Необычный

Гиперреалистичные скульптуры Бруно Валпоса

Гиперреалистичные художественные произведения демонстрируют высшую степень мастерства художника, способного воссоздает реальность. Большинство из таких работ несут в себе множество подтекстов, однако современная публика, требующая лишь ‘хлеба и зрелищ’, успевает добраться только до яркой красочной обертки, под которой скрыты чувства, мысли, идеи и душевные переживания автора.

Сегодня я хотел бы познакомить Вас с творчеством Бруно Валпос (Bruno Walpoth), выдающегося (по мнению многих критиков) скульптора нашего времени, создающего невероятные скульптуры из дерева, которые просто невозможно отличить от живых людей.
Читать дальше>>

Автор: Admin | 2012-02-15 | Искусство

ЗЕМЛЯ — НЕИСЧЕРПАЕМЫЙ ИСТОЧНИК ЭКОЛОГИЧЕСКИ ЧИСТОЙ ЭНЕРГИИ!

На сайте slotautomat.info Вы найдете список и подробное описание самых востребованных на просторах веб-сети казино. Вы сможете сразу же начать играть на деньги, либо сначала открыть виртуальный счет. Бесплатные игровые автоматы позволят Вам улучшить свои навыки игры, после чего Вы сможете перейти к реальным ставкам и выиграть целое состояние.


Наша концепция открывает совершенно новые перспективы в плане энергетических ресурсов планеты. И прежде чем мы начнем обсуждать новое, давайте сначала хотя бы перечислим те источники энергии, которые давно используются и стали традиционными, — это природный газ, нефть, уголь и атомная энергия. Эксперты полагают, что нефти и газа хватит примерно на 50 лет, уголь и уран закончатся лет через двести-триста или около того. Но буквально все специалисты единодушно заявляют, что при традиционных путях развития энергетики человечество не успеет исчерпать эти ресурсы, поскольку экологическая катастрофа наступит раньше. Существуют также возобновляемые энергетические источники: энергия ветра и воды, внутреннее тепло планеты, солнечный свет. Однако они, по мнению специалистов, как сейчас, так и в будущем будут играть лишь вспомогательную роль в балансе энергопотребления. Таким образом, перспективы безрадостные, если не сказать — мрачные.

 

У некоторых физиков теплится надежда на «термояд», и вроде бы уже собираются строить «пилотный» реактор, хотя технические проблемы еще не решены полностью, но их обещают «дожать» во время «рытья котлована». Надо сказать, эти обещания («дожать проблему» в самое ближайшее время) даются уже несколько десятилетий. Вместе с тем совершенно очевидно, что необходимая «периферия» для такого реактора, если он заработает, будет очень сложна, объемна и будет потреблять много энергии. У экспертов даже возникает вопрос: а будет ли «положительный выход», т.е. будет ли энергия, получаемая от реактора, превышать энергетические затраты на его обслуживание? И в связи с этим еще вопрос: если все же «положительный выход» будет, то во что обойдется такая энергия? Нам все время говорят о неисчерпаемости энергии «термояда», и это прекрасно, но хотелось бы услышать и про ее стоимость.

 

Потенциальные ресурсы нашей планеты в отношении нефти и газа в рамках новой концепции представляются совершенно иными. По числу атомов углеводородное сырье — это, прежде всего водород. В природном газе — метане (СН4) — на один атом углерода приходится 4 атома водорода. В нефтяных производных отношение Н/С варьирует в интервале от 2 до 2,5. Таким образом, «вечная» (для геологов) проблема происхождения нефти и газа сводится к проблеме источника водорода. Со школьной скамьи меня занимал этот вопрос, и маститые профессора снисходительно объясняли, как в нефтематеринском бассейне при диагенезе и катагенезе осадков водород отжимался из растительных остатков, скапливался в зоне нефтеобразования, где шли процессы гидрогенизации и получались углеводороды. Мысленно прокручивая эту схему, я недоумевал: почему это водород должен собираться с обширной территории в какую-то локальную зону, двигаясь, по-сути, в горизонтальном направлении, какой такой «таинственный магнит» его туда стягивает, ведь все градиенты указывают ему путь наружу, по вертикали?

 

Кроме того, я никак не мог понять, каким образом нефть может сохраняться с девона или карбона? Кайнотипные осадки за гораздо меньший срок геологического времени литифицируются, становятся палеотипными. Нефть — это ведь такая нежная субстанция, она так сильно пахнет (парит легколетучими составляющими) и, скорее всего, является лакомым блюдом для многих бактерий. Кроме того, литостатическое давление — фактор постоянный, под действием которого нефть просто обязана уплотняться, отщеплять водород и превращаться в битум или асфальт. Тем более что вмещающие породы отнюдь не являются непреодолимым экраном для водорода, за геологическое время он способен просочиться где угодно. Наконец, нефть — она ведь жидкая и легче воды. На живой планете не может быть мест с абсолютным тектоническим покоем. Даже на древних платформах происходят медленные (эпейрогенические) тектонические движения. В таких условиях за геологическое время нефтяные месторождения наверняка вытекут наружу (как вода из неплотно закрытой грелки при беспокойном сне пациента). Про природный газ — решайте сами.

 

В общем, нефть не может лежать миллионы лет, она либо вытечет, либо быстро усохнет, либо еще быстрее ее съедят бактерии.

 

Таким образом, в рамках традиционных представлений (ядро — железное, все остальное — силикатное), и появление нефти, и ее сохранение на протяжении геологического (!) времени следовало бы считать каким-то невероятным чудом. Но чудес в природе не бывает, если мы правильно понимаем, что в ней происходит в действительности. И в свете наших построений никаких чудес нет.

 

Во-первых, автоматически решается проблема источника водорода. По нашей модели он истекает из глубоких недр планеты и все время стремится собраться в струи. Там, где эти струи попадают в обогащенные углеродом толщи, идут реакции гидрогенизации, формируются нефтеносные провинции и месторождения природного газа. В данной связи углерод может быть любой — и в виде растительных остатков в осадочных породах, и в виде графита в метаморфических сланцах кристаллического цоколя платформ. По этой причине не следует удивляться, если в районах, где отсутствуют «нефтематеринские бассейны», вдруг обнаруживаются месторождения с хорошим дебитом. Был бы приток водорода с глубины — основного химического элемента нефти и газа, остальное (углерод по пути следования, ловушка на выходе) приложится, не здесь, так где-нибудь рядом.

 

Во-вторых, нефть и газ, в нашем понимании, образуются только тогда, когда идет дегазация водорода из глубинных зон планеты. Судя по общей геодинамической ситуации, в настоящее время де -газация водорода происходит в широких масштабах. Соответственно, нефть и газ должны генерироваться прямо сейчас и будут генерироваться завтра (здесь имеется в виду шкала времени человеческой цивилизации). Таким образом, углеводородное сырье, которое мы пользуем, скорее всего, образовалось совсем недавно, и, скорее всего, его запасы продолжают пополняться и сегодня. Примечательно, что Бакинские нефтепромыслы, заложенные еще Нобелем, до сих пор продолжают давать нефть. А бывает и так: месторождение открыто, разбурено, подсчитанные запасы полностью выбраны, а нефть продолжает идти. В данной связи следовало бы проводить тампонирование скважин на отработанных месторождениях в надежде на их восстановление в недалеком будущем.

 

В свете сказанного представления экспертов о полном исчерпании запасов нефти и газа (якобы не возобновляемых) к середине нынешнего столетия представляются «детской страшилкой». Согласно нашей концепции, эти ресурсы, во-первых, возобновляются, а во-вторых, их должно быть гораздо больше, чем предполагалось, и в ближайшем будущем нам не грозит энергетический голод*.

 

————————————————————————————————————————————

* Дорогой читатель, концепция изложена достаточно полно, и если вы ее поняли и захотели использовать в прикладном плане, к примеру, для поисков нефти и газа, то вам не составит труда самому определить, «где и как» выявлять перспективные районы. Отмечу только, что в моих «know how» по этой проблеме важное место занимают исследования глубинного строения подозреваемых территорий (вплоть до астеносферы).

————————————————————————————————————————————

 

 

 

В настоящее время техника бурения развивается поразительными темпами. Если дела так пойдут и дальше, то скоро скважины глубиной по 10 — 12 км будут рядовым событием. Тогда можно будет подумать о глубинном бурении территорий, продуктивных на нефть и газ, с целью перехвата струй глубинного водорода до того, как они израсходуют себя на образование воды и реакции гидрогенизации. Но это будущее, а водород хотелось бы получить сегодня.

Автор: Admin | 2012-02-13 |

Изотопная геохимия. Часть II

Компания Elessar предлагает приобрести для оптимизации производственного процесса аппликатор этикеток АЭС-100 для автоматического нанесения этикеток на готовую продукцию. Получит более подробную информацию о данном аппликаторе, Вы сможете на сайте www.elescom.ru


Соответственно, селективное плавление клинопироксена, при сохранении граната в остатке, может обеспечить наблюдаемые значения величин ξNd в базальтах. Но это может быть применимо только к базальтам, расположенным в нижней правой части тренда мантийного порядка, где (согласно нашим расчетам) отрицательные значения ξNd свидетельствуют о глубинном характере магмагенерации и где гранат остается последней устойчивой фазой при плавлении. Согласно экспериментам это происходит при давлении порядка 25 кбар и выше, которое достигается на глубине примерно 80 км (при современной силе тяжести).

Таблица 6. Значения ξNd в сосуществующих клинопироксене и гранате.

Фазы,
%
Время выдержки минеральных фаз в закрытом состоянии (лет)
Срух, /Gnt 0,0 0,25109 1,0109 1,5109 2,0109 2,5•109
99
/1
+9  

+9

+6,6  

+61,1

+6,4 

+75,5

95
/5
+9  

+9

+8,3  

+14,8

+4,5  

+57,0

+3,8  

+69,7

90
/10
+9  

+9

+8,0  

+14,2

+5,3  

+30,0

+2,1  

+52,2

+0,8  

+69,7

80
/20
+9  

+9

+3,2  

+25,9

+0,5  

+34,8

-2,1  

+43,8

-4,4  

+53,3

66,6/

33,3

+9  

+9

-2,9  

+27,9

-6,7  

+34,7

-10,2  

+41,7

50/

50

+9  

+9

+6,4  

+10,9

-1,4  

+16,8

-6,4  

+21,1

-11,2  

+25,5

-75,9  

+30,2

25/

75

+9  

+9

-22,9  

+17,0

Примечание: в каждой ячейке верхняя цифра — клинопироксен, нижняя — гранат.

Теперь поговорим относительно верхней левой части мантийного порядка, которая занята океаническими базальтами*.

————————————————————————————————————-

* На западе Северной Америки широко проявлены базальты неоген-четвертичного возраста. Особенно обильные излияния наблюдаются в штате Айдахо, США. Вместе с тем Восточно-Тихоокеанское поднятие как бы «ныряет» под Северо-Американский континент и вызывает рифтогенное раздробление на обширной территории. По всей видимости, молодые базальты этой области вряд ли следует называть траппами. Скорее всего, они ближе к базальтам срединно-океанических хребтов, но, разумеется, отличаются от последних тем, что имели много возможностей к взаимодействию с веществом континентальной коры.

————————————————————————————————————-

Максимальные значения ξNd в океанических базальтах соответствуют современным величинам ξNd в рестите (см. рис. 42-б). Вместе с тем для океанических базальтов характерны крайне низкие отношения 87Sr/86Sr, что заставляет связывать их происхождение с крайне истощенным мантийным резервуаром.

При обсуждении проблемы образования океанов мы уже упоминали о процессе «силикатизации силицидов», в результате чего верхние части интерметаллических диапиров превращаются в новый силикатный субстрат. Это как бы ремонт и подновление древней литосферы, которая сильно растягивается и даже разрывается при разрастании океанов. Совершенно очевидно, что формирование этого нового силикатного субстрата происходило и происходит на относительно малой глубине и при гораздо меньшей силе тяжести (в связи с расширением планеты), т.е. при гораздо меньших давлениях в сопоставлении с условиями формирования древней литосферы в архее. И если в древней литосфере преобладающим минералом был высокобарический гранат, содержащий в виде твердых растворов миналы других минералов и способный вмещать большое количество примесей редких и рассеянных элементов, то при образовании нового силикатного субстрата формируется преимущественно плагиоклаз-пироксен-оливиновая минеральная ассоциация, которая, по сути дела, является стерильной в отношении примесей. Эта стерильность особенно контрастно выглядит в сопоставлении с интерметаллическими соединениями и сплавами, у которых нет ограничений на содержание разнообразных примесей, тогда как у нового силикатного субстрата эти ограничения обусловлены строгой стехиометрией его минеральных фаз, имеющих к тому же весьма малую изоморфную емкость кристаллических решеток.

Итак, при трансформации силицидов в силикаты в условиях малых глубин, должен происходить вынос избыточных химических элементов, как петрогенных (оказавшихся в сверхстехиометрических количествах), так и многих редких и рассеянных, по причине малой изоморфной емкости кристаллических решеток плагиоклаза, пироксенов и оливина. Таким образом, новый мантийный резервуар уже в процессе своего появления оказывается крайне истощенным и молодым (по времени выдержки изотопных систем в закрытом состоянии). Его появление связано с акселерацией расширения Земли, что предопределило заложение и разрастание океанов. В прошлом, в палеозое и глубже, такого резервуара (по качеству и количеству) быть не могло, и по этой причине в том же прошлом не должно было быть больших объемов толеитов, т.е. океанических базальтов со свойственными им петрохимическими и геохимическими особенностями.

На рис. 44 показано современное положение гиполита, коры и рестита в координатах Rb/Sr против 87Sr/86Sr. Такой способ изображения позволяет определять время обособления резервуара. Общая тенденция океанических базальтов к образованию горизонтального тренда свидетельствует о происхождении их мантийного резервуара в новейшее время, а характер расположения конкретных объектов говорит о катастрофической потере и рубидия, и радиогенного стронция при образовании этого резервуара.

В данной связи обращает на себя внимание необычный характер эволюции отношения 87Sr/86Sr в воде мирового океана (рис. 45). Необычность заключается в том, что с верхнеюрского времени в океаническую воду стал поступать радиогенный стронций в больших количествах. Если в палеозое и нижнем мезозое изотопное отношение 87Sr/86Sr в гидросфере все время уменьшалось и 150 млн. лет назад упало до значений, близких реститу (того времени), то в дальнейшем оно стало энергично прирастать и в настоящий момент достигло величины 0,7092.

В верхнем мезозое и кайнозое происходило энергичное разрастание океанов с их толеитовыми базальтами, которые имеют крайне низкую изотопную метку по стронцию. Взаимодействие гидросферы с этими базальтами могло лишь понижать величину 87Sr/86Sr в морской воде, но она возрастала. Можно было бы предположить, что в это время активизировался снос радиогенного стронция с континентов. Однако такое допущение выглядит весьма сомнительным на фоне великой меловой трансгрессии, когда преобладающая часть континентальной суши была покрыта мелководными морями и поэтому не подвергалась эрозии.


Рис. 44. Положение земных объектов в координатах современных отношений Rb/Sr против 87Sr/86Sr. Такое представление данных позволяет определять время появления обособленного резервуара (по наклону изохроны, на которую попадают его производные). На «геохроне» должны располагаться объекты, в которых Rb/Sr система не претерпела нарушений за всю историю Земли, к примеру гиполит. Изохрона с возрастом 2,5миллиарда лет отражает время формирования комплементарных резервуаров коры и рестита по гиполиту. Овал — базальты срединно-океанических хребтов («MORB»); черные точки — базальты океанических островов. Общая тенденция океанических базальтов к образованию горизонтального тренда и его положение свидетельствуют о резком нарушении Rb/Sr системы под океанами в современный этап развития планеты в связи с катастрофической потерей как рубидия, так и радиогенного стронция.


Рис. 45. Вариации отношения 87Sr/86Sr в морской воде с палеозоя до наших дней. Кривая построена в результате обобщения более тысячи определений (after Faure G., 1989).

Геохимики обратили внимание на это загадочное явление, и проведенные ими исследования показали, что ни снос с континентов, ни гидротермальная деятельность в океанах не способны обеспечить наблюдаемый рост отношения 87Sr/86Sr в океанической воде и что в океане должен быть еще источник радиогенного стронция, доселе неизвестный. В рамках наших построений данный источник связан с трансформацией силицидов в силикаты в условиях малых глубин, и этот процесс идет прежде всего под срединно-океаническими хребтами, где интерметаллические силициды приближены к поверхности планеты и подвергаются силикатизации. Следует отметить, что в интерметаллических силицидах (т.е. в металлосфере) отношение 87Sr/86Sr должно быть на уровне 0,712 в настоящее время, что соответствует среднему для планеты.

В осадках океанов отмечаются резко повышенные содержания многих элементов (K, U, Th, Zr, Hf, TR…), которыми обеднены океанические базальты. Весьма показательны карты распределения этих элементов в донных осадках, особенно тех, которые не образуют хорошо растворимых соединений и по этому не могут разноситься на сверхдальние расстояния. К примеру, лантан, гафний, цирконий, иттрий своими концентрационными аномалиями в донных осадках явно указывают на то, что их источник находится в пределах срединного хребта. Следовательно, там должен быть резервуар, обогащенный этими «редкостями». Но срединно-океанические хребты продуцируют и базальты «MORB» (Median Ocean Ridge Basalts), источником которых может быть только крайне обедненный резервуар. Легко видеть, что в рамках традиционных представлений данная ситуация представляется парадоксальной. В свете наших построений океанические осадки обязаны нести резко повышенные концентрации литофильных редких и рассеянных элементов, поскольку трансформация интерметаллических силицидов в силикаты в условиях малых глубин сопровождается выносом многих «лишних элементов». И совершенно закономерно, что последующее плавление этой вновь образованной силикатной оторочки (образованной на головных частях диапиров и представленной плагиоклаз-пироксен-оливиновой минеральной ассоциацией) приводит к появлению базальтов «MORB».

В разделе 8.6 («Рудное вещество океана») было показано, что срединно-океанические хребты и, особенно, их осевые зоны являются источником громадных количеств железа и марганца, накопленных в океанических осадках. Эти элементы (и сопутствующие Ni, Co, Mo, Pb, Zn, Cu, а иногда Ag и Au) мы тогда об -разно назвали «строительным мусором», вынесенным из зон «ремонта и подновления» древней литосферы, сильно утоненной при образовании океанов и кое-где даже порванной. Суть ремонта — трансформация интерметаллических силицидов в силикаты, и эта суть согласуется с нашей систематикой изотопной геохимии.

На рисунке 46а отражены бытующие представления об уран-свинцовой изотопной системе. В этих рамках положение океанических базальтов справа от геохроны свидетельствует, что они происходят из обогащенного мантийного источника. Вместе с тем, почему-то отсутствуют базальты из обедненного резервуара, которые непременно должны быть и располагаться слева от геохроны на этой же вторичной изохроне. Это явление геохимики назвали «свинцовым парадоксом», но они не могут объяснить эту загадку в свете традиционно сложившихся представлений (о хондритовой мантии). С другой стороны, если океанические базальты по U-Pb системе являются производными обогащенного резервуара, то почему в рамках Rb-Sr и Sm-Nd систем они происходят из крайне обедненного мантийного источника? Эта противоречивость вызывает подозрение в правомерности исходных посылок в изотопной геохимии, о чем мы говорили в начале данной главы.


Рис. 46-а. Изотопы свинца в некоторых земных образованиях в свете бытующих представлений о «хондритовой мантии». Поле с серой заливкой — океанические базальты (оконтурено точечным пунктиром). Крестики — галениты стратиформных месторождений ирудопроявлений. Кружок с лучиками — современные глубоководные осадки океана. Кривая согласованного накопления проведена при μ = 8,32. Отсутствие базальтов слева от геохроны вошло в литературу под термином «свинцовый парадокс».

Автор: Admin | 2012-02-05 |

ТРАППЫ. Часть I

Ищете хороший смартфон за разумные деньги? Тогда, не раздумывая, вбейте в поисковую строку Яндекса запрос: “ nokia n9 цена ” и посетите сайт freemarket.kiev.ua. Стильный дизайн этого телефона минималистичен до безобразия и лишен физических кнопок, а платформа MeeGo способна своим функционалом заткнуть за пояс даже Андроид.


ТРАППЫ

 

Излияния платобазальтов (или траппов) относятся к числу тех грандиозных процессов, которые в значительной мере определили внешний облик нашей планеты, и поэтому каждая концепция, претендующая на глобальный охват геологических событий, должна рассматривать причины этого явления.

 

Перечислим основные особенности траппов. Во-первых, в основной массе они проявлены в пределах древних платформ. Во-вторых, массовые излияния платобазальтов начались лишь с конца палеозоя, а в мезозое они проявились в громадных объемах. Это пермь-триасовые платобазальты Восточно-Сибирской платформы, сосредоточенные главным образом в Тунгусской сине-клизе, триас-юрские долериты и базальты синеклизы Кару на юге Африки, верхнетриасовые излияния в синеклизе Парана Южной Америки, юрские долериты острова Тасмания и Антарктиды (на Земле Виктории они прослежены на протяжении 1600 км) и, наконец, позднемеловые и палеогеновые платобазальты Декана в Индии.

 

В морфологическом выражении трапповая формация исключительно проста и представлена горизонтальными покровами и силами (пластообразными интрузивными залежами) мощностью в сотни метров. В синеклизе Кару площадь выходов пластообразных интрузивных долеритов во много раз превышает площадь, занятую лавами, и можно считать, что интрузивная составляющая траппов превалирует над излившейся. На территории распространения платобазальтов земная кора несколько прогнута, и излившиеся толщи лежат в пологих синеклизах.

 

В габбродолеритах интрузивных тел, как правило, отсутствуют гидроксилсодержащие минералы (биотит, роговая обманка) и очень слабо проявлена постмагматическая переработка, что, по всей вероятности, говорит об отсутствии воды в магме. Более того, в траппах обнаружены включения металлического алюминия, железа, муассанита (SiC) и др. «самородностей», которые свидетельствуют о кристаллизации расплавов в условиях резковосстановлен-ного флюида, что подтверждается присутствием водорода в составе газов, извлекаемых из пород и минералов трапповой формации.

 

По мнению специалистов, траппы, безусловно, выплавлялись из мантии. Вместе с тем в некоторых провинциях, к примеру в юрских долеритах Тасмании и Антарктиды, среднее первичное отношение S7Sr/S6Sr составляет 0,712. Кроме того, в сопоставлении с океаническими базальтами (толеитами), они обогащены калием, рубидием, ураном, торием, и, таким образом, по геохимическим признакам платобазальты скорее следовало бы считать производными континентальной коры, нежели мантии. Выход из этого парадокса исследователи видят в допущении ассимиляции больших объемов коры (до 30%), но при таких масштабах поглощения сиалического материала траппы уже не смогут оставаться «базитами», скорее уж это будут андезиты или андезито-базальты (которых, естественно, мы не видим в трапповой формации). Чтобы обойти этот «трудный момент» была придумана «селективная диффузия» для калия, урана и других элементов (малых, литофильных) из коры в магматические расплавы платобазальтов, и якобы в эту «диффузию» петрогенные элементы не вовлекались. Однако совершенно непонятно, по какой такой причине калий, уран и прочие малые элементы (типично коровые, с резко выраженными литофильными свойствами) вдруг резко поменяли бы свою геохимическую склонность концентрироваться именно в континентальной коре.

Наконец, излияния платобазальтов не сопровождаются сколько-нибудь заметной тектонической активизацией, и некоторые исследователи рассматривают траппы как пример автономного магматизма, не имеющего прямой связи с тектоникой. В данной связи возникает проблема с источником энергии, необходимой для таких громадных масштабов плавления, а также возникает вопрос: почему эта энергия выделилась именно под древними платформами, где мантия (судя по тепловому потоку) представляется наиболее холодной. Мне кажется очень странным, что эта проблема (с источником энергии) не обсуждается в литературе.

 

Рассмотрим причины появления траппов в рамках концепции «изначально гидридной Земли». Массовые излияния платобазальтов совпадают во времени с заложением и развитием современных океанов, т.е. с акселерацией расширения планеты. В соответствии с «фундаментальными экспериментами на клизматроне» (кавычки отражают самоиронию автора) по мере расширения планеты и увеличения мощности ее металлосферы происходило укрупнение структур растяжения при сокращении их числа. К началу мезозоя эта генерализация обусловила появление единой глобальной системы рифтогенеза, от которой начали разрастаться океаны. Таким образом, в мезозое расширение планеты было локализовано в осевых частях растущих океанов, тогда как за пределами этих зон увеличение радиуса Земли сказывалось в основном в уменьшении кривизны ее литосферы.

 

Судя по малым значениям теплового потока, литосферные блоки с древними платформами являются наиболее жесткими частями континентов. Астеносфера, в нашем представлении, обусловлена повышением пластичности металлов при растворении в них водорода, и выше мы уже много говорили об этом. Однако напомню, что положение астеносферы непосредственно под литосферой обусловлено малой скоростью диффузии водорода через силикаты и окислы (она на 6—7 порядков ниже в сравнении с диффузией через металлы). Поэтому силикатная литосфера играет роль экрана (запруды) для водорода, истекающего из внутренних сфер планеты. Таким образом, наличие астеносферы свидетельствует о скоплении водорода под литосферой, но отнюдь не является показателем высокой температуры и частичного плавления. Кстати сказать, длительное существование локальной зоны частичного плавления в металлосфере представляется невозможным из-за высокой теплопроводности металлов (отток тепла происходит слишком быстро).

 

При уменьшении кривизны жестких литосферных блоков в них появляются вполне определенные деформации (см. рис. 39). В нижних горизонтах под действием растягивающих напряжений должно происходить заложение вертикальных тектонически ослабленных зон, проникающих от подошвы литосферы до середины ее мощности. В верхних частях литосферы уменьшение кривизны стимулирует появление (уже в пределах коры) горизонтально ориентированных тектонически ослабленных зон по типу трещин отслаивания (см. рис. 39)*.

 

———————————————————————————————————

* В недрах Земли, на глубине десятков километров и более, не может быть разрывов сплошности с зиянием, поскольку там велико всестороннее сжатие. Однако приложение определенного вида напряжений (например, растягивающих) снимает долю нагрузки по одной из осей эллипсоида напряжений, и это тектонически ослабленное направление может быть использовано при всякого рода инъекциях.

———————————————————————————————————

 

В рамках предлагаемой концепции спокойный тектонический режим формирования трапповой формации не позволяет предполагать заложение экстремального теплового потока, обусловленного истечением из недр планеты водорода-теплоносителя (существование такого потока непременно вызвало бы образование тектоногена со всеми сопутствующими явлениями). Однако постоянное присутствие водорода в траппах показывает, что без него все-таки не обошлось. По нашей модели водород обязательно должен скапливаться под литосферой, где-то в больших, где-то в меньших количествах. И как было уже показано, даже незначительная примесь водорода в металлах в условиях высоких давлений (10 кбар и выше) может быть причиной резкого повышения пластичности.

 


Рис. 39. Характер деформаций изогнутой слоистой плиты при уменьшении ее кривизны. Черным цветом залиты разрывы сплошности. Приведенный характер деформаций будет иметь место, если сохраняется длина линии АВ.

 

Совершенно очевидно, что если существуют тектонически ослабленные зоны (где растягивающие напряжения снимают часть литостатической нагрузки) и если с этими зонами контактирует пластичное вещество, способное к вязкому течению, то оно, безусловно, будет заполнять эти тектонически ослабленные зоны. Любопытно отметить, что это скорее процесс всасывания пластичного вещества в тектонически ослабленные зоны, нежели нагнетание его туда под давлением. И процесс этот начинается с проникновения клиньев интерметаллических силицидов в силикатную литосферу.

Химические элементы в литосфере присутствуют в основном в окисленном виде (говоря про окислы, мы имеем в виду стехиометрию, а не минералогию). У многих из них энергия химической связи сравнительно невысока. К таковым, с невысокой энергией, относятся: железо, марганец, прочие переходные металлы (Co, Ni, Cu, Pb, Zn, Cd, Sn, Sb …), а также C, S, P и др. С другой стороны, большинство наиболее распространенных элементов в составе силицидов (Si, Mg, Al, Ca и щелочные металлы) имеют гораздо большую энергию химической связи с кислородом. Поэтому при контакте пород литосферы с силицидами начинаются химические реакции с перераспределением кислорода и выделением большого количества тепла. Расчеты показывают: при окислении четырех граммов интерметаллических силицидов выделяется достаточно тепла для получения 100 грамм силикатного расплава. В данной связи от каждого интерметаллического клина вздуваются зоны магмагенерации, приобретающие форму пламени свечи. Образованные расплавы интрудируют в кору, где заполняют горизонтальные тектонически ослабленные зоны («трещины отслаивания», см. рис. 39 и 40), а также изливаются на поверхность планеты.

 


Рис. 40. Модель образования траппов с позиций изначально гидридной Земли.

 

Таким образом, кислород может извлекаться из минералов, содержащих железо, марганец (Co, Ni, Cu, Pb, Zn, Cd, Sn, Sb.), а также из сульфатов, фосфатов, карбонатов, из минералов, содержащих гидроксильную воду, и т.д. Например: (CO3)2- + Si = (SiO3)2- + C + Q, где Q — тепло порядка 500 кДж/моль. Углерод, выделяющийся при этой реакции, может соединяться с кремнием с образованием муассанита — SiC. Эти реакции однозначно определяют резко восстановленный режим флюида в магматическом расплаве, отсутствие в нем воды и обязательное наличие водорода. Последний мог поступать в зону магмагенерации вместе с силицидами (он присутствует в них в растворенном виде), а также выделяться в результате реакций компонентов силицидов с гидроксилсодержащими минералами литосферы: ОН + Ме = МеО + Н, где Ме — компонент силицидов, энергия образования единичной связи которого с кислородом существенно больше энергии химической связи кислорода с водородом в гидроксиле.

При этом, согласно нашей схеме строения литосферной мантии, магмагенерация на первых этапах осуществлялась в области гиполита и затем постепенно поднималась в область рестита. Как вы помните, гиполит является резервуаром неистощенной мантии, и в нем, в сравнении с реститом, гораздо больше калия, урана и других литофильных элементов. В следующем разделе будет показано, что 200 миллионов лет назад первичное отношение изотопов стронция (87Sr/86Sr) в гиполите составляло 0,712, а в рестите примерно 0,706. В данной связи становятся понятными вариации изотопного отношения стронция в траппах и большая дисперсия в содержаниях калия, урана и прочих литофильных элементов. В рамках наших построений для этого не нужно привлекать ассимиляцию больших объемов сиалического материала.

Автор: Admin | 2012-02-04 |

Космический зонд НАСА передал на Землю первое видео обратной стороны Луны

Два космических аппарата, выполняющих миссию «Грааль» (GRAIL), в начале января достигли Луны, и на днях один из них передал на Землю видео с записью ‘темной стороны’ нашего естественного спутника, которая не видна с Земли.
Читать дальше>>

Автор: Admin | 2012-02-02 | Космос

ОБРАЗОВАНИЕ КОНТИНЕНТАЛЬНОЙ КОРЫ

Поздравляю, Вы наконец-то решили покинуть родительское гнездо и сняли однокомнатную квартиру и все, что вам осталось сделать, для того, чтобы стать независимым человеком, это заказать газель на сайте taxed.ru и перевезти все вещи в свою новую холостяцкую берлогу.


ОБРАЗОВАНИЕ КОНТИНЕНТАЛЬНОЙ КОРЫ

 

На протяжении многих лет группа исследователей методично собирала данные по содержанию калия и натрия по всем типам широко распространенных пород на всех континентах и по всему доступному интервалу геологического времени (Engel et al., 1974). Результаты этого кропотливого труда представлены на рис. 35, который, по сути дела, отражает динамику формирования континентальной коры во времени. Как мы видим, континентальная кора образовалась в нижнем протерозое, и в данной связи возникает два трудных вопроса (по сути, два парадокса). Первый связан с очевидным дефицитом калия в исходной мантии (согласно традиционной точке зрения). Вопрос второй: что удерживало калий и прочие литофильные элементы в мантии почти 2 миллиарда лет и почему они не вовлекались в корообразующие процессы вплоть до начала протерозоя? Обсудим причины появления этих парадоксов.

 


Рис. 35. Эволюция отношения K2O/Na2O в земной коре во времени: 1 метаморфические и осадочные породы; 2 изверженные породы.

 

 

Проблема дефицита калия

 

Проблема дефицита калия является следствием метеоритной модели Земли. В метеоритах мало калия, и если исходная мантия имела такой же состав, как и метеориты, то чтобы собрать калий, содержащийся в земной коре, необходимо было бы очистить от него мантию до глубины примерно в 1200 км. Однако на континентах имеют место мантийные интрузии и вулканиты с нормальным и даже высоким содержанием калия, внедрение которых происходило уже после формирования сиалической коры. Вместе с тем генерация этих интрузий заведомо происходила в верхней мантии, и в них часто отсутствуют признаки ассимиляции корового материала. В рамках традиционных представлений (ядро — железное, мантия — силикатная) накопилось много противоречий подобного рода. И чтобы понять, откуда они проистекают, давайте вернемся к исходным посылкам метеоритной модели Земли.

 

К концу XIX века ученое сообщество пришло к окончательному выводу, что камни, падающие с неба, являются планетарным веществом нашей Солнечной системы. Метеориты стали рассматривать как «строительный мусор», оставшийся после завершения грандиозного проекта формирования планет.

 

В начале ХХ века появилась наука сейсмология, и очень скоро сеть станций оказалась достаточной, чтобы обнаружить «сейсмическую тень» от ядра планеты. Таким образом, были подтверждены догадки математиков-механиков (основанные на определении момента инерции планеты) о существовании большого и плотного ядра в недрах Земли. На уровне знаний того времени ядро планеты, конечно же, могло быть только железным, поскольку железо — единственный тяжелый элемент, широко распространенный в природе. Более того, среди «строительного мусора» много железных метеоритов (как раз для ядра), а остальные силикатные (из них якобы и была составлена мантия). Среди силикатных метеоритов наибольшее распространение имеют хондриты, и поэтому в науках о Земле уже давно укрепилось понятие «хондритовой мантии».

 

В данной связи метеориты привлекли к себе особое внимание исследователей и были подвергнуты тщательному и всестороннему изучению. Вместе с тем и геологи за прошедшее столетие собрали громадный фактический материал и в настоящее время могут кое-что сказать о составе континентальной коры и подстилающей ее мантии.

 

Но если мантия планеты действительно изначально имела хондритовый состав, то из определенного объема хондритов мы легко должны были бы получить состав континентальной коры и состав обедненной мантии, т.е. мантийного рестита, который остается после того, как из хондритов были извлечены коровые элементы. На роль рестита можно определить породы типа дунит-гарцбургитов, которые хорошо изучены. Однако попытка свести баланс по этой схеме (хондриты = кора + мантийный рестит) обнаруживает в исходной (якобы) мантии дефицит одних элементов и явный избыток других. В таблице 3 эта ситуация отражена на малых и следовых элементах (калий для хондритов не является петрогенным элементом).

 

Таблица 3. Распределение элементов по группам при хондритовом составе мантии Земли.

Дефицитные 

Сбалансированные 

Избыточные 

Сверхизбыточные 

К, Rb, Cs,U, La, Ва, Sr…..

Ni, Со, Cr, Mn, V, Sc…….

Au,Pt, Pd,Os, Ir, Be, Ge…..

C,S,Se,Hg,….

 

Таким образом, калий попадает в большую группу дефицитных элементов, и если его все же можно набрать для континентальной коры, очистив преобладающий объем мантии, то хондритовые содержания некоторых других элементов (например, урана) оказываются недостаточными даже при полном их извлечении из всего объема планеты.

С другой стороны никак не меньшая проблема возникает в связи с избыточными элементами, которых в метеоритах в десятки, сотни и даже тысячи раз больше, чем в коре и подстилающей ее мантии. Сторонники изначально хондритовой мантии решают эту проблему допущением дифференциации, которая якобы обусловила захоронение этих элементов на недоступных для нас глуби -нах (в ядре Земли, например). В рамках традиционных представлений (ядро — железное) такое предположение может показаться оправданным для тяжелых сидерофильных элементов, таких как платина, палладий, осмий, иридий и др.

 

Однако среди избыточных есть легкий бериллий, у которого ярко выражены литофильные свойства. Его максимальные концентрации отмечаются в грейзенах, пегматитах, щелочных метасоматитах, которые, в свою очередь, проявляются только в блоках континентальной коры с хорошо развитым гранитным слоем. Не возможно предположить, что этот литофильный элемент в процессах дифференциации опускался вглубь планеты вместе с тяжелыми сидерофилами.

 

Кроме того, среди избыточных есть германий, который (в силу своей гомеофильности) относится к геохимическому классу рассеянных элементов. У этого элемента нет склонности концентрироваться в какой-либо петрогенетической формации. Так вот, в метеоритах его на порядок больше в сопоставлении с любой породой коры или мантии. Спрашивается: куда он подевался, если мантия изначально была хондритовая? *

 

———————————————————————————————————

* В мае 1975 года в Москве в Институте геохимии и аналитической химии прочитал лекцию А.Рингвуд, широко известный своими исследованиями по проблемам коры и мантии Земли. В своем сообщении этот очень авторитетный исследователь демонстрировал практически такую же таблицу с дефицитными и избыточными элементами. Однако он «постеснялся» показать в ней германий и бериллий среди избыточных элементов. Я же постеснялся спросить его о причине такой забывчивости, поскольку понимал, что вразумительного ответа (в рамках хондритовой мантии) не может быть в принципе.

———————————————————————————————————

 

Такой же гомеофильной, по сути дела, является ртуть, которой в метеоритах в 1000 раз больше в сопоставлении со всеми известными породами Земли. Если бы изначально мантия была хондритовой, то под слоем рестита (в основном оливинового) мы были бы вправе ожидать озера ртути с растворенным в ней золотом, которого в метеоритах в 100 раз больше.

 

Помните авантюрную эпопею инженера Петра Гарина, который с помощью гиперболоида пробился сквозь «оливиновый пояс» (мантийный рестит) к ртутным озерам с растворенным в них золотом. Интересно, кто подсказал эту дерзкую идею русскому писателю Алексею Толстому. Безусловно, это был человек, хорошо осведомленный в области геохимии, но он почему-то не рискнул опубликовать ее в научной печати. Может быть, сомневался в ее обоснованности, а возможно, его испугали вероятные последствия (мировая революция), так красочно представленные Толстым в его талантливом романе.

 


Рис. 35.1. Содержание элементов в поясе астероидов относительно их распространенности на Земле.

 

В свете наших построений выявленные группы элементов являются следствием различий в исходных составах Земли и метеоритного вещества (пояса астероидов). Эти различия были обусловлены магнитной сепарацией элементов по их потенциалам ионизации в процессе формирования протопланетного диска. Дорогой читатель, сравните таблицу 3 с рис. 35.1 и вам сразу станет понятным, почему метеориты не могут приниматься в качестве исходного вещества нашей планеты. Однако весь фактический материал по метеоритам не только не теряет своего значения, а, напротив, приобретает особую актуальность, поскольку его можно использовать для оценки исходного состава Земли, но с учетом магнитной сепарации элементов на протопланетной стадии.

 

Положение калия на общем тренде (см. рис. 35.1) позволяет утверждать, что его концентрация на Земле должна быть примерно на порядок выше, чем в метеоритах. Соответственно, при нашей оценке исходного (среднего) содержания калия на планете (К2О = 0,6%) исчезает проблема дефицита этого элемента. Для образования коры мощностью 37,5 км, составленной из 1 части гранита и 1,5 частей базальта, зона рестита (с содержанием К2О = 0,05%) в литосфере должна быть развита до глубины всего лишь 120 км. Согласно распространенности эклогитов и дунит-гарцбургитов в коллекциях глубинных нодулей из кимберлитовых трубок, состав рестита можно представить смесью из 0,5 части базальтов и 5 частей ультрабазитов. Отсюда следует, что состав первичной силикатно-окис-ной оболочки планеты (а равным образом и состав исходной неистощенной мантии) может быть задан смесью из 1 части гранита, 2 частей базальта и 5 частей ультрабазитов (дунит-гарцбургитов).

 

Для данного состава мы предлагаем использовать термин «гиполит» (в переводе с греческого — «глубинный камень»), который отражает глубинное положение этого недифференцированного субстрата под континентами в настоящее время (рис. 36). Кроме того, этот термин имеет отчетливую фонетическую импликацию со словом «гипотеза», что придает ему смысловой оттенок, соответствующий характеру наших рассуждений.

 

При расчете состава гиполита использованы кларки, по К.Турекьяну и К.Ведеполю, у которых ультрабазиты по главным компонентам близки к шпинелевым и пироповым перидотитам из кимберлитов. Кроме того, эти авторы выделили обогащенные кальцием граниты, весьма сходные по петрохимии со средним составом кристаллических пород сиаля (по Р.Дели). Результаты расчета обнаруживают большое сходство гиполита с верлитами (среднему, по Р.Дели), и, таким образом, его состав не является чем-то экзотическим.

 

SiO2

TiO2

M2O3

FeO 

MnO

MgO 

CaO 

Na2O

K2O

P2O5

Сумма

Гиполит 

48,2 

0,7 

8,0 

10,4 

0,2 

24,8 

5,5 

1,5 

0,6 

0,1 

100% 

Верлит 

46,5 

0,7 

5,9 

13,3 

0,3 

23,6 

7,7 

1,2 

0,6 

0,2 

100% 

                       


Рис. 36. Характер распределения калия в литосфере, основанный на оценке содержания этого элемента в свете магнитной сепарации.

 

Результаты пересчета гипотетического мантийного субстрата на нормативный минеральный состав (по методу П.Ниггли) приведены в таблице 4. Они показывают, что в условиях малых давлений гиполит может быть плагиоклазовым вебстерит-лерцолитом, тогда как его глубинная фация должна соответствовать гранат-оливиновым пироксенитам.

 

Таблица 4. Нормативный минеральный состав гиполита.

На малых глубинах, % 

На больших глубинах, % 

Оливин

41,1 [форстерит 74%)

Гранат **

20,7

Плагиоклаз

25,2 (Лабрадор, № 51)

Оливин

27,4 (форстерит 72%)

Энстатит

20,0

Омфацит***

23,0

Диопсид

9,6

Энстатит

28,8

Лейцит *

2,8

Ильменит

1,0

Апатит

0,3


 


 

* * Гроссуляр-альмандин – пироп (1:1:1)

*** Диопсид + жадеит (1:1), жадеит кали-натровый (1:3,5) 

* Или ортоклаз (в виде антипертита) 


 

 

Автор: Admin | 2012-02-02 |

ЭВОЛЮЦИЯ ГЕОЛОГИЧЕСКИХ ПРОЦЕССОВ ВО ВРЕМЕНИ. Часть I

Хотите сделать своему любимому человеку подарок, который останется с ним на всю жизнь, тогда без промедления вбивайте в поисковую строку Яндекса: “порода собак мастиф” и переходите на сайт n-l-d.ru, где Вы сможете получить наиболее полную информацию о собаках данной породы, проконсультироваться с ветеринаром и приобрести игрушки для щенка.


ЭВОЛЮЦИЯ ГЕОЛОГИЧЕСКИХ ПРОЦЕССОВ ВО ВРЕМЕНИ

 

За время своей жизни изначально гидридная Земля претерпела кардинальные и необратимые изменения. Объем гидридов сократился от преобладающего в новорожденной планете до объема внутреннего ядра на современном этапе. Резко увеличилась мощность металлосферы, и сейчас она составляет примерно 3/4 объема Земли. Сформировалась литосфера. Объем планеты увеличился почти в пять раз от изначального, а площадь ее поверхности приросла примерно в 3 раза. Разумеется, это отразилось на характере протекавших геологических процессов.

По данным абсолютной геохронологии, древнейшие породы имеют возраст порядка 3,8 миллиарда лет. Они обнажены на щитах докембрийских платформ, и в некоторых местах эти древнейшие породы сохранились с тех времен в неизмененном виде. По составу минералов и минеральных ассоциаций было установлено, что они образовались при давлениях порядка 8—10 килобар, в интервале температур от 650 до 800 0С, т.е. в условиях гранулитовой фации метаморфизма. Если полагать радиус Земли неизменным (и, соответственно, неизменной силу тяжести на поверхности), то получается, что эти древнейшие породы формировались на глубинах 30—35 км, где литостатическая нагрузка достигала необходимых (8—10 кбар) давлений. Спрашивается: куда подевалась толща архейских пород мощностью в 30—35 км со всех докембрийских платформ? Ни в архее, ни в протерозое нет структур, способных вместить такую массу осадков, т.е. возникает проблема захоронения громадного объема обломочного материала. В рамках традиционных представлений (о постоянстве объема Земли), это одна из неразрешимых загадок архея и давайте назовем ее «геобарическим парадоксом».

 

С другой стороны, если температура в 650 — 800 0С была на глубинах 30—35 км, то геотермический градиент для архея оказывается равным 22—23 0С/км. Однако данное значение градиента ниже современного для планеты. Это находится в вопиющем противоречии с характером распада радиоактивных элементов и масштабами генерации радиогенного тепла во времени. В архейскую эру радиогенного тепла выделялось в несколько раз больше, чем в кайнозое (за единицу времени, разумеется). Назовем эту несуразность «геотермическим парадоксом» архея.

 

Следует также отметить «безводный» режим метаморфизма, при котором сформировались гранулиты архея, преимущественно базитовый состав образований, отсутствие линейноориентированных поясов, повсеместность пластических деформаций, создающих хаос мелких структурных форм, при изучении которых создается устойчивое впечатление, что этот хаос явился следствием «мелкоячеистой конвекции».

 

Кроме того, гранулиты архея содержат очень мало калия. Это особенно бросается в глаза на фоне исключительно мощной нижнепротерозойской гранитизации, сопровождаемой практически повсеместным калиевым метасоматизмом, который проявился прежде всего в виде микроклинизации. Калиевый полевой шпат — микроклин — в обнажениях обычно имеет красный цвет, и это помогает ориентироваться при полевых наблюдениях на щитах. Когда в маршруте вы замечаете, что привычные серые оттенки пород вдруг сменились гораздо более богатой цветовой палитрой с преобладанием розового цвета (и если это не от граната), то почти наверняка, либо вы вышли из архея в протерозой, либо попали в зону, где архейские гранулиты претерпели калиевый метасоматизм протерозойского или более позднего возраста. Получается, что на протяжении почти двух миллиардов лет от рождения планеты вплоть до начала протерозоя что-то сдерживало вынос литофильного калия в верхние горизонты литосферы. Причина этого будет рассмотрена ниже в специальном разделе 11.2, а здесь мы обсудим остальные парадоксы и загадки, упомянутые в этой главе.

«Геобарический и геотермический парадоксы» автоматически исчезают при допущении расширения планеты. Согласно нашей оценке возможного расширения Земли (см. раздел 8.1), сила тяжести в архее была в 3—3,5 раза больше современной, и в этом случае давления порядка 10 кбар достигались на глубинах 8—10 км, что сразу снимает остроту с «проблемы захоронения». Кроме того, если температура в 650 — 800 0С достигалась уже на глубине 10 км, то получается, что архейский геотермический градиент был примерно в 2,5 раза выше современного, как и должно быть.

В разделе 4 мы уже говорили про образование литосферы на ранних этапах существования планеты в связи с выносом кислорода во внешнюю оболочку в процессе водородной продувки металлосферы. При этом литосфера нарастала только до определенной глубины. Это связано с трансформацией полупроводникового кремния в металлизированное состояние при давлении в 125 кбар. Растворимость водорода в решетке полупроводникового кремния очень мала, тогда как металлизированный кремний (по свойствам он подобен титану) способен растворять очень много водорода. Вместе с тем давно подмечено: чем выше растворимость водорода в решетке металла, тем эффективнее металл очищается от примеси кислорода. Таким образом, при давлениях, превышающих 125 кбар, кремний (в условиях продувки водородом) не может вступать в химическое взаимодействие с кислородом. Наоборот, происходит очищение металлизированного кремния от кислорода (при малой исходной концентрации кислорода, как в нашем случае). Но при меньших давлениях, когда кремний становится полупроводниковым и растворимость водорода в нем резко уменьшается, образование окисла идет весьма энергично с выделением большого количества энергии (тепла)*.

 

———————————————————————————————————

* Кроме того, образование окисла по менее плотной фазе оказывается гораздо более выигрышным с энергетической точки зрения. Это является дополнительным фактором, влияющим на преимущественное образование окиси кремния при давлениях меньших 125 кбар.

———————————————————————————————————

 

Тепло, выделявшееся при образовании силикатов (это сотни кДж на моль), обеспечивало постоянный подогрев силикатно-окисной оболочки, и она, на протяжении всего процесса своего формирования, вынуждена была пребывать в состоянии тепловой конвекции. Сила тяжести к концу архея была в 3 раза больше современной. Давление в 125 кбар (давление металлизации кремния) достигалось на глубине порядка 130 км, и таковой была мощность архейской литосферы. При тепловой конвекции горизонтальные плечи ячей, как правило, всегда меньше их вертикальной составляющей. Поэтому конвекция в архее могла быть только мелкоячеистой, и характерная размерность архейских структур должна быть в пределах десятков километров, не более.

 

Теперь относительно безводности архейских гранулитов. В сопоставлении с водородом все петрогенные элементы имеют гораздо большую энергию единичной связи с кислородом. Это значит, что вода в составе глубинного ювенильного флюида (преимущественно водородного) может появиться только после полного окисления петрогенных элементов в литосфере (полного окисления во всем объеме литосферы, поскольку она эффективно перемешивалась конвекцией). Таким образом, появление воды в составе глубинного флюида свидетельствует о завершении формирования литосферы. Под «завершением» в данном случае следует понимать, что к концу архея произошло полное окисление петрогенных элементов во внешней геосфере, мощностью порядка 130 км (при силе тяжести — 3 g). В дальнейшем, в связи с расширением планеты и уменьшением силы тяжести, граница фазового перехода кремния опускалась глубже, и, соответственно, мощность литосферы могла увеличиваться. Но это происходило уже не повсеместно, как в архее, а под поясами тектономагматической активности (в устьях тектоногенов).

 

Расчеты показывают: для полного окисления архейской литосферы в ней должно было собраться не менее 40% всего запаса кислорода планеты. С конца архея и до настоящего времени на доращивание литосферы было израсходовано еще примерно 27%, остальные 33% остаются в ядре планеты (напомню: исходная доля кислорода в теле планеты, в рамках нашей модели, составляет примерно 1/100 от ее массы). Эти цифры весьма приблизительны, однако они показывают, что к концу архея 40% массы изначально гидридной Земли были очищены от исходной примеси кислорода. Это было возможно только в том случае, если водород в очищаемом объеме присутствовал в виде протонного газа, растворенного в металле, что весьма способствует очищению кристаллических решеток металлов от кислорода. Таким образом, к началу протерозоя Земля израсходовала примерно 40% своих изначальных гидридных запасов. Ниже будет показано, что планеты земного типа живут и развиваются до тех пор, пока не исчерпают свои запасы гидридов, и с исчерпанием этих запасов они «умирают» (в геолого-тектоническом смысле). Соответственно, Земля к концу архея израсходовала 40% своих «жизненных сил», и в данной связи нас не должна удивлять длительность архейской эры, которая занимает не менее 1/3 истории планеты.

 

Полное окисление петрогенных элементов в объеме архейской литосферы — это очень важный момент в истории развития планеты. С этого времени выделение тепла от экзотермических реакций окисления резко сократилось. В результате резко уменьшился геотермический градиент, соответственно, в литосфере понизились температуры, прекратилась конвекция, и стали появляться ядра стабильности. Вместе с тем с появлением металлосферы и увеличением ее мощности водород при дегазации приобретал возможность разделяться на отдельные потоки, которые, однако, еще не были локализованы в узких зонах. По этой причине концентрация водорода в них была недостаточной для формирования полноценных зон заглатывания. Соответственно, не было и последующего горообразования, о чем свидетельствует отсутствие моласс в нижнем протерозое. Однако эти потоки обусловили стягивание тектономагматической активности в нижнепротерозойские «зеленокаменные» пояса, облекающие архейские ядра стабильности.

 

Появление воды в глубинном флюиде обусловило переход к амфиболитовой фации метаморфизма и вызвало исключительно мощную гранитизацию, в результате которой был сформирован гранитный слой земной коры. Специалисты по докембрию утверждают, что 80% гранитного слоя коры современных континентов было сформировано именно в нижнем протерозое. Гранитизация часто проявлялась в виде гранитогнейсовых куполов различных размеров, которые всплывали и сминали вмещающие породы в весьма прихотливые складки.

 

Формирование гранитного слоя сопровождалось накоплением в коре многих литофильных элементов. Соответственно под корой, в литосферной мантии выделился слой, обедненный этими элементами. С появлением полноценной континентальной коры и обедненного резервуара в мантии (синонимы — деплетированная мантия или рестит) открывается новая страница в характере магматизма планеты. Например, только в архее известны коматииты — это излияния базит-ультрабазитового состава, обогащенные многими литофильными элементами, но в том же архее нет базальтов, выплавляемых из деплетированной мантии. Базальты, обедненные литофильными элементами, проявляются в связи с образованием слоя рестита в мантии. Или еще пример, в архее нет аляскитовых гранитов, крупные плутоны этих пород появляются с рубежа ~ 1,7 млрд. лет как показатель существования зрелой континентальной коры. Примеры подобного рода можно перечислять долго.

 

Рубеж архея—протерозоя — это время кардинальных изменений условий на поверхности планеты. Согласно нашей концепции, в архее не было гидросферы и не могло быть, поскольку весь кислород, поступавший из недр в связи с водородной продувкой, расходовался на формирование силикатно-окисной литосферы*.

 

———————————————————————————————————

* Вместе с тем нельзя исключить, что в связи с выпадением кометного материала (строительного мусора, оставшегося после формирования внешних планет) вода попадала на Землю. Разумеется, при ударе она испарялась, но кто знает, возможно, в архее на поверхности вода могла конденсироваться и образовывать временные мелководные бассейны (лужи).

———————————————————————————————————

 

Однако с конца архея с появлением воды в составе глубинного флюида появляется и гидросфера, и для нижнего протерозоя осадконакопление в водной среде становится нормой.

 

Происходит также кардинальное изменение состава атмосферы: в архее это прежде всего — метан, аммиак, сероводород, угарный газ (CH4, NH3, H2S, CO); в протерозое — азот, кислород, водяной пар, углекислый газ (N2, O2, H2O, CO2).

 

В нижнем протерозое происходило постепенное увеличение концентрации кислорода в атмосфере, и в соответствии с этим увеличивалось его содержание в гидросфере в растворенном виде. Это приводило к переводу железа из закисного состояния (FeO) в окисное (Fe2O3). И поскольку окисное железо (в отличие от закисного) практически не растворяется в воде, то с увеличением парциального давления кислорода началась эпоха образования осадков, резко обогащенных железом, и в результате сформировались гигантские месторождения железистых кварцитов. Возраст этих месторождений лежит в интервале 2,8—2,2 миллиарда лет. Пик по запасам приходится на время 2,5—2,4 млрд. лет. По всей видимости, накопление железистых кварцитов не случайно совпадает во времени с эпохой формирования гранитного слоя коры. При гранитизации количество темноцветных минералов (содержащих железо) резко уменьшается по сравнению с тем, что было в кристаллических сланцах изначально (до гранитизации). Следовательно, формирование гранитного слоя коры сопровождалось выносом огромных количеств железа. И поскольку гра -нитный слой, в своем преобладающем объеме, сформировался в нижнем протерозое, то становится понятным, почему железистые кварциты не проявились столь же масштабно за пределами этого временного интервала.

С рубежа в 2 миллиарда лет в разрезах периодически стали появляться «красноцветы». Это свидетельствует о том, что парциальное давление кислорода в атмосфере временами достигало такого уровня, что вызывало полное окисление железа на поверхности планеты. Кислород на поверхность планеты доставляется в основном в виде воды и углекислоты в составе глубинных флюидов. Содержание CO2 во флюидах обычно варьирует в пределах 1—3%, концентрация в атмосфере в настоящее время составляет порядка 0,1% (вес.). Существует мнение, что кислород в атмосфере появился и поддерживается на определенном уровне в связи с жизнедеятельностью растений, которые усваивают углерод из углекислого газа (в результате фотосинтеза), а кислород выделяют в атмосферу. Вне всякого сомнения, этот процесс идет на планете. Однако эпохи угленакопления не совпадают во времени с эпохами образования красноцветов, и это заставляет предполагать существование других источников кислорода для пополнения атмосферы.

Автор: Admin | 2012-02-02 |

Зоны активизации и эпиплатформенного орогенеза

Зоны активизации и эпиплатформенного орогенеза

 

Давайте рассмотрим, что будет, если тектоноген окажется под континентом, в зоне, которую обошли стороной структуры растяжения, связанные с расширением планеты, и где астеносфера либо отсутствует, либо проявлена очень слабо. Из-за отсутствия астеносферы (или ее убогости) вместо широкого бассейна следует ожидать образования серии впадин типа грабенов, выполненных осадками моллассоидного облика.

 

Поскольку нет астеносферы, то нет и депрессионной воронки, соответственно, складчатость будет редуцирована и должны преобладать глыбовые движения. Если нет депрессионной воронки с ее течениями, то не будет и выхода тепла (от вязкопластичного трения) и, соответственно, не будет метаморфизма осадков и корового гранитоидного магматизма. Магматиты преимущественно должны быть представлены мантийными производными с повышенным содержанием калия (эта петрохимическая особенность будет обоснована ниже, в разделе 11). Все перечисленное целиком совпадает с характерными особенностями зон активизации, или «дива» (от китайского «дивацюй» — депрессия, впадина).

 

Вместе с тем геологи давно подметили, что в ряде случаев протяженные горные системы образуются вообще без предварительного цикла погружения и осадконакопления. За этим явлением укрепилось название «эпиплатформенный орогенез», а некоторые исследователи предлагали термин «акрогенез», чтобы подчеркнуть отличие складчатых поясов от эпиплатформенного орогенеза. Таковыми являются горы Урала и Тянь-Шаня, воздвигнутые в неоген-четвертичное время. Но в мезозое эти регионы не вовлекались в обширное погружение, хотя местами происходило формирование отдельных грабенов и прогибов, в которых осадки иногда смяты в складки.

 

Зоны эпиплатформенного орогенеза имеют повышенный тепловой поток по сравнению со щитами и платформами, но он значительно ниже, чем в альпийском складчатом поясе. Значит, тектоногены под данными зонами были «слабыми», что означает меньшую степень насыщения водородом, меньшее заглатывание в устье тектоногена, редуцированное развитие депрессионной воронки, а на поверхности — отдельные прогибы, слабая складчатость, малые объемы магматизма. Но откуда тогда такие масштабы горообразования? Чтобы понять это, необходимо снова вспомнить про расширение планеты и изменение характера истечения водорода во времени (рис. 15).

Согласно нашей оценке сила тяжести в палеозое была примерно в 2—2.5 раза больше современной, и давление порядка 100 кбар достигалось на глубине 150 км (сейчас такое давление достигается на глубине 300 км). Соответственно этому градиенту давлений в литосфере палеозоя гораздо большее распространение имели плотные минеральные фазы типа граната. Вместе с тем к началу мезозоя произошла канализация потоков водорода (и тепла) в узкие зоны и геотермические градиенты в литосфере за пределами этих зон резко снизились. Образно выражаясь, подошва литосферы перестала обдуваться водородом-теплоносителем, и она (литосфера) в своем преобладающем объеме как бы претерпела закалку. В результате кинетика распада плотных минеральных фаз (при падении давления) сошла на нет, и они получили возможность сохраняться в метастабильном состоянии длительное время. Кстати, не будь этой закалки (под давлением), мы сейчас не имели бы возможности восторгаться завораживающей красотой природного алмаза.

 

С конца палеозоя до неоген-четвертичного времени сила тяжести уменьшилась примерно в 2 раза, но в «закаленной» литосфере плотные минеральные фазы продолжали сохраняться в метастабильном состоянии. Однако в конце неогена, когда прекратилась дегазация водорода от ядра (связанная с альпийским циклом), тектоногены разуплотнились и выдали накопленное в них тепло и летучие в литосферу. Плотные фазы стали распадаться на менее плотные, т.е. с увеличением объема, и в результате даже над «убогими тектоногенами» выросли горы. Разумеется, данное явление должно проявляться прежде всего в пределах древних платформ, которые длительно находились в состоянии тектонического покоя. Тектонический покой территории означает, что литосфера под ней не подвергалась периодическому промыванию горячими флюидами (из тектоногенов), способными приводить минеральные ассоциации в равновесие с уменьшающимся давлением (повторю на всякий случай: давления в литосфере уменьшаются из-за уменьшения силы тяжести в связи с расширением планеты).

 

Отсюда вытекает металлогеническая специализация зон активизации, наложенных на древние платформы. Дело в том, что изоморфная емкость кристаллической решетки граната (особенно глубинного, высокобарического) в десятки раз больше в сравнении с оливином, пироксенами и плагиоклазом, на которые он распадается при снижении давления. Следовательно, при распаде плотных фаз происходит «сброс изоморфных примесей» и в их числе многих редких металлов, весьма полезных для нас. Важно отметить, что металлы изоморфных примесей присутствуют в кристаллической решетке минерала-хозяина в виде отдельных ионов и атомов, и в таком же виде высвобождаются, что весьма способствует их мобилизации горячими многокомпонентными флюидами (содержащими водород, углерод, серу, фосфор, азот, хлор, фтор и др. элементы в виде разнообразных и сложных соединений). А если еще учесть, что флюиды уже в тектоногене были обогащены многими металлами, то нас не должна удивлять богатая и разнообразная металлогения зон активизации в пределах древних платформ*.

 

—————————————————————————————————

* В условиях малых давлений (сиречь, глубин) мантийные породы литосферы представлены плагиоклаз-пироксен-оливиновой минеральной ассоциацией. При повышении давления в них появляется гранат, с увеличением глубины его количество возрастает, и при давлениях свыше 45 кбар гранат становится преобладающей минеральной фазой, а при 80—100 кбар минеральная ассоциация становится почти сплошь гранатовой, возможно, с примесью шпинели. В протерозое (в рифее), когда платформы вошли в режим тектонического покоя, сила тяжести на поверхности составляла 2,5g, и давление в 45 кбар достигалось на глубине примерно 50 км. К началу мезозоя, когда произошла «закалка» литосферы, сила тяжести на поверхности составляла ~ 2,0g, и давление в 45 кбар было на глубине примерно 65— 70 км. К концу неогена, при силе тяжести чуть больше 1,0g, давление в 45 кбар было на глубине 140 км. Следовательно, к концу неогена в литосфере, в интервале глубин от 70 до 140 км, сохранялся гранат в метастабильном состоянии, как преобладающая минеральная фаза. Горячие флюиды, поступившие в литосферу в связи с разуплотнением тектоногенов в неоген-четвертичное время, вызвали распад метастабильного граната, что сопровождалось увеличением объема, результатом чего было горообразование. И если в складчатых поясах орогенез обусловлен разуплотнением тектоногенов, то в областях эпи-платформенного аркогенеза (которые не вовлекались в активное погружение из-за «слабости» тектоногенов) вздымание рельефа связано с распадом метастабильного граната в литосфере от действия горячих флюидов. Напоминаю это к случаю «убогого тектоногена», с малой амплитудой уплотнения и разуплотнения, заложенного под областью, находившейся длительное время в состоянии тектонического покоя.


Хоти те сохранить молодость и привлекательность на долгие годы, тогда Вам просто необходимо посетить салон красоты Анри, чьи опытные специалисты помогут Вам в этом. Узнать о всех видах предлагаемых услуг данным салоном Вы сможете на сайте salon-anri.ru.

Автор: Admin | 2012-01-30 |

Рудное вещество океанов

Рудное вещество океанов

 

Первые находки рудных конкреций из глубоководных океанических впадин были сделаны в конце XIX века. Однако лишь к 60-м годам ХХ столетия стало известно, что океаны богаты многими металлами. Глубоководные илы резко обогащены многими рудными элементами, а в пелагических впадинах (ниже уровня карбонатной компенсации), где осадки не разбавляются карбонатным материалом, дно океанов выстилают железомарганцевые конкреции, в которых концентрации многих ценных металлов еще выше (табл. № 3).

 

Таблица № 3. Содержание элементов в осадках Тихого океана, % вес.

(по данным Скорняковой Н.С.).

 

Элементы 

Глинистые 

Глубоко-

Конкреции 

 

сланцы и 

водные 

 
 

мелководные 

илы 

 
 

глины 

   

Марганец 

0,085 

0,67 

21,1 

Железо 

4,83 

6,5 

12,0 

Кобальт 

0,0013

0,011 

0,31 

Никель 

0,0053 

0,030 

0,67 

Медь 

0,0048 

0,040 

0,43 

Цинк 

0,0095 

0,020 

0,71 

Молибден 

0,0001 

0,0046 

0,04 

Свинец 

0,002 

0,011 

0,10 

 

Во многих абиссальных впадинах конкреции образуют богатые рудные скопления, в которых запасы металлов (в расчете только на 1 метр мощности донных осадков) в десятки, сотни и тысячи раз превышают континентальные мировые ресурсы меди, никеля, кобальта, марганца. Обогащенные конкрециями прослои неоднократно обнаруживались в толще осадков при бурении дна океанов, что увеличивает (вероятно, еще на порядок) запасы металлов в них.

 

В 60-х гг. XX века на дне Красного моря выявлены впадины, заполненные горячими рудными илами. В наиболее крупной из них («Атлантис-2») придонный слой мощностью 200 м имеет температуру выше 56 0С, а концентрация солей достигает 27% (соленость Красного моря — 4%). Эти горячие илы очень ярко раскрашены и содержат более 50% H2O и NaCl. После отмывки солей и высушивания они превращаются в рудный концентрат, содержащий до 45% железа, до 25% марганца, до 10% цинка, до 6% свинца, а также около 3% меди, 300 г/т серебра, 5 г/т золота. В дальнейшем во многих местах срединно-океанических хребтов были обнаружены толщи Fe-Mn-карбонатных осадков с богатой примесью свинца, цинка, меди и других элементов. Наконец, следует сказать о богатых сульфидных полиметаллических рудах, генерируемых в настоящее время «черными курильщиками». И можно не сомневаться, что мы узнаем еще много нового о металлогении океанов.

 


Рис. 21. Распределение марганца в поверхностном слое осадков Тихого океана (по данным Н С. Скорняковой). Площади содержаниями (в % на бескарбонатное вещество): 1 0,2 0,5 и меньше; 20,5 1; 31 3; 43 5; 5более 5%. 6рифтовая зона.

 

Первоначально считали, что рудное вещество в донных осадках океанов целиком обусловлено сносом растворов и взвесей с континентов. Однако по мере выявления грандиозности этих рудных скоплений, которые к тому же явно тяготеют к зонам, наиболее удаленным от материков, их происхождение стали связывать с вулканическими эксгаляциями. Но геохимические исследования показали отсутствие генетической связи рудного вещества с вулканитами. Более того, карты ареалов рассеяния в донных осадках железа, марганца и многих малых элементов показывают, что источник этих металлов, к примеру, в Тихом океане находится не в центральной и северо-западной его частях, где наблюдается наиболее активный вулканизм, а в его юго-восточной зоне, для которой нехарактерна столь активная вулканическая деятельность. Судя по максимальным концентрациям, именно в срединной части Восточно-Тихоокеанского поднятия расположена «металлоносная» зона, протягивающаяся вдоль оси подводного хребта (рис. 21), которая поставляет гигантские количества металлов. В тоже время базальты из этой зоны не обнаруживают ни признаков глубокой гидротермальной проработки, ни повышенных концентраций металлов. Следовательно, источник рудного вещества не связан непосредственно с процессами магмагенерации, а имеет иную природу. И нужно четко осознавать, что в данном случае не может быть привлечен ни один из известных в настоящее время рудообразующих процессов. Чтобы объяснить появление этих неисчерпаемых запасов, требуется совершенно иной источник металлов, на многие порядки превышающий по масштабам все известные источники руд на континентах.

 

В рамках предлагаемой концепции этим источником является процесс перерождения интерметаллических силицидов в силикаты, идущий в недрах срединно-океанических хребтов. Интерметаллические соединения сохраняют значительную долю металлического типа связи, отсюда их способность к образованию разнообразных сплавов, а также твердых растворов внедрения или замещения. Поэтому силициды магния, железа и другие интерметаллы могут удерживать в решетках большие количества разнообразных металлов и неметаллов (фосфора, углерода, серы и др.). Силикаты, наоборот, не образуют сплавы с металлами, а их способность образовывать твердые растворы сильно ограничена. Жесткость кремний-кислородных решеток силикатов (обусловленная жесткостью связи Si-O) препятствует образованию структур внедрения, а катион -но-анионный характер кристаллического каркаса ограничивает возможность появления структур типа замещения для многих элементов из-за строения их внешней электронной оболочки. Поэтому изоморфная емкость кристаллических решеток силикатов весьма мала.

 

Из сказанного следует, что перерождение силицидов в силикаты должно сопровождаться выносом многих элементов из тех объемов, в которых это перерождение происходит, поскольку при этом многие элементы оказываются «лишними» при образовании кремний-кислородных решеток силикатов. Одни оказываются лишними, потому что не входят в число петрогенных, другие потому, что оказались в избытке, сверх количества, необходимого для стехиометрии силикатов, третьи (малые, редкие и рассеянные) из-за весьма малой изоморфной емкости кристаллических решеток образующихся силикатов (а это в основном оливин и пироксены). Подъем интерметаллических силицидов в океанах близко к поверхности планеты — явление глобальное, обусловленное расширением Земли. Соответственно, глобальным является процесс перестройки силицидов в силикаты в самом верхнем слое металлосферы под океанами. Поэтому нас не должна удивлять грандиозность запасов металлов, по сути, являющихся «строительным мусором», вынесенным на поверхность в процессе ремонта и достраивания силикатной оболочки, которая была сильно растянута и практически разорвана при образовании океанов (напоминаю, интерметаллические соединения и сплавы в океанах находятся на глубине 1,5—2 км от дна рифтовых долин).

 

Выше мы уже говорили про западные регионы США, под которые «ныряет» Восточно-Тихоокеанский хребет, вызывая рифтогенное раздробление на обширных территориях. Упоминали также про изолированные хребты «Большого бассейна», вздымание которых обусловлено трансформацией силицидов в силикаты в пределах водородных струй, выносящих кислород из глубинных зон интерметаллических диапиров. Следовательно, на этих территориях, в рамках наших представлений, должно быть кайнозойское полиметаллическое оруденение (Pb-Zn-Cu) с серебром и золотом, как тот самый «строительный мусор» при производстве силикатов по силицидам. И действительно, запад Соединенных Штатов является богатейшей провинцией с кайнозойскими месторождениями именно этого типа (Pb-Zn-Cu-Ag-Au). Более того, в этих гидротермально-метасоматических месторождениях повсеместно присутствуют железо и марганец. Среди жильных минералов преобладают сидерит (FeCO3) и мангансидерит ([Fe, Mn]CO3), а также родохрозит (MnCO3) и родонит (MnSiO3). Жильные минералы марганца часто представляют промышленный интерес как дополнительный рудный компонент, а в некоторых местах были обнаружены огромные метасоматические тела чистого родохрозита, которые являются важным источником марганца. Среди этих тел родохрозита, как правило, выявляются объемы, в которых марганец из карбонатов вытесняется железом.

 

Большинство исследователей, судя по литературе, хотели бы приписать этим месторождениям магматогенный генезис. Однако при описании рудных районов они вынуждены были признать отсутствие генетической связи оруденения с известными интрузивами и «опустить» источник металлов в глубокие горизонты коры, полагая, что там могут быть скрыты материнские интрузии. Наша модель не нуждается в гипотетических магматических очагах. В нашем понимании, интертеллурический флюид, первопричина которого — водородные струи, производит перестройку силицидов в силикаты, захватывает «строительный мусор» и отлагает его в виде месторождений в верхних горизонтах коры. Разумеется, сам флюид при этом эволюционирует от чисто водородного на больших глубинах в силицидах, до существенно водного с добавками СО2, H2S и других летучих компонентов, в коре, на выходе. «Водород» и на русском, и на иностранном — «hydrogen» означает «рождающий воду», что он с успехом делает, особенно если принять во внимание вытеснение кислорода водородными струями из диапиров интерметаллических силицидов. Это к тому, что гидротермально-метасоматический тип оруденения предполагает участие существенно водного флюида.

Автор: Admin | 2012-01-30 |

Идея расширяющейся Земли

Если высокий уровень экономического развития государства является для Вас важнейшим фактором при выборе будущего места жительства, тогда я не сомневаюсь в том, что эмиграция в Германию является для Вас насущным вопросом.

Узнать обо всех плюсах и минусах, которые Вам принесет германское гражданство, а так же о подводных камнях, с которыми может столкнуться русский человек, решивший переехать на постоянное место жительства в ФРГ, Вы узнаете на сайте www.e-migration.ru.


Идея расширяющейся Земли

 

Идея расширяющейся Земли в геологии имеет давнюю историю. На этой основе можно было бы решить спор фиксистов и мобилистов, который с переменным успехом длится многие десятилетия. Трудно спорить с фиксистами, когда они указывают, как раз за разом на протяжении геологического времени в одни и те же локальные зоны происходят инъекции одних и тех же интрузивных серий, часто весьма специфического состава и явно мантийного генезиса. Очевидно, это свидетельствует о том, что земная кора стоит на месте относительно зон магмагенерации в мантии. Но с другой стороны, как отрицать то, что Атлантический океан образовался в результате гигантского раздвига. Ведь если его убрать, то континенты (по границе материкового склона) сложатся без зазоров и геологические структуры составят единый, легко читаемый рисунок. Кто-то образно заметил, что точно также становится понятным смысл написанного при правильном расположении разорванных частей текста. На расширяющейся Земле континенты продолжают стоять на месте относительно своих глубинных корней (это кредо фиксистов), но по мере расширения планеты они расходятся, и между ними появляются и растут океанические впадины (это кредо мобилистов).

 

Однако гипотеза расширяющейся Земли не пользуется широкой поддержкой среди геологов, поскольку не было реального механизма этого расширения. Господствующая догма в науках о Земле («ядро — железное, мантия — силикатная») позволяет планете изменять свой объем лишь в пределах долей одного процента. В рамках наших построений планета обязана испытывать существенное расширение, и поэтому рассмотрим те возражения, которые высказывались в адрес расширяющейся Земли как геологической концепции.

 

— Некоторые исследователи полагают, что расширение Земли должно было бы обусловить образование архипелагов мелких островов на месте современных континентов в связи с растаскиванием последних в процессе «разбухания».

 

— Если океаны считать структурами растяжения, то почему расширение Земли приобрело особенно бурные темпы с конца палеозоя и в мезозое, когда были заложены Атлантический, Индийский и Северный Ледовитый океаны и резко увеличилась площадь Тихого?

 

— Существует также мнение, что расширение Земли не согласуется с интенсивным горизонтальным сжатием коры, которое установлено в массивах кристаллических пород, и оно свидетельствует скорее о режиме контракции планеты на современном этапе.

 

— Весьма распространено мнение, что на фоне расширения Земли нельзя объяснить складчатость, требующую горизонтальных сжимающих напряжений.

 

Обсудим сначала первых три возражения, проблема складчатости будет рассмотрена ниже в соответствующем разделе.

 

Образование архипелагов мелких островов можно было бы ожидать, если бы разбухание было непосредственно под корой или под литосферой. Однако в нашем случае фронт разуплотнения находится в ядре и постепенно перемещается вглубь планеты в связи с увеличением мощности металлосферы. Чтобы понять, каков будет при этом характер изменения структур растяжения, был поставлен простейший эксперимент: небольшой резиновый мячик покрывали парафиновой оболочкой и затем надували при помощи насоса. Тонкая парафиновая оболочка реагировала на расширение мячика («ядра») образованием густой сетки мелких трещин, достаточно равномерно распределенных по поверхности модели (глобуса). Но с увеличением мощности парафинового слоя (мантии) возникала все более грубая трещиноватость. Наконец, когда толщина оболочки достигала 1/6—1/5 радиуса модели, расширение вызывало образование единой системы трещин, раскалывающих парафиновый слой на несколько (шесть — восемь) крупных плиток, которые по конфигурации в ряде случаев оказывались удивительно схожими с очертаниями континентов.

 

Разумеется, к этим экспериментам нельзя относиться серьезно. Их нельзя подвести под требования теории подобия. Мой сосед, талантливый математик, принимавший живейшее участие в этих «кухонных опытах», «уважительно» называл их «экспериментами на клизматроне» (поначалу мы использовали детскую клизму). Вместе с тем совершенно очевидно, что с увеличением мощности металлосферы расширение земного шара также должно выражаться в постепенном укрупнении структур растяжения при одновременном уменьшении их числа, пока, наконец, все это не предстанет в виде единой системы рифтогенных зон растяжения, положившей начало современным океанам. Отсюда однозначный вывод: в прошлом, в палеозое и далее вглубь веков, океанов, подобных современным, не было и быть не могло. Этот вывод наверняка «поставит на дыбы» многих тектонистов, но в данном вопросе, по-моему, следует больше слушать литологов, которые относятся весьма скептически к существованию в прошлом океанов, аналогичных нынешним. И дело даже не в том, что в осадках «палеоокеанов» отсутствуют красные глины, обогащенные железом и марганцем, а в уникальной фациальной выдержанности осадков современных океанов на расстояниях в тысячи километров. Тогда как в «палеоокеанах» протяженность слоев однотипных (фациальновыдержанных) осадков ограничивается первыми десятками километров. Совершенно очевидно, что палеогеография бассейнов осадконакопления в прошлые эпохи была совершенно иной, соответственно, иной была и тектоника.

Таким образом, наши «эксперименты на клизматроне» позволяют понять, почему океанообразование тяготеет к поздним этапам развития планеты. Дорогой читатель, если вас шокирует оскорбительно-примитивный уровень решения (с помощью «клизматрона») столь важных проблем, то давайте будем считать это моей неуместной шуткой, отражающей мой эстетический и интеллектуальный уровень. В конце концов, все это можно представить более благопристойно, в виде мысленного эксперимента со сферой, моделирующей расширение, и относительно жесткой оболочкой на ней, способной реагировать на это расширение проявлением систем разрывных нарушений.

 

На темпы расширения должна также влиять различная степень уплотнения гидридов по радиусу планеты. Совершенно очевидно, что по мере роста давлений, т.е. при движении вглубь изначально гидридной Земли, уплотнение гидридов нарастало. Из этого автоматически следует, что по мере передвижения фронта разложения гидридов вглубь планеты масштабы разуплотнения должны были увеличиваться. С этим можно связать акселерацию процесса образования океанов во времени. Более детально модель образования океанов рассмотрена ниже.

 

Теперь обсудим, как в рамках изначально гидридной Земли объяснить интенсивное горизонтальное сжатие в массивах кристаллических пород, достигающее 1000 кг/см2 на глубине 1 км (по данным многочисленных измерений), что в несколько раз превышает литостатическую нагрузку.

 

Выше мы говорили о падении температуры в зоне разуплотнения и прилегающих сферах. Это может вызвать небольшую «термическую усадку» и обусловить явление контракции во внешних сферах сразу после этапа разуплотнения. С другой стороны, при расширении планеты уменьшается кривизна литосферных блоков. Это также может обусловить горизонтальное сжатие верхних горизонтов литосферы (рис. № 13), которое должно закономерно уменьшаться с глубиной. В реальных условиях трещиноватость и пористость, свойственные приповерхностному слою, обеспечат быструю релаксацию этих напряжений. Поэтому максимальное горизонтальное сжатие в кристаллических массивах должно наблюдаться не на поверхности Земли, а на некоторой глубине, где горное давление начинает закрывать системы пор и трещин.

 


Рис. 13. Характер распределения напряжений (показан стрелками) при уменьшении кривизны литосферных блоков.

 

Здесь открывается возможность проверки реальности расширения нашей планеты на современном этапе, так как если оно происходит сейчас, то связанное с ним избыточное горизонтальное сжатие после достижения максимума, на глубине примерно 1 км, ниже должно вновь пойти на убыль. Если такое явление действительно имеет место, то трудно представить иное объяснение, кроме расширения планеты, которое уменьшает кривизну литосферных блоков, в результате чего и появляется горизонтальное сжатие. До глубины в 2,5—3 км боковое давление, связанное с передачей упругих напряжений от вертикальной литостатической нагрузки, можно игнорировать, поскольку оно на этих глубинах на порядок меньше избыточного горизонтального сжатия.

 

При увеличении объема планеты в 5 раз ее радиус увеличивается в 1,71 раза, а поверхность примерно в 3 раза. В будущем, когда Земля окончательно вырастет, она будет сравнительно мало отличаться от своего современного состояния. Ее радиус будет 6700 км (сейчас — 6371 км), длина окружности на экваторе прирастет на 2000 км и составит 42076 км, ускорение свободного падения уменьшится примерно на 10%.

Однако в прошлом при меньшем радиусе сила тяжести на планете была существенно выше, а ее вращение вокруг собственной оси было гораздо более быстрым (сутки были короче, а число дней в году больше). Расчеты показывают, что изначально наша планета вращалась в 3,5 раза быстрее, и в сутках было примерно 7 часов, а сила тяжести на поверхности была в 3,5 раза больше современной (3,5 g). В принципе это можно было бы, подтвердить (или опровергнуть) на данных по литологии и палеонтологии.

К примеру, угол естественного откоса в сыпучих грунтах зависит от характера частиц этих грунтов (их формы, размеров, плотности, шероховатости поверхности, влажности и чего-то там еще), а также от силы тяжести. Чем выше сила тяжести, тем положе естественный откос. Японские геологи провели массовые замеры углов естественного откоса в мезозойских песчаниках эолового происхождения. Вывод гласил: в нижнем мелу сила тяжести была в 2 раза выше современной.

 

Канадский палеонтолог Хант ухитрился выделить годичный ритм в строматолитах верхнего протерозоя и подсчитать количество дней в году того времени (в строматолитах в виде очень тонкой слоистости фиксируется суточный цикл жизнедеятельности организма). Дней в году оказалось в 3 раза больше, чем сейчас, соответственно, планета в верхнем протерозое вращалась вокруг своей оси в три раза быстрее.

 

Не нужно быть провидцем, чтобы понять, какое «признание» получили эти работы и их авторы, когда все вокруг полагали, что такого быть не может, потому что не может быть никогда, ибо Земля с «железным ядром и силикатной мантией» не способна сколь либо заметно менять свой объем. Интересно, сколько ярких пионерских работ загубила на корню эта «фундаментальная» догма в науках о Земле и сколько еще загубит, покуда научное сообщество не освободится от ее тиранического господства. И я надеюсь, что исследования в этом направлении будут расширяться.

 

Мне представляется, что если литологи включат изменение гравитации в арсенал причин, определяющих эволюцию характера седиментации во времени, то сразу многое станет понятным. К примеру, возьмем турбидиты (осадки, выпадающие из суспензионных или мутьевых потоков), для которых характерна градационная (отсортированная) слоистость. Совершенно очевидно, что если в прошлом сила тяжести была больше, то эта самая «отсортированность» осадка по фракциям (по размерности частиц) должна быть четче (вспомните, центрифугирование взвесей применяется для разделения их на фракции). Соответственно, должны быть более четкими границы между слоями. Должна уменьшаться мощность ритма (песчаник-алевролит-аргиллит), поскольку при большей силе тяжести чаще происходил срыв осадка со склона и муть поставлялась чаще, но меньшими порциями. Должно также сокращаться расстояние от зоны зарождения мутьевого потока до места отложения взвеси в виде осадка. Короче говоря, в современное время (когда сила тяготения в два с лишним раза меньше, чем в юре) исключено образование такого отсортированного флиша, как на горе «Шелудивая» (свита «Таврическая», Т3 — J1, Крым, полигон геологической практики). Я не знаю, как выглядят современные турбидиты (догадываюсь только, что они не литифицированы). Моя узкая специализация — петрология гранитоидных формаций фанерозоя, и у меня не было никакой нужды интересоваться такими тонкостями в литологии современного осадконакопления. Однако если современные турбидиты действительно отличаются от классического флиша юры (не только степенью окаменения), то в рамках предлагаемой концепции причину этого прежде всего следует связывать с уменьшением силы тяготения на поверхности планеты.

 

Скелет живого организма предназначен противостоять силе гравитации. Разумеется, речь идет о сухопутных организмах, обитатели водной среды при любой гравитации будут в состоянии невесомости. Пермская сухопутная рептилия — иностранцевия имела массу примерно равную массе современного медведя гризли. Но если поставить рядом скелеты этих двух животных, то эффект будет весьма впечатляющий. Скелет иностранцевии отличается такой массивностью, как будто природа явно перебрала с запасом прочности. Но природа ничего не делает сверх необходимости, и, скорее всего, это мы неправильно оцениваем условия на планете того времени. Я вижу в этом следствие большей гравитации.

 

Палеонтологи давно приметили, что скелеты у длительно существующих видов со временем становятся менее массивными и более ажурными. Они дали этому явлению термин — «грацильность» (от слова «грация»), намекая на стремление природы к изяществу и совершенству. Хороший намек, но в рамках нашей концепции в этом скорее просматривается целесообразность в связи с уменьшением силы тяготения. Господа палеонтологи, подумайте над этим, пожалуйста. И еще, я был бы очень признателен, если бы кто-нибудь из вашего сообщества сопоставил скелет варана с о-ва Комодо с пермской или юрской сухопутной рептилией сходной формы и размеров.

 

В некоторых приключенческих фильмах диплодоки, тиранозавры и другие гигантские монстры резво бегают по суше, чиня разбой и разрушения. У неискушенного зрителя может возникнуть впечатление, что и в свое мезозойское время они также населяли долы и веси и резво путешествовали по ним. Однако, на самом деле, тогда в своем мезозое они обитали в водной среде лагун и прочих мелководий, т.е. занимали очень узкую экологическую нишу, что всегда опасно для существования. Длительные прогулки по суше для них были невозможны из-за высокой силы тяжести.

Автор: Admin | 2012-01-26 |
31 страница из 46« Первая...1020...272829303132333435...40...Последняя »

GIF
Видео
Видео
Все обо всем
Забавно!
Иллюстрированные факты
Искусство
Истории
Все размещенные на сайте материалы без указания первоисточника являются авторскими. Любая перепечатка информации с данного сайта должна сопровождаться ссылкой, ведущей на www.unnatural.ru.