Необычный

Полтергейст за стеной

Ваш возлюбленный не обращает на Вас совершенно никакого внимания? Тогда Вам определенно точно стоит обратиться к любовной магии, ведь любовный приворот способен пробудить чувства в любом, даже самом безразличном к Вам, человеке.

Всех заинтересовавшихся прошу в обязательном порядке посетить сайт www.blackshaman.ru.



Институт фундаментальных исследований сегодня

 

Институт фундаментальных исследований (ныне Институт перспективных исследований, анг. Institute for Advanced Study) в Принстоне в разное время давал приют многим знаменитым ученым — и, разумеется, Эйнштейну в том числе.

 

За институтом закрепилась репутация чего-то рафинированного и бесконечно далекого от жизни: тут не было студентов, а общение со всем остальным научным миром сводилось к минимуму.

 


После открытия института его преподавательский состав включал в основном беженцев из Европы, спасавшихся от нацистского деспотизма. В их числе были: Альберт Эйнштейн, Курт Гёдель и Джон фон Нейман. На фотографии одна из лекций Эйнштейна в Институте фундаментальных исследований

 

Вот зарисовка из жизни института; действующие лица — молодой физик Эндрю Ленард и Чжэньнин (Фрэнк) Янг, знаменитый теоретик, который разделил Нобелевскую премию по физике 1957 года со своим соотечественником Цзундао Ли, профессором Колумбийского университета в Нью-Йорке. (Когда стали известны имена лауреатов, хозяин маленького китайского ресторана поблизости, куда они приходили на ланч каждую неделю, вывесил табличку со словами «Обедайте здесь и получите Нобелевскую премию».) Как правило, младшие сотрудники института редко общались со знаменитостями, которым полагалось их вдохновлять.

 


В 1957 году Чжэньнин Янг получил Нобелевскую премию за опровержение «закона сохранения чётности», одного из фундаментальных законов сохранения

 

К счастью для Эндрю Ленарда, так случилось, что как-то в 1966 году к нему в дверь постучался Янг, которому захотелось поговорить. Янг собирался узнать, над чем Ленард работает, и тот рассказал ему о проблеме устойчивости вещества (это довольно сложный вопрос о том, почему вещество, составленное из атомов, которые сами почти целиком состоят из пустоты между разделенными громадными расстояниями элементарными частицами, осязаемо и стабильно). Янг заинтересовался. «Очень любопытно. Это либо банальная, либо весьма сложная задача», — сказал он и отправился в свой кабинет (который находился как раз за следующей дверью). Скоро Ленард услышал стук за стеной. Он сообразил, что это Янг пишет мелом у себя на доске. Шум не прекращался — тук, тук, тук, — мел стучал себе по доске, и Ленард перестал обращать на него внимание. Но вдруг стук неожиданно оборвался, как если бы с несчастным ученым случился сердечный приступ. Воцарилась мертвая тишина.

 

Спустя несколько минут Янг просунул голову в двери кабинета Ленарда. «Это непросто», — произнес он и исчез.

Реакция Янга напоминает реплику математика сэра Гарольда Джеффриса, оброненную им, когда он был консультантом Имперского химического треста. В один из его приездов физики компании обрисовали ему задачу, с которой, как они надеялись, он мог бы помочь им разобраться. Джеффрис терпеливо слушал, не произнося ни слова. Когда все уже было сказано, установилась гробовая тишина, и затем сэр Гарольд произнес: «Как славно, что это ваша проблема, а не моя» — и быстро удалился.

Автор: Admin | 2012-11-10 |

Дальтонизм Дальтона

Джон Дальтон (1766-1844) — уроженец Манчестера, который в последние годы XVIII столетия нашел рациональное объяснение атомной теории строения вещества. Его выводы были основаны на кропотливых опытах по комбинированию весов простых веществ: он заключил, что атомы любого элемента не различаются между собой, а с атомами других элементов сочетаются в жестко заданных пропорциях.

 

Дальтон был квакером. Наверняка он шокировал скромно одетых единоверцев своим видом, когда появлялся на улице в пурпурной докторской мантии. Дело в том, что Дальтон страдал цветовой слепотой. Своим названием ему обязаны сама болезнь (дальтонизм) и те, кто ею больны (дальтоники). Вот как он обнаружил свой недостаток и его наследственную природу:

 

 

Я всегда придерживался мнения — хотя, может, и нечасто им делился, — что некоторые цвета названы необдуманно. Термин «розовый» (pink) в отношении гвоздики (гвоздика по-английски тоже pink) казался довольно разумным, но когда «розовый» заменяли «красным», я считал это в высшей степени неверным. По моим понятиям, это должен был быть синий, так как розовый и синий кажутся мне очень близкими (розовый, о котором тут речь, должен быть скорее лиловым — Дальтон, судя по всему, был нечувствителен к красной составляющей цвета); тогда как между красным и розовым вряд ли есть хоть какая-то связь.

 


Этот цветок называется Geranium zonale и именно он убедил Дальтона в том, что тот дальтоник

 

В ходе занятий науками меня особенно увлекла оптика, и я обстоятельно изучил теорию света и цвета прежде, чем узнал о каких-либо странностях моего зрения. Я, однако, уделял не слишком много внимания различению цветов на практике, в чем, как мне казалось, виновата запутанность их номенклатуры. Начиная с 1790 года занятия ботаникой вынудили меня относиться к цветам внимательней. С названиями «белый», «желтый» и «зеленый» я освоился быстро. «Голубой», «фиолетовый», «розовый» и «малиновый» оказались хуже различимы; в соответствии с моей догадкой все они соответствовали «синему». Часто я всерьез спрашивал кого-нибудь, розовый цветок перед нами или голубой, но обычно все думали, что я хочу над ними пошутить. Несмотря на это, меня так и не смогли убедить в необычности моего зрения, пока осенью 1792-го я случайно не увидел цветок Geranium zonale при свете свечи. Цветок был розовым, но мне он казался почти что небесно-голубым; будучи освещен свечой, он, однако, удивительно переменился — полностью лишившись всех оттенков синего, он стал тем, что я называю «красным» — этот цвет с синим решительно контрастирует. (По существу, это был черный или серый.) Не сомневаясь теперь, что смена цвета проявится одинаково для всех, я попросил нескольких своих друзей пронаблюдать за этим явлением со мной; больше всего меня удивило, когда все — за исключением брата, который увидел то же, что и я, — согласились, что цвет качественно не изменился по сравнению с дневным оттенком. Это наблюдение отчетливо показало, что мое зрение отлично от зрения всех остальных.

 

Истории Дальтоновой цветовой слепоты оставалось полтора века ждать своей разгадки. Гипотеза самого Дальтона состояла в том, что он видит мир сквозь синий фильтр — то есть его стекловидное тело (желеобразное вещество внутри глазного яблока) должно наверняка быть синим. Поэтому ученый распорядился, чтобы после его смерти его ассистент, Джозеф Рэнсом, извлек у трупа глаза и проверил догадку. Рэнсом так и поступил: он вскрыл одно из глазных яблок умершего учителя и вылил содержимое на смотровое стекло, однако стекловидное тело оказалось «совершенно прозрачным». Затем он проделал отверстие во втором глазу и посмотрел сквозь него — убедиться, что красный и зеленый кажутся одним и тем же серым. Результат снова был отрицательным, и тогда Рэнсом заключил, что проблема спрятана в оптическом нерве, соединяющем сетчатку с мозгом.

 


Глазные яблоки Дальтона является одним из главных экспонатов Кембриджского музея

 

Изуродованные глазные яблоки Дальтона поместили в склянку с веществом-консервантом и оставили на хранение Манчестерскому литературно-философскому обществу. Они так и лежали там, пока в 1995 Г°ДУ группа физиологов из Кембриджа не попросила у Общества разрешения взять оттуда маленький фрагмент сетчатки, чтобы выделить из него ДНК и проанализировать гены (к тому моменту уже подробно описанные) колбочек сетчатки, ответственных за цветное зрение. (Пигмент каждого типа колбочек чувствителен к своим длинам волн — это соответствует трехкомпонентной теории цветовосприятия, выдвинутой в конце XVIII века доктором Томасом Юнгом.) Как показал анализ, Дальтон был «дейтанопом» (то есть его изъян был связан с пигментом, отвечающим за средние длины волн), а не «протанопом» с проблемами в коротковолновой области, каким его считал Томас Юнг. Знай Дальтон, что через много лет после его смерти ученые получат такой результат, он был бы безусловно доволен.

Автор: Admin | 2012-11-03 |

Пифагор, или «как сохранить целостность теории»

Давно ищете, где приобрести по низкой цене надежный труборез для труб в Москве? Тогда я настоятельно рекомендую Вам обратить ваше пристальное внимание на высококачественную продукцию компании «Констар».

За более полной информацией обращайтесь по адресу www.konstar.ru.



Величайший математик своего времени, чья летопись жизни является замысловатым переплетением легенд, мифов и преданий

 

Пифагор из Самоса (умер в 510 году до н.э.), известный каждому школьнику своим квадратом гипотенузы, основал великую математическую школу, которая занималась как практическими, так и философскими вопросами. Пифагорейское братство состояло из 600 энтузиастов, отрекшихся от мирских помыслов и посвятивших себя целиком наукам. У историков принято считать Пифагора смутной фигурой с неясной биографией (к примеру, некоторые полагают, что теорема Пифагора, скорее всего, принадлежит не легендарному Пифагору, а другому человеку с тем же именем). Тем не менее философ Порфирий спустя примерно 8оо лет после смерти ученого смог довольно подробно изложить его биографию. Многовековой славой Пифагор обязан не только математике, но и открытию законов музыки — численного соотношения интервалов гармонического ряда. Согласно легенде и по свидетельству Ямвлиха, одного из последователей Порфирия, дело было так.

 


А таким Пифагора изобразил на своей фреске Рафаэль Санти

 

Проходя мимо кузницы, Пифагор услышал звук молотов, которыми били по куску железа на наковальне — и все они, кроме одного, порождали гармоничные созвучия. Однако же он распознал в этих созвучиях октаву — если брать каждый пятый и каждый четвертый. Он осознал, что звук между четвертым и пятым (неполный четвертый, как он назовет его позже) сам является диссонансом, и все же дополняет собой величайшее созвучие из возможных.

 


Именно такой однострунный монохорд использовал Пифагор в своем опыте

 

Пифагор пошел дальше — он заметил, что интервалы между нотами, происходящими от ударов разных молотов, образуют пропорцию с тоном этих нот. Как предполагают, затем он принялся подвешивать тяжести на струнах из кишок и открыл, что то же отношение сохраняется между весом груза (или натяжением струны) и нотой, которую струна издает. А потом при помощи монохорда (это примитивный инструмент с одной струной) Пифагор продемонстрировал отношение между длиной струны и музыкальным интервалом, связав таким образом музыку с абстрактным миром чисел. Так он подтвердил свое учение, в котором утверждалось, что все явления в природе управляются законами математики.

 

Один из главных принципов системы Пифагора — рациональность всех числовых постоянных природы (таких, как число «пи», отношение длины круга к его диаметру); иными словами, подобные числа должны выражаться отношением двух целых, да и Вселенная, во всех своих проявлениях, может быть описана с помощью только целых чисел и дробей.

 


По скудным описаниям Гиппаса из Метапонта, встречающимся в анналах истории, истории воссоздали его облик

 

И все же Пифагор был неправ. История гласит, что Гиппас, юный ученик Пифагора, искал рациональное выражение для квадратного корня из двух, когда вдруг ему пришло в голову доказательство, что такого быть не может — то есть корень из двух иррационален. Гиппас, скорее всего, был восхищен этим фундаментальным открытием, однако Пифагор не смог признать крушение своей картины мира и, не найдя аргументов против доводов Гиппаса, устранил проблему, приказав утопить юного математика. «Отец логики и математического метода, — заявляет Саймон Сингх, — насилие предпочел поражению в науке. Непризнание Пифагором иррациональных чисел — самая постыдная ошибка и величайшая трагедия всей греческой математики. Иррациональные числа были воскрешены только после смерти Пифагора».

 


Братья Чудновские (Давид Вольфович и Григорий Вольфович)

 

Справедливости ради стоит заметить, что иррациональные числа и сейчас подвергаются тяжелым испытаниям, которые устраивают им отдельные математики. Двое русских из Нью-Йорка, братья Чудновские, уже сосчитали восемь миллиардов десятичных знаков числа «пи» и в надежде найти повторяющуюся последовательность готовы дойти до триллиона.

Автор: Admin | 2012-10-31 |

Презрение лорда Резерфорда

Вы начинающий бизнесмен, чья компания терпит большие убытки? Тогда, скорее всего, Вас интересует такой вопрос, как: “сколько стоит реклама на радио?”.

Получить ответ и разом решить все проблемы свой компании Вы сможете, если прямо сейчас посетите сайт www.energyfm.ru.



Эрнест Резерфорд в своей лаборатории, располагавшейся в Кембриджском Университете

 

Лорд Резерфорд, профессор физики в Кембридже, был весьма незаурядной личностью. Вот как однажды он отверг теорию, показавшуюся ему полной чепухой. Итак, рассказчик — Р.В. Джонс, место действия — Кларендонская лаборатория (Clarendon laboratory), Оксфорд.

 


Так сегодня выглядит здание Кларендонской лаборатории

 

Резерфорд только что внезапно приехал из Кембриджа, и каждая его лекция в Оксфорде была событием. В конце обычно оставалось время для вопросов, и Е.А. Милн (известный космолог и физик-теоретик) как-то спросил, что Резерфорд думает по поводу так называемого атома Тьютина. Доктор Тьютин критиковал модель Резерфорда (то есть планетарную систему с ядром из протонов и нейтронов в качестве Солнца и электронами, каждый из которых движется по орбите со своим радиусом) — поскольку, как известно каждому, в смеси из тяжелых и легких частиц тяжелые быстро уходят на периферию, в то время как легкие остаются поблизости к центру. Поэтому электронам место в центре атома, а протоны должны летать снаружи. Теория Тьютина получила известность благодаря Ф.В. Содди, профессору неорганической химии и автору термина «изотоп», который рекомендовал статью Тьютина Химическому обществу. Однако там ее отказались публиковать, и Содди немедленно вышел из состава Общества, а затем специальным объявлением в журнале Nature оповестил коллег, что распродает имеющиеся у него тома Journal of Chemical Society.

 

Милн поинтересовался у Резерфорда, откуда тот знает, что Тьютин неправ, а он сам прав. Легко представить себе грузного Резерфорда, который навис над тщедушным Милном и проревел: «Когда вы видите слона и блоху, вы сразу знаете, кто прыгает — слон или блоха».

 


Маркус Лоренс Элвин Олифант (1901-2000) – один из самых известных австралийских физиков, ставший первооткрывателем трития

 

Почти безошибочную интуицию Резерфорда во всем, что касалось элементарных частиц, можно проиллюстрировать еще и таким признанием М.Л. Олифанта, сделанным им в интервью 70 лет спустя:

В наших экспериментах мы бомбардировали мишени всем, чем только возможно, чтобы получить новые элементы. Задействовать тяжелый водород было логичным ходом, и, само собой, результаты оказались крайне интересными. Опыты с тяжелой водой привели к открытию гелия-3 и трития (первый — изотоп гелия, второй — водорода).
…Резерфорд в то время невероятно сильно повлиял и на меня, и на множество других людей в Кембридже. Он был моим научным отцом — во всех смыслах слова. Резерфорду не нравилось, когда его сотрудники проводят слишком много времени в лаборатории. По его мнению, переутомляться было глупо. Правда, сам Резерфорд с трудом мог отвлечься от научных задач. Однажды мы отправились домой, так и не разобравшись с результатами эксперимента. В три ночи у меня зазвонил телефон. Жена сообщила, что профессор хотел бы со мной поговорить. Резерфорд произнес: «Я тут догадался: частицы из ближнего диапазона — это гелий-3». Я попросил у него обоснований, и тогда он взорвался: «Обоснования? Обоснования? Я это чувствую!».

 

Олифант (впоследствии сэр Марк Олифант) получил должность профессора физики в Бирмингеме, где создал выдающийся факультет: там, среди прочего, сконструировали основу сантиметровых радаров, полостный магнетрон. Затем Олифант вернулся к себе на родину в Австралию, где стал отцом-основателем Австралийского национального университета в Канберре. Один из его самых неудачных проектов — строительство ускорителя частиц, который не проработал ни дня и был в итоге заброшен. Из-за этого дорогостоящего провала прибор презрительно называли «Белым Олифантом» («The White Oliphant»).

Автор: Admin | 2012-10-31 |

Разрывая цепи

На вооружении каждого путешественника обязательно должен быть сайт www.vhotel.ru, который смело можно назвать путеводителем по гостиницам и отелям Российской Федерации. При помощи этого интернет-ресурса Вы легко и просто сможете узнать, какие эконом гостиницы Уфы Вам по карману, посмотреть фотографии номеров и даже забронировать номер, не отходя от компьютера!



Ярчайшим представителем цепной реакции можно назвать горение и взрыв (на изображение выше Вы можете видеть взрыв ядерного заряда во время американских армейских испытаний, проводимых в Неваде в мае 1953 года)

 

Идея цепной реакции — процесса, который ускоряется за счет размножения активных частиц, — пришла в химию в 1913 году, а в физику 20 годами позже.

Таким реакциям свойственно начинаться медленно, иногда с заметной задержкой, а заканчиваться взрывом.

 


Схема механизма вынужденного деления урана, переходящего в цепную реакцию

 

Самый известный пример — деление атомных ядер: атом урана-235 захватывает нейтрон, ядро распадается и высвобождает 2-3 новых нейтрона; те, в свою очередь, атакуют соседние ядра урана, и процесс деления стремительно набирает ход. В химии реакции с похожими свойствами были известны с конца XIX века и озадачивали даже таких светил, как Роберт Бунзен, знаменитый немецкий химик.

 


Макс Боденштейн (1871-1942)

 

Физикохимик Макс Боденштейн провел в Германии обстоятельную работу по выяснению механизмов химических реакций. В 1913 году его заинтересовала реакция между водородом и хлором, инициируемая светом: за «подсветкой» следует задержка, потом реакция ускоряется и внезапно останавливается. Ассистент Боденштейна Вальтер Дюкс так описывает, что происходило. Когда они вдвоем обдумывали результаты эксперимента, Боденштейн расстегнул свою золотую цепочку от часов и неожиданно попросил Дюкса подержать ее за один конец, пока сам раскрутит другой. «Если мы придаем цепи импульс, — начал он размышлять вслух, — он распространится по всей длине, но, если зажать или выдернуть одно звено, движение прервется». Дюкс спросил: «Значит, это происходит и с нашей реакцией?» — «Неплохая идея. Возможно, стоит назвать ее цепной; давайте это проверим».

 

Идея быстро получила признание и начала всплывать в работах ученых, занимавшихся самыми разными областями химической кинетики, в особенности — образованием молекул высших полимеров, основы волокон и пластмасс.

 

После смерти Боденштейна в 1942 году Дюкс собирался выпросить у его семьи цепочку от часов, но оказалось, что в порыве патриотизма Боденштейн пожертвовал ее на военные нужды, а к часам прикрепил стальную. Тогда Дюкс изготовил ее копию из золота и передал в дар Университету Ганновера.

 


Лео Сцилард был не только гениальным физиком, но и очень добрым души человеком, который мог найти подход к любому противнику его работ и теорий

 

Лео Сцилард (1898-1964), странствующий физик из Венгрии, провел большую часть жизни в гостиничных номерах. Как правило, его имущество умещалось в двух чемоданах. Он покинул Берлин после прихода Гитлера к власти.

 

Позже он вспоминал:

Осенью 1933-го я жил в Лондоне и был занят поиском мест для коллег, лишившихся своих университетских постов с приходом нацистов. Однажды утром я прочел в газете статью про ежегодное собрание Британской ассоциации по развитию науки. Во время заседания, рассказывал репортер, Резерфорд заявил, что разговоры о промышленном использовании атомной энергии — полная чушь. Уверения экспертов в принципиальной невозможности чего-либо всегда меня забавляли. В тот день я прогуливался вдоль Саутгемптон-роу (в Блумсберри, где находилась гостиница Сциларда) и остановился у светофора. Я задумался — а вдруг Резерфорд действительно прав? Когда сигнал сменился на зеленый и я переходил улицу, мне в голову неожиданно пришла мысль: что, если найти такой элемент, который нейтроны могут расщепить и который, поглотив один нейтрон, испускал бы два? Если такого элемента собрать достаточно много, то он мог бы поддерживать цепную ядерную реакцию, а мы могли бы выделять энергию в промышленных масштабах и конструировать атомные бомбы. Эта мысль стала моей навязчивой идеей, она-то и привела меня в ядерную физику — область, с которой я прежде не имел дела.

 

Сцилард нашел себе в Лондоне лабораторию и попробовал проверить свою идею, однако ни один из элементов, которые он пытался бомбардировать нейтронами, вторичных нейтронов не давал. Сцилард тем не менее считал свою схему достаточно реалистичной и даже спустя несколько месяцев ее запатентовал. Во избежание огласки патент был оформлен на Адмиралтейство.

 


Карл Бош (1874-1940)

 

Примерно в то же время Сцилард пал жертвой невинной шутки, результат которой превзошел все ожидания шутников. Ими были двое молодых физиков — Карл Бош из Германии, и Р.В. Джонс, работавший тогда в Оксфорде. Джонс, представившись редактором Daily Express, позвонил Сциларду и спросил, может ли тот подтвердить, что изобрел радиоактивные лучи смерти. Сцилард буквально взорвался, потому как именно тогда получил наконец патент на цепную ядерную реакцию, и его панику по поводу утечки, пусть и искажающей факты, легко себе представить.

 

Понадобилось пять лет, чтобы мечты Сциларда стали реальностью: физик Лизе Майтнер (18781968) вместе с химиками Отто Ганом (1879-1968) и Фрицем Штрасманом (1902-1980) занималась в Берлине анализом продуктов ядерных превращений. Будучи еврейкой, Майтнер была вынуждена бежать из страны, не дожидаясь ареста. Найдя убежище в Швеции, она поддерживала со своим другом и коллегой Отто Ганом связь по почте. В декабре 1938 года к ней приехал в гости племянник и тоже физик Отто Фриш (1904-1979), который работал тогда в знаменитом институте Нильса Бора в Копенгагене. У племянника и тети вошло в привычку встречать Рождество вместе, но тот свой приезд Фриш описывает как самое запоминающееся событие в жизни.

 

За прошедший год был открыт целый ряд продуктов ядерных бомбардировок, которые иногда, как казалось, нарушали установленный ранее закон: столкновение элементарной частицы с ядром может разве что выбить оттуда альфа-частицу (идентичную ядру гелия-4) или бета-частицу (электрон); в результате получались по прогнозам и на практике ядра с зарядом (то есть атомным номером) на два меньше или на один больше, чем у ядра-родителя. Среди продуктов бомбардировки урана Ган и Штрасман обнаружили, как они полагали, изотопы радия. (Изотопы — это разновидности элемента, отличающиеся только числом нейтронов в ядре; поскольку число положительно заряженных протонов в ядре и, следовательно, отрицательно заряженных электронов снаружи у них одинаково, то изотопы с химической точки зрения идентичны.) Результат казался необъяснимым, поскольку у радия ядро меньше, чем у урана, и Лизе Майтнер предупредила Гана, что следует тщательно все проверить, прежде чем публиковать статью о необъяснимой аномалии.

 

Когда Отто Фриш впервые навестил тетю в Кун-гэльве, маленьком шведском городке, где та отдыхала с друзьями, он обнаружил ее размышляющей над последним письмом Отто Гана. Вот как он описывает встречу:

Я собирался рассказать ей о новом эксперименте, который задумал, но она и не думала меня слушать; вместо этого она попросила меня прочесть письмо. Его содержание было настолько ошеломляющим, что я был вынужден отнестись к нему скептически. Ган и Штрасман выяснили, что три получившихся у них вещества не были радием с точки зрения химии; более того, оказалось затруднительно отделить их от бария, который, как обычно, они добавили, чтобы облегчить процедуру химического разделения. Они пришли к выводу, неохотно и с колебаниями, что это были изотопы бария (ядра которых вдвое меньше ядер урана).

 

Было ли это просто ошибкой? «Нет, — сказала Лизе Майтнер, — Ган для этого слишком хороший химик». Но как мог барий получиться из урана? Никогда еще от ядер не отщепляли больших кусков, чем отдельные протоны и ядра гелия, а чтобы отщепить сразу много частиц, требовалось слишком много энергии. Также не представлялось возможным, что урановое ядро будет разрезано поперек. Ядро не похоже на хрупкий материал, какой режут и ломают; Георгий Гамов давно предположил, а Бор убедительно аргументировал, что ядро скорее похоже на каплю жидкости. Возможно, капля может превратиться в две капли более плавно: сначала вытянуться, потом сжаться посередине, а потом разорваться — но не сломаться напополам. Мы знали, что существует сильное взаимодействие, которое будет препятствовать такому процессу, подобно тому как поверхностное натяжение обычной жидкости мешает капле распасться на части. Но ядра отличаются от капель одной важной особенностью: они несут электрический заряд, а отталкивание зарядов противодействует поверхностному натяжению. На этом месте мы оба присели на поваленное дерево (разговор происходил во время нашей прогулки по заснеженному лесу, я был на лыжах, а Лизе Майтнер заявила, что справится и без них) и приступили к расчетам на обрывках бумаги. Заряд уранового ядра, как мы выяснили, и в самом деле достаточно велик, чтобы преодолеть силы поверхностного натяжения практически целиком, поэтому урановое ядро должно напоминать крайне шаткую, неустойчивую каплю, готовую разделиться от малейшего толчка — такого, как удар одного-единственного нейтрона.

 

Но была и другая проблема. После разделения капли будут удаляться друг от друга за счет взаимного электростатического отталкивания, получая высокую скорость и невероятно высокую энергию, в общей сложности порядка 200 МэВ. К счастью, Лизе Майтнер вспомнила эмпирическую формулу для вычисления масс ядер и вывела, что пара ядер, получающихся при распаде урана, будет легче его примерно на одну пятую массы протона. Далее, когда масса исчезает, по формуле Эйнштейна Е=mc2 возникает энергия, и одна пятая массы протона как раз соответствует 200 МэВ. Итак, источник энергии был скрыт здесь. Все сходилось!

 

Несколько дней спустя я отправился в Копенгаген в сильном волнении. Я догадался предъявить наши измышления — тогда это не казалось чем-то большим — Бору, которому предстояло вот-вот отбыть в США. У него для меня было всего несколько минут, но стоило мне начать рассказывать, как он ударил себя кулаком по голове и запричитал: «О, какими идиотами мы все были! Да, но это прекрасно! Именно так и должно быть! Вы с Лизе Майтнер уже написали статью?» — «Нет, — сказал я, — но как-нибудь обязательно опубликуем». Бор пообещал никому не проговориться, пока статья не выйдет». А потом он отправился встречать свой корабль.

 

Фриш спросил некоего американского биолога из лаборатории, как в биологии называется процесс, когда из одной клетки получаются две. «Деление», — ответил тот, и так, стараниями Фриша, термин «деление ядер» появился на свет.

Автор: Admin | 2012-10-28 |

Сернистые сигары Отто Штерна

По долгу службы Вы проводите большую часть дня за рулем автомобиля. Тогда нет ничего удивительного в том, что у Вас постоянно болит спина, затекает шея и ломит в пояснице. Справиться со всеми этими симптомами Вам поможет массажная накидка, которая эффективно воздействует на все очаги возникновения болей, прекрасно расслабляет и стимулирует мышцы, полностью исключая их затекание.

Приобрести массажную накидку в автомобиль по самой низкой цене вы сможете только на сайте www.2dogs.com.ua.



Немецкий физик и выдающийся экспериментатор Отто Штерн открыл магнитный момент протона

 

Отто Штерн (1888-1969) называл себя «экспериментальным теоретиком». Великий американский физик Исидор Раби видел в Штерне, с которым сотрудничал в молодости, сочетание всех черт идеального ученого сразу. Тот был гениален, скромен и великодушен и вдобавок отличался превосходным, как писал Раби, «хорошим» вкусом в исследованиях: он безошибочно находил ответы к задачам первостепенной важности, поражая остроумием, а его экспериментальные работы выделялись «стилем и умом». Сначала Штерн решил посвятить себя теоретической физике и несколько лет проработал ассистентом у Альберта Эйнштейна, которому приходился родственником. Позже Штерн рассказывал, уже своему ассистенту, Отто Фришу, как они с Эйнштейном вместе ходили по борделям, поскольку это были тихие и спокойные места, где ничто не мешало говорить о физике. Одна из теоретических работ Штерна, которая ставила точку в давней нерешенной проблеме из области статистической механики, была опубликована во время Первой мировой войны с пометкой «Ломша, русская Польша» — это был грязный провинциальный городок, куда Штерна откомандировали стеречь метеостанцию, и избыток свободного времени он тратил на сверхсложные расчеты.

 


Можно сказать без преувеличения, что Эйнштейн был не толькоучителем Штерна, но и его другом

 

Позже, уже будучи профессором физической химии в Гамбурге, Штерн создал отдельный факультет и заставил своих сотрудников заниматься столь любимыми им атомными и молекулярными пучками — потоками атомов либо молекул, которые движутся по прямой в высоком вакууме и, как показал Штерн, дают возможность провести ряд фундаментальных измерений.

 

Метод Штерна заключался в том, чтобы приступать к эксперименту только после долгих размышлений. Как правило, он придумывал прибор, который поручал собрать своим ассистентам, студентам и лаборантам, и появлялся в лаборатории только тогда, когда прибор этот был готов: Штерн возникал на пороге, вслед за облаком сигарного дыма, и лично приступал к измерениям. Эксперимент заканчивался, статья выходила — и прибор разбирали, чтобы освободить место для следующего.

 

Штерн догадывался, что атомные пучки — удобный инструмент для обнаружения эффектов, предсказанных квантовой механикой, тогда только зародившейся и вызывавшей острые споры. Квантовая теория утверждала, что некоторые атомы — например, серебра — должны обладать магнитным моментом (и вести себя как магниты) из-за вращения одного-единственного электрона, который находится дальше всего от ядра. Замысел Штерна состоял в том, чтобы зафиксировать отклонение пучка атомов газообразного серебра, испаряющегося с поверхности серебряной проволоки, в сильном магнитном поле — так он надеялся измерить магнитный момент. Расхождение пучков при выключенном и включенном магнитном поле могло оказаться ничтожным, и оценить его наверняка будет трудно, если не невозможно, думал Штерн и решил обсудить перспективы опыта с коллегой, Вальтером Герлахом. «Может, нам все-таки стоит этим заняться? — спросил он и с готовностью сам себе ответил: — Ну так приступим!».

 


В 1922 году был осуществлен эксперимент, получивший название опыт Штерна-Герлаха, в честь ученых проводивших его. Этот эксперемент подтвердил наличие у атомов спина.

 

Герлах учел все технические трудности, но после ряда неудач засомневался, можно ли судить о расхождении по слабому налету серебра, едва заметному на поверхности стеклянной пластинки. Он отнес пластинку к Штерну — посоветоваться, и, пока двое физиков внимательно ее разглядывали, полоса налета толщиной в волос почернела и на глазах разделилась на две, между которыми остался узкий зазор. Как догадался Штерн, четким изображением они были обязаны дешевой сигаре, которую он курил: прежде хорошо обеспеченный, Штерн в тот момент испытывал некие финансовые затруднения и вынужден был отказаться от табака известных марок в пользу более дешевого, с высоким содержанием серы. Вот сера с его сигареты и превратила серебро в черный сульфид серебра. Но на этом история не закончилась: тщательное разглядывание показало, что след отклоненного пучка тоже расщеплен надвое, но уже с зазором толщиной в волос. Исчерпывающее объяснение появилось позже и разом изменило трактовку всей квантовой теории. Магнитный момент, определяемый (условно) скоростью вращения электрона, не бывает каким угодно: он квантован, то есть принимает только заданные значения (которые слегка отличаются друг от друга). Разные группы атомов с электронами в разных спиновых состояниях по-разному реагируют на магнитное поле, что и проявляется в расщеплении пучка. Этот результат считают моментом рождения «пространственного квантования», новой и в то время поразительной области квантовой теории. Исидор Раби называл тот опыт «прославленным экспериментом Штерна — Герлаха». Сам Штерн был обрадован не столько результатом, сколько тем, как он был получен.

 

В 1943 году за работы по атомным и молекулярным пучкам Отто Штерну вручили Нобелевскую премию. За 10 лет до этого он был изгнан из Германии и поселился в США. Там — и во время войны, и после — ему не удалось получить достаточного финансирования для своих научных проектов, и поэтому, не дожидаясь даже своего 60-летия, он ушел на пенсию и уехал в Калифорнию. Остаток дней Штерн посвятил радостям гастрономии и кино, к которым давно питал слабость. Он скончался 81-летним, в кинозале, куда пришел посмотреть новый фильм.

Автор: Admin | 2012-10-22 |

Наука спасет наш мир. Часть III

Не секрет, что Санкт-Петербург является городом-мечтой, посетить который должен каждый хотя бы раз в жизни.

Однако в этом гигантском мегаполисе очень легко потеряться, во всех смыслах этого слова. Для того чтобы этого не произошло я настоятельно советую Вам перейти по ссылке http://www.peterburg.ru/petersburg-for-dummies, где Вы сможете прочитать познавательную статью “Петербург для чайников”, из которой Вы узнаете: какие места Санкт-Петербурга Вы должны посетить в обязательном порядке, а какие стоит обходить стороной, где купить сувениры, как передвигаться по городу и многое-многое другое!


Доскональное исследование планеты Земля поможет нам в будущем узнать не только узнать всю подноготную нашей планеты, но и разобраться в механизме планетообразования и, конечно же, ответить на самый горячо стоящий вопрос перед человечеством: «Одни ли мы во вселенной?».

 


На фотографии выше Вы можете видеть практически точную копию Земли – планету GJ 667Cc, находящуюся от нас на расстоянии 22 световых лет. По заявлениям ученых, если эта планета необитаема, то Земля – это единственное космическое тело во Вселенной населенное жизнью.

 

Поняв прошлое, мы можем извлечь из него урок. Если соотнести временную шкалу с прошлыми событиями, можно попытаться увидеть в катастрофах подсказку, как действовать, если ситуация повторится. Смирившись с 6000-летним возрастом Земли, который нам навязывают креационисты, мы рискуем упустить ценный опыт прошлого, способный помочь нам справиться с будущими проблемами.

 

Представим, как мы могли бы поучиться у наших предков, проанализировав их реакцию на относительно небольшие климатические изменения. Вместе с коллегами из Королевского университета Белфаста мы отслеживали изменения климата по годичным кольцам ирландских деревьев. Эта масштабная реконструкция, охватывающая период в 7468 лет, потребовала непосильного тридцатилетнего труда (не моего, честно скажу) по вытаскиванию дубовых бревен из топей по всей Северной Ирландии. За это время исследовательская группа в Королевском университете установила, что случались странные периоды, когда деревья, видимо, не росли вовсе. А временами, наоборот, у деревьев наступал земной рай, когда даже самые заболоченные участки начинали зарастать, настолько увеличивалась популяция. Присмотревшись повнимательнее, мы заключили, что эти чередования отражают изменения климата. В периоды бурного роста климат становился достаточно сухим, чтобы деревья занимали заболоченные участки. А когда возрастала влажность, уровень воды в болотах поднимался, деревья гибли и молодая поросль гнила на корню — прирост падал. Климат Ирландии как западного морского рубежа Европы очень остро реагирует на происходящее в Северной Атлантике. Океан чихнет — в Ирландии простуда. Поэтому, когда океану в прошлом случалось закашляться, в Ирландии, судя по деревьям, наступало воспаление легких. Но если деревьям приходилось туго, как же чувствовали себя люди?

 

Что касается археологических данных, для нас было удачей наличие результатов работ по радиоуглеродному датированию раскопок за 50 лет. У нас на руках оказались данные 450 исследований по фортам, кранногам (постройкам на искусственных островках посреди озер и болот) и поселениям. Мы перевели возраст в календарные годы, чтобы сравнить время построек и отраженные в колебаниях численности деревьев климатические изменения. Результаты ошеломляли. Строительство убежищ совпадало с ухудшением климата. В лихие времена люди практически всегда сплачивались, сберегая скудные остатки пищи и других ресурсов. Судя по прогнозам климатических изменений, нас ждут времена куда более тяжелые, чем довелось пережить нашим предкам. Сможем ли мы проявить благоразумие и найти более достойный выход, чем напасть на соседей и отобрать то немногое, что у них осталось? Надеюсь, что да.

 

Нам надо безотлагательно изучить реакцию людей в других частях света, чтобы узнать, сходная ли картина наблюдается в разных климатических зонах. Однако, если Земле всего лишь 6000 лет, никаких таких событий — да и других, которые мы рассматривали в этой статье, — попросту не было. Мы не сможем извлечь из них урок на будущее. Как вам такой расклад? Вряд ли найдутся те, кому он по душе.

 

Пока креационисты не подведут под свои доводы убедительные доказательства и не перестанут невозмутимо сбрасывать со счетов столетия научной работы, креационизм останется не более чем религией. Позволять подобные фокусы со временем значит рисковать вернуться в ту эпоху, когда догматы заменяли собой знание. Наш долг перед самими собой и будущими поколениями — активно противостоять креационистскому якобы научному подходу.

 

Прошлое—это ключ к будущему, и нам необходимо все доступное нам время, чтобы его не упустить.

Автор: Admin | 2012-10-19 |

Наука спасет наш мир. Часть II

Надежные и качественные гаражные автоматические ворота станут залогом неприкосновенности вашего автомобиля. Купить автоматические ворота в Киеве«>Купить автоматические ворота в Киеве по самой выгодной для Вас цене Вы сможете только на сайте www.absolut-automatik.kiev.ua.



Уильям Хаггинс – выдающийся астроном-любитель, который первым сформулировал, в чем разница между галактиками и туманностями

 

Теория Галлея получила дальнейшее развитие в 1860-х, когда британская чета Уильям и Маргарет Хаггинс начали изучать состав звезд. С помощью спектроскопа они разделили свет от звезды Сириус на составляющие части спектра. В целом, по наблюдениям Хаггинсов, набор получался такой же, как у нашего Солнца. Однако у Сириуса некоторые спектральные линии оказались длиннее: они сместились в красную, длинноволновую часть спектра, произошло так называемое «красное смещение».

 


Объектом своего наблюдения Уильям и Маргарет Хаггинс выбрали самую яркую звезду на земном небосклоне — Сириус (фотография сделана космическим телескопом Хаббл)

 

Красное смещение обусловлено эффектом Доплера, который можно проиллюстрировать на примере звуковых волн. Представьте, что вы стоите на краю тротуара и мимо проносится полицейская машина с включенной сиреной. По мере приближения машины громкость душераздирающего звука возрастает, длина волны становится короче. Когда машина окажется непосредственно перед вами, волна сократится настолько, что у вас заложит уши. Но затем машина снова начнет удаляться, и уши можно будет уже не затыкать, звук будет делаться тише с удлинением волны. То есть по мере удаления источника звука удлиняется волна. К счастью, эффект Доплера отлично поддается математическому моделированию. Хаггинсы вычислили, что Сириус удаляется от Земли со скоростью 45 км в секунду.

 


Заслуги Эдвину Хабблу перед наукой были столь велики, что в … году в его честь был назван самый мощный и современный космический телескоп своего времени – Хаббл, благодаря которому человечеству удалось заглянуть в самые глубины космоса

 

В начале XX в. астрономы продолжили исследования красного смещения. Уже к 1931 г. американцам Эдвину Хабблу и Милтону Хьюмасону удалось доказать, что в районе 100 млн световых лет от нас галактики стремительно разбегаются от Земли — и чем больше расстояние, тем стремительнее. Открытие имело колоссальное значение. Ведь если представить все «в обратной перемотке», получалось, что вся Вселенная была сконцентрирована в каком-то небольшом участке пространства. Дальнейшее развитие событий замечательно описано у Саймона Сингха в «Большом взрыве».

 

Давайте посмотрим, что должно было происходить непосредственно в момент «взрыва», поскольку именно с ним связаны ключевые доводы креационистов, касающиеся происхождения времени. Во время «большого взрыва» температура должна была измеряться триллионами градусов: молодая Вселенная состояла из света и практически бесконечного числа атомных частиц. По мере расширения протоны, эквивалентные ядру водорода, вступали в реакцию с другими энергетическими частицами, образуя гелий, а также выбрасывая в пространство энергетические электроны и свет. Где-то через 300000 лет температура понизилась где-то до 6000°С — теперь свободные электроны могли замедлить движение и позволить свету распространяться беспрепятственно, не сталкиваясь ни с чем. Свет достиг постоянной скорости 299 792 км/с и держит ее до сих пор.

 


Крупномасштабная инфракрасная карта Вселенной

 

Тем временем некоторые участки Вселенной стали достаточно плотными, чтобы к ним начала притягиваться материя и стали образовываться первые звезды. Расширение Вселенной продолжалось, звезды рождались, жили и умирали. Для нас важно, что на протяжении их жизни и смерти в ходе термоядерных реакций образовывались более тяжелые элементы, чем водород и гелий. Почти все, что мы видим вокруг себя, — это продукты жизненного цикла звезды: и металл, из которого сделана чайная ложка, и кислород, которым мы дышим, и углерод, из которого состоим мы сами. Все эти и другие элементы берут начало во внеземных процессах, происходивших задолго до образования нашей планеты. Мы — потомки по крайней мере одного поколения звезд, погибших до нас. Земля никак не могла родиться на заре времен.

 


Многие ученые считают, что до Большого взрыва ничего не существовало, а Вселенная находилась в сингулярном состоянии. Другие же убеждены, что Большой взрыв стал следствие появления белой дыры, наполнившей нашу Вселенную материей из ее «зеркального отражения» – некогда существовавшей в ином измерении Вселенной, которую поглотила гигантская черная дыра. Обе эти теории имеют право на свое существование

 

Для определения времени «большого взрыва» применяются различные методики. Многие основаны на измерении расстояний между разными удаляющимися друг от друга созвездиями и вычислении времени, которое им потребовалось, чтобы разлететься из единой точки пространства. Последние результаты вычислений возраста Вселенной были опубликованы в 2003 г.: отсчет времени начался 13,7±0,2 млрд. лет назад. В основе расчетов — фоновые микроволновые колебания, идущие с «большого взрыва», и результаты не имеют ничего общего с цифрами из популярного в 2005 г. хита.

 

Достаточно просто взглянуть на ночное небо, чтобы увидеть время в действии. На самом деле все эти бесчисленные мириады звезд — свет, выпущенный ими миллионы лет назад. Яркая точка в небе — это не звезда в том виде, в каком она существует сейчас. Представьте на миг инопланетного астронома, который разглядывает нашу Землю в мощный телескоп за 65-251 млн. световых лет отсюда. Свет, который он увидит, был отражен от поверхности нашей планеты, когда по ней еще гуляли динозавры. Глядя
на звезды, мы все переносимся назад во времени, обычно мы об этом просто не задумываемся.

 


Самый весомый вклад в развитие науки внес, конечно же, гениальный и неподражаемый Альберт Эйнштейн

 

Многим креационистам, понятное дело, со всем этим смириться тяжело. Поэтому часто они предпочитают просто игнорировать неудобные факты и считать, что скорость света стремительно падает с момента творения. Однако подтверждений этому нет. Если бы дело обстояло так, и жизнь на Земле, и существование этой статьи, вероятнее всего, оказалось бы под вопросом. Многим знакома знаменитая формула Эйнштейна Е = тс2, выведенная им для теории относительности, однако не все понимают до конца, что она означает. Великое открытие Эйнштейна состояло в том, что материя (т) и энергия (Е) — это разные формы одного и того же, а значит, взаимозаменяемы. Чтобы вычислить количество энергии в материи, массу надо помножить на квадрат скорости света (с). Отсюда следует, что любое, самое крошечное изменение скорости света кардинальным образом повлияет на количество энергии, выделяющееся при радиоактивном распаде.

 

Чтобы сжать 13,7 млрд. лет до 6000, скорость света должна была бы возрасти на несколько порядков. Да, время бы сжалось, однако вылезла бы куча проблем в других местах. Прежде всего возросшая скорость света вызвала бы заодно увеличение объемов радиоактивного распада, а значит, нагревание Земли до роковых температур. Количество жара, излучаемого Солнцем, тоже возросло бы — из-за увеличения объемов реакции синтеза водорода, и от такой избыточной энергии Земля попросту бы сгорела. Как выжили бы наши предки на раскаленной планете?

 

И наконец, если бы скорость света так разительно изменилась, мы бы совсем по-другому воспринимали и формулировали время, происхождение жизни, Вселенной и всего прочего. На этот счет очень красноречиво высказался Иан Плаймер из Мельбурнского университета:

Креационистским «ученым» надо сделать одну простую вещь — доказать, что скорость света падает. Наградой им будет почет, признание креационизма наукой и Нобелевская премия тому креационисту, кто сумеет продемонстрировать, что основа основ всего научного знания безнадежно ошибочна.

 

Надо ли говорить, что никаких подобных доказательств до сих пор не представлено.

Автор: Admin | 2012-10-19 |

Наука спасет наш мир. Часть I

Часы остановились в темноте.

Томас Стернз Элиот (1888-1965)

 


В рамках бескрайнего космического пространство земное время летит быстро и очень скоро Солнце превратиться в красного гиганта, который за считанные секунды выжгет нашу планету до основания. Однако, я не сомневаюсь в том, что в ближайшие 5,7 миллиардов лет наша наука уйдет далеко вперед и сделает множество открытий, которые помогут человечеству пережить этот космический катаклизм

 

Многие современные ученые, в том числе и я, выражают свою озабоченность тем, что наука не получает достаточного освещения. Меня всерьез пугает, что обществу невдомек, откуда берутся научные достижения и плоды знаний, которыми оно пользуется. И я по-прежнему считаю эту проблему существенной. Люди часто стонут, что научное изложение для них «слишком заумно», «слишком непонятно». И очень жаль. Наука — это безумно интересно, и я надеялся посредством этой статьи поделиться с вами своим восторгом. У науки в запасе много такого, что помогло бы улучшить качество жизни на летающем в космосе каменном шарике под названием Земля. И необходимость в этом ощущается как нельзя более остро.

 

Наша планета стоит на пороге величайших испытаний. Количество вымирающих видов, по последним оценкам, пугающе огромно. Ежегодно от 25000 до 50000 видов пропадают с лица Земли навеки — многие из них даже не описаны должным образом. Трагические масштабы поневоле заставляют вспомнить о великих вымираниях древности. А если еще добавить перспективу катастрофических изменений климата, времена нам предстоят суровые.

 

Отличный пример того, как слабыми научными познаниями можно воспользоваться в своих целях, показывают адепты креационизма, особенно в крайней его форме — младоземельной. Его сторонники всевозможными способами пытаются убедить общественность, что нашему миру всего 6000 лет. При этом к научным данным они подходят крайне избирательно, выуживая лишь те, что в глазах несведущих смогут сойти за доказательства их правоты. По сути, у креационистов только и есть что набор путаных суждений, выборочных пересказов исследований и выдернутых из контекста научных цитат. Именно так обстоит дело с недавними открытиями в области эволюции человека, которые идут вразрез с представлениями креационистов. Еще 30000 лет назад на Земле существовало четыре разных вида древних людей. То, что в итоге остались именно мы, — воля случая. Предопределить заранее, что мы останемся, а остальные исчезнут, было бы невозможно. Игнорировать ископаемые останки и отрицать их возраст — значит закрывать глаза на прежнее разнообразие человеческих видов.

 


Останки флоресского человека

 

Мне самому довелось стать очевидцем этой подтасовки фактов в 2004 г., когда на пресс-конференции в Сиднее мы впервые объявили миру о находке останков «человека флоресского» («хоббита»). Вернувшись на раскопки в Квинсленде как раз в вечер проведения конференции, я обсуждал за кружкой пива значение этой находки с моими коллегами по археологическому лагерю. На следующее утро у порога перед входом мы обнаружили креационистскую листовку, убеждающую, что человек не может быть продуктом эволюции. Видимо, кого-то из вчерашних наших собеседников не устроил ход дискуссии — хотя мне лично сложно представить, зачем таскать с собой в отпуск подобные материалы. Текст листовки сводился к тому, что наука продемонстрировала свою несостоятельность, когда «пилтдаунский человек» оказался подделкой. Меня несказанно изумило, что именно эту историю креационисты притягивают в качестве аргумента.

 


Групповой портрет основных действующих лиц «пилтдаунского дела». На изображении можно видеть череп пилтдаунского человека, который был полностью восстановлен сэром Артуром Кизсом (сидящий человек в халате)

 

Разберемся вкратце, кто такой «пилтдаунский человек» и как датирование помогло установить факт мистификации.

«Пилтдаунский человек» — это три части скелетных останков, найденных в начале XX в. британским археологом-любителем Чарльзом Доусоном из Суссекса. В 1912 г. вместе с Артуром Вудвордом, смотрителем из геологического отдела Лондонского музея естествознания, Доусон объявил о находке черепа в небольшом суссекском селении Пилтдаун. Помимо собственно черепа в отложениях гравия возрастом до 2 млн лет была найдена челюстная кость, похожая на обезьянью. Находка получила название Eoanthropus dawsoni (доусоновский эоантроп) и была объявлена тем самым «недостающим звеном» между обезьяной и человеком, о котором говорил Дарвин в «Происхождении видов». В то время ископаемых человеческих останков в поддержку дарвиновской теории было найдено еще немного, поэтому новое открытие пришлось как нельзя кстати. Дальнейшие раскопки на том же месте принесли еще останки и орудия (в том числе, печально знаменитую «крикетную биту), а также кости животных. Позже Доусон обнаружил фрагменты скелета еще в двух местах и сообщил о них Вудворду.

После смерти Доусона в 1916 г. находки прекратились, хотя Вудворд продолжал раскопки в этой местности еще 21 год — в основном после выхода на пенсию.

 


Рисунок черепа пилтдаунского человека

 

Со временем фрагменты скелета, называемые «пилтдаунским человеком», стали вызывать все большее недоумение. При жизни Вудворда антропологов практически не подпускали к этим останкам, несмотря на то, что новые ископаемые фрагменты, найденные в других районах Европы и Азии, противоречили Eoanthropus dawsonL Эти новые находки свидетельствовали, что человеческие челюсти и зубы появились на одном из самых ранних этапов развития, а черепная коробка и лоб менялись куда медленнее. У «пилтдаунского человека» наблюдалось прямо противоположное.

 

Когда в 1944 г. Вудворд умер, находки были подвергнуты более тщательной проверке, с применением методов, недоступных на момент обнаружения. Туда входило и радиоуглеродное датирование разных фрагментов черепа. Как вскоре выяснилось, «пилтдаунский человек» был подделкой, мистификаций, разыгранной, вероятнее всего, Доусоном. Он выдал за ископаемые останки человеческий череп и челюсть орангутанга, возраст которых едва приближался к нескольким сотням лет.

 

 

Младоземельные креационисты полагают, что Земля, Вселенная и время появились в один и тот же миг. Хотя еще несколько столетий назад такая точка зрения считалась общепринятой, развитие астрономии доказало ее несостоятельность. В 1718 г. Эдмонд Галлей использовал данные наблюдений, сделанных в I в. н.э., и пришел к выводу, что положение звезд относительно друг друга со временем меняется. Важно отметить, что к прецессии равноденствий это никакого отношения не имело. Галлей увидел, что некоторые звезды смещаются относительно других. Что же происходит?

Автор: Admin | 2012-10-19 |

Пределы времени. Часть III

Любая женщина хочет выглядеть самой красивой, очаровательной и обворожительной в глазах своего любимого человека.
Если Вы начали замечать, что огонек страсти и любви поугас в глазах Вашего любимого мужчины, тогда остается только одно – купить эротическое белье на сайте www.kiss-angel.ru, которое точно не сможет оставить равнодушным ни одного мужчину!


Если XVIII-XIX века были временем споров о происхождении Земли, то сегодня нам уже доподлинно известны все этапы эволюции нашей планеты и ученые стараются заглянуть уже не в прошлое, а в будущее.

 


Так, по мнению специалистов НАСА, будет выглядеть Земля через 5,7 миллиардов лет, когда Солнце выйдет на новый этап своего эволюционного развития – станет красным гигантом

 

Теперь не смог остаться в стороне от споров и Джеймс Кролл, который вопросами возраста Земли в общем-то не занимался. Он не разделял точку зрения геологов, настаивавших на «бесконечности». По его мнению, все эти геологические «расчеты» сроков и скорости изменений лежали исключительно в области догадок. Сам он верхним пределом возраста Земли считал 100 млн. лет. В отличие от Лайеля, Кролл предполагал, что последний ледниковый период приходился на самую недавнюю стадию высокой эксцентричности орбиты, которая, по его подсчетам, закончилась лишь 80000 лет назад. Лайель этого не учитывал, поскольку за 80000 лет мир никак не успел бы, по его представлениям, принять современный облик. Если возраст получался меньше, то и сроки обновления видов, предложенные Лайелем, также подлежали сокращению. Таким образом, с начала кембрийского периода должно было пройти лишь 60 млн. лет. Это Кролла устраивало куда больше.

 


Докембрий составлял большую часть истории Земли и длился 3,8 миллиардов лет. В те времена Землей правили простейшие одноклеточные микроорганизмы и бактерии

 

Эти цифры удостоились пристального внимания нескольких выдающихся ученых, в том числе Альфреда Уоллеса, которому, как и Дарвину, не давали покоя предположения относительно возраста Земли. В своих подсчетах Уоллес исходил из того, что докембрий, когда жизни на Земле еще не было, длился в три раза дольше кембрия, а значит, жизнь на Земле существует 24 млн. лет и общий возраст Земли — 96 млн лет. Уоллес думал, что наконец примирил противоборствующие стороны. С одной стороны, удовлетворено предположение Дарвина о длительном периоде, предшествующем появлению жизни; с другой — цифра не противоречила оценке Кельвина в 98 млн. лет. Дарвина, впрочем, это не убедило.

 


Такой вид открывается на долину Ганга сегодня. В кадре так же присутствует часть города Ришикеш

 

Тем временем многие британские и американские геологи начали подбираться к проблеме с другого бока. Они попытались определить возраст независимым путем, подсчитав совокупную толщину всех известных геологических объектов и прикинув предположительную скорость образования отложений. В литературе замелькал калейдоскоп цифр: в 1860 г. возраст долины Ганга был определен как 96 млн. лет, а в 1878 г. возраст Земли — как 200 млн. лет. Однако ни один из этих результатов особого резонанса не вызвал, поскольку цифры все равно получались весьма приблизительные и проходили по нижней границе возраста.

 


Английский астроном Эдмонд Галлей был без преувеличения величайшим человеком своего времени, многие теории, открытия и идеи которого нашли свое научное подтверждение только в наши дни

 

Еще в XVIII в. британский астроном Эдмонд Галлей усомнился в правильности возраста Земли, названного епископом Ашшером. Галлей утверждал, что с учетом скорости эрозии Земля должна быть гораздо старше 6000 лет. Он предложил альтернативный способ определения возраста, основанный на наблюдении, что озера, из которых не вытекают реки, обладают большой соленостью. И соль, судя по всему, приносят с собой впадающие реки. В 1715 г. он высказал следующее предположение: «Не исключено, что соленость океана обусловлена теми же причинами, что соленость озер». Галлей рассудил, что раз изначально океан был пресным, то, измерив концентрацию соли, можно по скорости превращения воды в соленую определить возраст Земли. Оставалось только собрать данные для вычислений.

 

Между 1899 и 1901 гг. ирландский геолог Джон Джоли из дублинского Тринити-колледжа, приняв эстафету у Галлея, вычислил скорость поступления соли в океан. Джоли рассудил, что, поскольку соль в речной воде присутствует в незначительных дозах, этим количеством можно пренебречь и разделить весь объем соли в морских водоемах мира на скорость ее поступления. В результате возраст нашей планеты по оценкам Джоли находился в промежутке от 90 млн. до 100 млн. лет — почти как изначально у Кельвина.

 

Теперь нам известно, что соль подвергается масштабной переработке: крупные геологические формации удерживают ее, изымая из круговорота, но через подводные колодцы на стыках плит она все равно попадает туда в большом количестве. Джоли, один из последних приверженцев гипотезы Кельвина, продолжал публиковать результаты измерений содержания соли и опровергать показатели более древнего возраста Земли до самой своей смерти, которая наступила 30 лет спустя.

 


Эрнест Резерфорд (годы жизни: 1871-1937 гг) — признанный «отец» ядерной физики

 

Одним из первых воспользоваться свойствами радиоактивности для определения возраста нашей планеты догадался новозеландец Эрнест Резерфорд, в начале 1900-х гг. работавший в канадском Университете Макгилла. Резерфорд понимал, что огромный объем заключенной в радиоактивных элементах энергии должен поддерживать высокую температуру внутри Земли. Планету уже нельзя было рассматривать согласно представлениям Кельвина как остывающий раскаленный шар (в 1908 г. Резерфорд получил Нобелевскую премию за исследования радиоактивности — по иронии судьбы, в области химии, которую он ставил ниже физики).

 

В 1904 г. Резерфорд выступил с докладом перед Королевской ассоциацией. Разумеется, среди слушателей оказался не кто иной, как Кельвин. Начало доклада он, видимо, проспал, но, когда Резерфорд подошел к проблеме возраста Земли, тут же проснулся и резко выпрямился в кресле. И тут Резерфорда осенило. Он напомнил об оговорке, которую делал Кельвин в своих ранних трудах: его выводы относительно земного возраста могут оказаться неточными, если на планете обнаружится другой, неизвестный в тот момент источник энергии (хотя Кельвин с пеной у рта доказывал, что подобное маловероятно). Резерфорд предположил, что радиоактивность вполне может служить таким дополнительным источником энергии. Кельвин, польщенный знаком уважения от Резерфорда, тем не менее от своих результатов не отказался, продолжая считать их верными, и даже сообщил одному своему другу в доверительной беседе, что это, пожалуй, самой большой его вклад в науку.

 

Открытие радиоактивности повлекло за собой обнаружение еще целого ряда новых химических элементов в начале XX в. К урану (открытому в 1789 г.) добавились радий, полоний, радон и торий. Может быть, с их помощью удастся установить возраст Земли? В 1907 г. Резерфорд выдвинул гипотезу, что газ гелий является побочным продуктом радиоактивного распада, — и год спустя она подтвердилась. Если предположить, что гелий после образования удерживается в горной породе и что скорость его образования поддается учету, можно вычислить время остывания и затвердевания породы (тот же принцип, что в калиево- и аргонно-аргоновом методах).

 

Резерфорд проверил это предположение на практике. Нагрев кусок минерала под названием торианит, он собрал выделившийся гелий и подсчитал, что данный образец должен был сформироваться по меньшей мере 500 млн лет назад. Теория Кельвина была разбита в пух и прах. А ведь Резерфорд взял не самый древний образец камня, так что возраст получился минимальным.

 

Со временем физики установили целую серию различных элементов, образующихся при распаде урана, — так называемую «цепочку распада». Важно отметить, что единственным известным тогда изотопом урана был 238U, чей период полураспада равнялся 4,5 млрд. лет. Наконец у ученых появилась машина времени, способная перенести их к заре времен. Геологи обрели способ определить возраст Земли.

Автор: Admin | 2012-10-19 |
30 страница из 64« Первая...1020...262728293031323334...405060...Последняя »

GIF
Видео
Видео
Все обо всем
Забавно!
Иллюстрированные факты
Искусство
Истории
Все размещенные на сайте материалы без указания первоисточника являются авторскими. Любая перепечатка информации с данного сайта должна сопровождаться ссылкой, ведущей на www.unnatural.ru.