным светилом. Воспользовавшись данной энергией можно удовлетворить все нужны любой цивилизации.
Читать дальше>>
Дело о бакалейщике и «газовых атаках»
Казалось, что два работника бакалейного отдела никак не могут поладить друг с другом. Можно было даже сказать, что между ними что-то витало в воздухе. По крайней мере, вот что сказал Джефф, когда достаточно разозлился, чтобы привлечь Марти к суду: «Марти постоянно привносил в атмосферу ощущение подавленности и стресса благодаря многоразовому выпуску в воздух газа в моем направлении».
По словам Джеффа, Марти ежедневно выполнял следующие действия: выискивал Джеффа в комнате и исподтишка целился в него. Джефф долгое время мирился с этим издевательством, но потом решил нанести ответный удар. Да, судам США приходилось и раньше сталкиваться с исками на сто тысяч долларов, связанными с «порчей воздуха», но ничего подобного они еще не встречали.
Джефф не смог найти адвоката, и в конце концов он решил представлять себя на суде сам. Однако когда настал день процесса, зал суда наполнился зрителями, а пресса «приготовилась к атаке». Истец испугался и не явился в суд.
Из-за этого происшествия судья отклонил иск, хотя, скорее всего, он бы так поступил и без помощи Джеффа. «Возможно, Марти вел себя, как мальчишка, — сказал судья, — но закона против этого еще не придумали».
Дело об исчезнувшей ауре
Опаль, профессиональная гадалка, должна была хотя бы краем глаза взглянуть на свое собственное будущее, прежде чем отправляться в больницу на обследование. Контрастное вещество, которое используется в ходе компьютерной томографии, «чуть не взорвало мою голову, — заявила Опаль, — и хуже того, в результате исследования я лишилась своих способностей экстрасенса».
До томографии Опаль могла «чувствовать ауру» вокруг людей, предсказывать будущее, и она постоянно проводила сеансы. Не раз она бывала медиумом, вешавшим от имени поэта Джона Милтона. Опаль не только консультировала частных клиентов, но и помогала полиции раскрывать преступления и находить пропавших людей. Однако после компьютерной томографии, заявила Опаль, каждый раз, когда она пыталась воспользоваться своими сверхъестественными способностями, ее поражала страшная головная боль. Наконец, ей не осталось ничего, как закрыть свой офис, распрощаться с карьерой и обратиться к адвокату.
Я сочувствую Вашей головной боли, но и только. Он приказал присяжным рассматривать дело исключительно учитывая боль, которую Опаль претерпела во время исследования и игнорировать утрату ее сверхъестественных способностей.
Присяжные присудили ей шестьсот тысяч долларов. С учетом штрафа за задержку (прошло целых Шлет после злополучной томографии) сумма возмещения достигла почти одного миллиона долларов. Однако карты легли не в пользу Опаль — терпение суды» испарилось, и он выбросил вердикт присяжных*.
—————————————————————————————————————-
Судья в праве это сделать. (Прим. пер.)
—————————————————————————————————————-
Дело о дантистке-евангелистке
Увидите по телевизору проповедника — можете переключить канал. Встретите его на улице — можете перейти на другую сторону. Но если проповедник подкараулил Вас в кресле дантиста — вас ждет настоящая пытка.
У Лорспы, зубного врача, было два смысла жизни — ее работа и ее религии, по проблема была в том, что она пыталась их совместить.
Каждый раз, когда к ней приходил пациент и широко открывал рот, наполненный инструментами, Лоретта пускалась в рассуждениях о своих религиозных представлениях.
Бернард, начальник Лоретты, не раз предупреждал ее о том, что такую практику следует прекратить. В конце концов, пациенты стали обходить Лоретту стороной, и Бернард лишился по крайней мере шести постоянных клиентов.
Ему ничего не оставалось делать, как уволить свою подчиненную, а когда она попыталась получить страховку по безработице, ее ждал отказ. Лоретта заявила, что она всего лишь пользовалась правом на свободу слова.
Однако молитвы Лоретты не были услышаны в суде. Судья заявил, что она вела себя далеко «не в интересах своего босса», а посему он имел полное право ее уволить, и добавил: «Дантист не должен доставлять пациенту еще больших неприятностей».
Дело о случае с секретаршей
В те времена, когда Стефани была секретарем и офисе врача, все работники обожали пончики. Однажды, наевшись их вдоволь, ОНа ВДРУг почувствовала тошноту.
Коллега поинтересовался, не хочет ли она прилечь или отправиться домой, но Стефани решила попробовать другой способ, который раньше всегда помогал ей освободить желудок. Она отправилась в комнату отдыхи и засунула себе в рот ручку, чтобы вызвать рвотный рефлекс.
Однако в тот день метод не сработал, поскольку ручку Стефани проглотила. Она вызвала скорую помощь, пережила две операции, и не могла выйти на работу в течение трех недель. Зато потом она потребовала компенсации и со своих коллег, и со страховой компании. Этого они проглотить не смогли.
«Да, происшествие случилось во время рабочего дня, но оно не было связано с самой работой!» — сказали защитники ответчиков Однако судья был иного мнения на этот счет и выдал постановление о выплате Стефани компенсации. Апелляционный же суд аннулировал решение на том основании, что «не полагается пытаться с помощью ручки вызвать рвотный рефлекс на рабочем месте, особенно если работаешь в офисе врача».
Автор: Admin |
2012-02-28 |
|