Необычный

Приключения Араго

Обожаете играть в игры, но совершенно не горите желанием каждый год обновлять конфигурацию своего компьютера? Тогда Вам следует прямо сейчас вбить в поисковую строку вашего любимого поисковика запрос: “Купить PlayStation 3 Киев”, который пренепременно приведет Вас на сайт www.proshivka.com.ua, где Вы сможете приобрести самую мощную и современную на сегодняшний приставку по самой низкой цене!



Парижского ученого Антуана Лавуазье называют отцом-основателем такой науки, как современная химия (на представленной выше картине изображены Лавуазье и его жена, Мария)

 

Хотя французские революционеры и отрубили голову Антуану Лавуазье, провозгласив, что революция в ученых не нуждается, республика тем не менее все-таки признавала главенство разума и поощряла развитие наук. Одним из памятников ей стала метрическая система. Введенный тогда стандарт длины — метр — определили как стомиллионную долю расстояния от Северного полюса до экватора вдоль парижского меридиана.

 


В 1806 году Араго произвел точное измерение парижского меридиана, который плоть до 1884 года считался нулевым. Меридиан был обозначен с помощью специальных столбиков и араго-медальонов, один из которых Вы можете видеть на фотографии ниже


В 1806 году Бюро долгот обязали измерить это расстояние с максимально возможной точностью. Был проведен ряд предварительных замеров: за основу расчетов взяли расстояние от Дюнкерка до Барселоны, благо сделанный начерно эталон для этого уже имелся в Париже. Однако требовалась еще большая точность; тогда измерили дистанцию до Балеарских островов, которые заметно южней Барселоны и через которые парижский меридиан проходит тоже. Исполнителями этого задания назначили Доминика Франсуа Жана Араго (17861853) и Жана Батиста Био (1774-1862); Араго тогда только исполнилось 20, а Био — 32.

 


Жана Батиста Био по праву называют ученым-универсалом, чьи труды стали мощным подспорьем в развитии таких наук, как астрономия, математика и физика

 

Из-за большой удаленности увидеть из Барселоны вспышки света на островах не представлялось возможным. Поэтому Био и Араго сначала выбрали для триангуляции вершины гор и точку в испанском прибрежном городе Дения, затем измерили расстояние оттуда до Ибицы и Форментеры и, наконец, до Майорки. На Ибице к их услугам была вершина горы Кампвей, а на Форментере — наивысшая точка острова Ла-Мола. В конце 1807 года Био вернулся в Париж, оставив Араго заканчивать замеры на Майорке. На вершине С’Эслоп соорудили хижину, где Араго и поселился в окружении инструментов, необходимых для заключительной серии наблюдений. Однако дальше события развивались совсем не по плану.

 

В июне 1808 года завязалась война между Францией и Испанией. Вскоре на Майорке заговорили о том, что костры на горе по ночам — это сигналы и что Араго, должно быть, французский шпион; решено было отправить на гору отряд солдат, чтобы те арестовали подозрительного француза. Слухи об этом дошли до Араго. Что произошло потом, он рассказывает в своих мемуарах: «Мы отправились в Пальму и по пути встретили военных, которые пришли меня искать. Никто меня не узнал, поскольку я владею местным наречием в совершенстве. Я посоветовал отряду следовать той же дорогой, а мы продолжили наш путь в город». (Араго свободно разговаривал на диалекте каталанского, поскольку был уроженцем Французских Пиренеев — области Франции, где говорят по-каталански.) Скрыться, однако, ему удалось только на время: в конце концов Араго очутился в Бельверском замке, в камере с видом на Пальма-да-Майорка. Теперь это туристическая достопримечательность, а тогда замок был тюрьмой.

 

Сумев убедить чиновников, что он не шпион, Араго покинул остров и отправился в Алжир. Там он сел на корабль, направлявшийся в Марсель, но невезение просто преследовало несчастного физика: корабль захватили испанские пираты и повели его в Каталонию, где Араго снова попал в тюрьму. Огромными усилиями он добился освобождения и поплыл в Марсель. Теперь помешали уже не пираты, но погода — стоял декабрь 1808 года. Начались бури, корабль был вынужден прервать плавание и переждать зиму в небольшом алжирском порту. Араго ничего не оставалось, как отправиться в Алжир по суше. Тут его захватили в плен снова — на этот раз алжирцы, которые требовали, чтобы Франция расплатилась с ними за направленные туда грузы.

 

Проблема разрешилась в июле 1809 года, и после годовой одиссеи, полной опаснейших приключений, Араго прибыл во Францию, дабы наконец закончить свой научный отчет. Париж встретил его с ликованием. Работа Араго и Био подтвердила точность прежних измерений; эталон метра, изготовленный в итоге, отличался от своего прототипа всего на 0,02 процента.

 

Меридиан Араго и Био обозначен в Париже цепочкой дисков, вмурованных в тротуары. Оба ученых добились впечатляющих успехов в физике. Имя Био увековечено законами Био и Био-Савара. Именно Био поручили провести проверку знаменитого эксперимента Пастера по разделению оптических изомеров. Араго также принадлежат множество важных результатов в оптике: достаточно вспомнить диск Араго и призму Араго. Он отметился и в политике, успев побывать министром республики. Араго дружил с Жюлем Верном, который описал его приключения на Балеарских островах в одном из своих романов.

 

Жители Форментеры вымысел ценят больше, чем реальность: на Ла-Мола установлен памятник не Араго и не Био, а Жюлю Верну, который на Балеарских островах никогда не был.

Автор: Admin | 2013-02-11 |

Огненные шары Бюффона


Французский математик и писатель XVIII века Жорж-Луи Леклерк де Бюффон первым высказал идею о единстве животного и растительного мира

 

Граф Жорж-Луи Леклерк де Бюффон (1707-1788) был невероятно талантливым человеком. Практически все, что он сделал для анатомии и классификации видов животных, остается актуальным и поныне, однако его интересы распространялись и на другие науки, а его 44-томная «Естественная история» долгое время оставалась непревзойденным памятником научной мысли.

 


«Естественная история» де Бюффон, раскрытая на странице под заглавием «Доказательство теории Земли»

 

Бюффон был богат, а потому имел возможность потакать своим прихотям. Его интеллектуальная смелость и самоуверенность часто заставляли его вступать в ненужные споры, например, с Томасом Джефферсоном и другими американскими учеными: Бюффон был убежден, что в Северной и Южной Америке эволюция происходит медленнее.

 

Бюффон полагал, что американский климат, сырой и нездоровый, мешал появлению новых видов и истреблял уже существующие. Чтобы убедиться в этом, достаточно сравнить распространенные сейчас в Европе и Америке виды растений и животных (в число последних следовало включить и людей). Эти его взгляды поддерживали и другие ученые Франции — в особенности аббат Рейналь и Корнель де По. Последний писал, что Америка, ни много ни мало, залита «гнилостными и смертоносными водами», над которыми вьется «туман из ядовитых солей» Насекомые и агрессивные рептилии огромны и омерзительны. Сифилис — американская болезнь, которая поражает и животных, и человека. Чтобы им заразиться, достаточно только вдохнуть тлетворный американский воздух. Джефферсон решился дать отпор всем этим галльским измышлениям и вступил в спор с Бюффоном, самым респектабельным из клеветников. Он собрал кожу и кости американского лося, рог и скелет оленя, рога карибу (представленные животные живут на американском континенте) — и отправил все это Бюффону в Париж. Джефферсон также составил сравнительное описание климата Виргинии и парижского климата, и сравнение было не в пользу Парижа. После встречи Джефферсон и Бюффон подружились, и Бюффон наконец заметил в одном из писем, что, вероятно, не во всем был прав. Джефферсон этим не удовлетворился и продолжал опровергать домыслы Бюффона до самой смерти.

 


Бенджамин Франклин – одна из ярчайших личностей в истории. Он был не только гениальным изобретателем, но и очень волевым человеком, который стал одним из лидеров войны за независимость США

 

Джефферсон вспоминал об одном эпизоде за обедом в Париже, который несколько лет спустя устроил Бенджамин Франклин для нескольких французов и множества оказавшихся там американцев. Приглашен был и аббат Рейналь, который начал, как обычно, проповедовать свою теорию неполноценности всего американского, в том числе и людей, и «был, как обычно, весьма красноречив»: Тогда Франклин обратил внимание на то, какого роста гости и как они рассажены. «Святой отец, — сказал он, — давайте обратимся к факту. Мы тут наполовину американцы, наполовину французы, и так вышло, что американцы уселись с одной стороны стола, а наши французские друзья — с другой. Так пусть и те и другие встанут, а мы увидим, где природа склонна к вырождению» Так вышло, что его гостями из Америки были Кармайкл, Хармер, Хамфрис и другие — все отменного телосложения и в отличной форме. Те же, кто сидел с противоположной стороны, были все как на подбор низкорослыми, а сам святой отец выглядел буквально креветкой. Он парировал это доказательство, заявив, что исключения встречаются, и сам доктор Франклин среди таких исключений выглядит подозрительно.

 

На мировоззрение и образ мыслей Бюффона серьезно повлияли труды сэра Исаака Ньютона, которые он читал в оригинале на английском (но некоторые — на латыни). Многие годы Бюффона занимал вопрос о возрасте Земли. Подсчеты епископа Ушера (основанные на списке библейских патриархов — выходило, что планета возникла в 4004 году до нашей эры) он считал абсурдными. Согласно его теории, планеты были выброшены из недр Солнца после его столкновений с кометами: сгустки расплавленного вещества в пустоте сливались друг с другом, остывали и затвердевали. Теория делала содержательное предсказание: Землю, которая возникла из расплавленного сгустка, вращение вокруг оси должно было сделать сплюснутой. Открытие, что так все и обстоит, убедило Бюффона — он на верном пути.

 

Бюффон знал, с какой скоростью остывает раскаленный добела железный шар, и вычислил, что шару размером с Землю, чтобы остыть до нынешней температуры, потребуется как минимум 50 тысяч лет. Такой вывод, будучи недостаточно смелым, не удовлетворил его окончательно: имелись все основания полагать, что Земля остыла до своей нынешней температуры давным-давно.

 

Публикация итогов его размышлений вызвала у церковников бурю гнева: ведь такой сценарий противоречил не только епископу Ушеру, но и самой Книге Бытия! Бюффон был осужден клерикалами, хотя и с довольно мягкой формулировкой — Церковь к тому времени уже усвоила урок, преподанный ей Галилеем, — и был приглашен ответить на обвинения теологического факультета Сорбонны. К счастью, первый том «Естественной истории», где излагались его доводы, не сожгли. Сошлись на том, что Бюффон откажется от своих выводов во втором томе, который только готовился к выходу. «Лучше быть смирным, чем повешенным», — объяснял он впоследствии.

 

Работы Бюффона по вычислению возраста планеты приостановились на несколько лет. Время от времени, когда становилось известно о каком-нибудь новом открытой (например, о расчете, основанном на скорости, с которой отступает океан: в выводах содержалось удивительное утверждение, что Земле два миллиарда лет), он пытался к ним вернуться. Однажды ученым пришло в голову, что Земля нагревается изнутри: некий французский естествоиспытатель заявил, что на дне глубокой шахты теплее, чем на поверхности, а энергии солнечных лучей недостаточно, чтобы объяснить, почему летом так тепло. Тогда, вероятно, планета все еще охлаждается? Раз так, то оценить ее возраст снова представилось возможным.

 

Теперь Бюффон решил точно измерить скорость остывания железных шаров, а затем экстраполировать результат на размеры Земли. Первым делом он проверил гипотезу Ньютона, что скорость остывания железного шара прямо пропорциональна его диаметру. Для этого Бюффон измерил, сколько времени пройдет, прежде чем к шару, раскаленному изначально добела, можно будет притронуться рукой, и сколько еще времени у шара уйдет на охлаждение до комнатной температуры. Чтобы осуществить замеры, он нанял множество юных девушек, чья тонкая кожа была предельно чувствительна к разнице температур. После железа он перепробовал еще ряд материалов: сначала другие металлы, потом глину, мрамор, стекло и известняк — все они остывали быстрее металлов. Тогда он сделал поправку на то тепло, которое планета получала от Солнца, пока остывала. В конце концов он пришел к окончательному выводу: Земле 74 832 года. Из сопоставления температур в разные времена он вывел, когда могла зародиться жизнь и когда появились животные и, наконец, люди. Бюффон опубликовал свои результаты в книге, публика приняла её с большим интересом. Теологи снова возражали, но Бюффону, которому уже перевалило за 70, теперь было все равно. Он принес формальные извинения, однако публиковать опровержение упорно отказывался.

 


Главным доказательством заслуг Бюффона перед наукой является воздвигнутый в его честь памятник, находящийся в ботаническом саду Jardin des Plantes , Франция

 

Однако очередное открытие заставило Бюффона разочароваться в своих оценках. Из анализа ископаемых следовало, что возраст планеты куда больше и составляет, возможно, миллионы лет. Никаких новых выводов он с тех пор не публиковал, но продолжал размышлять на эту тему до самой смерти. Страдая от почечных камней и испытывая постоянную боль, он тем не менее отказался от хирургического вмешательства. За его похоронным кортежем шли тысячи парижан, решивших отдать последние почести величайшему ученому Франции.

 

А споры о возрасте Земли то затухали, то разгорались в течение еще двух сотен лет, пока, наконец, открытие радиоактивности не устранило все противоречия.

Автор: Admin | 2013-01-16 |

Дело о коричневой собаке или защитники животных против науки


Французский медик Клод Бернар активно исследовал процессы внутренней секреции организма. Свои смелые эксперименты он ставил исключительно на животных. Все бы ничего, но многие из его опытов не имели совершенно никакого смысла и не доказывали ровным счетом ничего

 

Во времена правления королевы Виктории в Британии возникло мощное движение против вивисекции, причем его представители обладали серьезным влиянием в обеих палатах парламента. К физиологам, таким как Клод Бернар и Шарль Рише во Франции, а также Мишель Фостер и Бурдон Сандерсон в Англии, любители животных испытывали острую ненависть. Не вызывало сомнений, что на живых животных ставили множество жестоких и зачастую ненужных опытов — особенно во Франции, где никакие законы этому не препятствовали. Величайший физиолог Клод Бернар сделался объектом жестоких нападок (даже со стороны членов собственной семьи), равно как и его учитель Франсуа Магенди (которому доставалось еще больше). Антививисекторы проникали на лекции Магенди, где тот показывал демонстрационные опыты, а затем описывали увиденные там ужасы, не жалея при этом красок и эпитетов. Член парламента Генри Лабушер вспоминает какофонию криков подопытных животных, которая ранила его слух в коридорах Медицинской школы в Париже, и реплику вахтера, который на его замечание отвечал: «А чего вы хотите? Наука…». Люди часто слышали, как Магенди кричал страдающей собаке, распластанной перед ним на столе: «Заткнись, несчастная тварь!».

 


Французский физиолог Франсуа Магенди, который считается пионером экспериментальной физиологии

 

В Великобритании Министерство внутренних дел издало специальный закон об использовании животных в научных целях. Кампания против вивисекции в парламенте и за его стенами была хорошо организована и профинансирована. Ее апогеем стало «дело о коричневой собаке» 1907 года. Эту историю затеяли две юные леди из Швеции, слушательницы Лондонской медицинской школы для женщин. Ранее они уже были потрясены опытами над животными, которые видели во Франции, а теперь с ужасом смотрели на то, что им показывали на лекциях по физиологии в Университетском колледже. Девушки уже через год забросили учебу, однако все это время они вели дневник, куда педантично записывали свои наблюдения. В апреле 1903 года они показали его Стивену Кольриджу, адвокату и уполномоченному Национального общества против вивисекции.

 

Внимание Кольриджа особо привлек один случай. Перед тем как животное принесли в анатомический театр, девушки успели рассмотреть его вблизи и обнаружили полузалеченные шрамы от операций, один из которых, на брюхе, был просто-напросто стянут зажимом. Акт о жестокости при обращении с животными запрещал использовать их более чем в одном эксперименте (хотя эксперимент мог включать две операции), а тут имелась коричневая собака, одетая в плотный намордник и привязанная к столу, которой Бейлис вскрыл шею, чтобы продемонстрировать слюнные железы. Животное, по свидетельству девушек, испытывало страдания, «жестокие и бессмысленные» Бейлис полчаса подряд пытался измерить давление слюны, и все это время собака пребывала в полном сознании. Более того, запаха обезболивающего не ощущалось.

 

Кольридж рассказал о сих вопиющих случаях, немного их приукрасив, при большом стечении негодующей публики. О его выступлении поведали газеты, и в палате общин прозвучали неизбежные вопросы. Бейлис, выставленный преступником, обратился к адвокату, который потребовал, чтобы Кольридж взял свои слова назад и принес извинения. Когда же Кольридж отказался, ему прислали повестку в суд. Процесс в мировом суде начался и ноября 1903 года. Галерея для публики была забита битком.

 


Английский физиолог Эрнест Старлинг на пару с Уильямом Бейлиссом открыл секретин и ввел в науку такое понятие, как гормон

 

Первым из свидетелей выступал Эрнест Старлинг, профессор физиологии в Университетском колледже (заработавший известность совместной с Бейлисом работой по физиологии сердечной деятельности). Он показал, что действительно использовал в опытах коричневую собаку (по его словам, маленькую, а по словам Кольриджа — большую), на которой изучал расстройства поджелудочной железы (в числе которых и диабет). Он вскрыл ей брюхо и перевязал поджелудочный проток. Два месяца спустя, в день показательного опыта Бей-лиса, он осмотрел внутренние органы, чтобы узнать о последствиях первой операции. Убедившись, что все идет как задумано, Старлинг передал анестезированное животное Бейлису для его демонстрационных опытов по изучению секреции.

 

Старлинг нарушил Акт о жестокости с животными, однако заявил в свою защиту, что поступил так только затем, чтобы не жертвовать жизнью еще одной собаки. Как уверял Бейлис — и это смогли подтвердить несколько студентов, присутствовавших на той лекции, — собака не мучилась, ее просто иногда сотрясали судороги. Будь иначе, Бейлис просто не смог бы сделать надрез. Собаке бережно вводили обезболивающее: сначала это был укол морфина, потом — стандартная смесь хлороформа, спирта и эфира, которая поступала в организм через трубку, протянутую под столом и уходящую в глубь собачьей трахеи. Очевидно, спрятанную конструкцию девушки-обвинительницы не разглядели. Опыт, имевший целью показать, что давление слюны не зависит от кровяного давления, провалился: у Бейлиса не получалось стимулировать электрическим током нерв, управляющий слюнными железами, и после получаса безуспешных попыток он сдался. Затем лаборант отнес собаку студенту по имени Генри Дейл, который извлек поджелудочную железу для последующего вскрытия, а саму собаку убил ударом ножа в сердце.

 

Адвокатом Бейлиса был Руфус Исааке (впоследствии маркиз Редингский и вице-король Индии), которуй проделал изрядное количество дыр в версии защиты. Судья был подчеркнуто беспристрастен, но присяжным не составило труда разобраться, кто прав, кто виноват. Кольриджа обязали выплатить Бейлису 2000 фунтов стерлингов компенсации и еще 3000 на судебные издержки. 5000 фунтов 1903 года — это примерно 250 тысяч фунтов сейчас, но сторонники Кольриджа и его движения без труда собрали эту сумму. Бейлис продемонстрировал отменное чувство юмора, когда пожертвовал деньги колледжу на научные исследования. Возникший таким образом фонд существует и поныне, а средства его время от времени тратятся на покупку подопытных животных.

 


Оригинальная статуя коричневого паса была возведена в Баттерси Джозефом Вайтхедом в 1906 году и демонтирована предположительно в 1910

 

Не смирившись с проигрышем в суде, группа противников вивисекции во главе с Луизой аф-Хагеби — одной из тех шведок, с которых все и началось, — решила воздвигнуть памятник коричневой собаке, который символизировал бы их борьбу против жестокости в обращении с животными. Известному скульптору поручили изваять собаку в бронзе, воздвигнуть фонтан и заодно поставить рядом гранитную поилку для лошадей. Вначале затею дважды запрещали, но наконец отыскались податливые чиновники: лондонский Баттерси был в те времена районом пролетариев и социалистов, а среди его обитателей встречались политические активисты, симпатизировавшие движению против вивисекции. Даже в местной больнице старались избегать опытов над животными, и за ней закрепилось неофициальное название «Антививи» Фонтан в итоге установили в парке Баттерси. У его основания красовалась надпись:

 

В память о коричневом терьере, убитом в лабораториях Университетского колледжа в феврале 1903 года после двух месяцев страданий, когда он переходил из рук одного вивисектора в руки другого, пока смерть не принесла ему освобождения. Также в память о других 232 собаках (цифра завышена), замученных вивисекторами в том же месте в 1902 году. Мужи и жены Англии, доколе это будет продолжаться?

 


Новая статуя коричневого пса за авторством Никола Хикса была установлена в парке Баттерси в 1985 году, где стоит и по сей день

 

Статуя появилась 15 сентября 1906 года и сразу же вызвала ожесточенные споры. Однажды ночью на бронзовую собаку дерзко напала группа студентов. Злоумышленников поймала полиция, те предстали перед судом и, признав себя виновными в злонамеренном вандализме, были оштрафованы. Митинги протеста, шествия, беспорядки и аресты по всему Лондону продолжались еще два года. Бесконечная борьба утомила муниципальный совет Баттерси. Когда надежды на компромисс рухнули, причину волнений предложили просто убрать — и одной мартовской ночью 1910 года статуя тихо исчезла.

Автор: Admin | 2013-01-16 |

Послание из космоса

Львиной долей того, что известно нам об устройстве Вселенной, мы обязаны радиоастрономии. Огромные параболические тарелки-приемники, собирающие сигналы из пустоты, стали привычной деталью загородного пейзажа.

Млечный путь – галактика, которую мы можем смело назвать своим домом: в ней располагается Солнечная система

И все они — результат случайного открытия, побочный продукт борьбы за выживание в первые годы Второй мировой войны. По правде говоря, примерно десятью годами раньше их появление предугадал некто Карл Янский — когда он, сотрудник американской компании Bell, искал причины атмосферных помех при радиосвязи. Янский обнаружил, что сила шумов заметно колеблется с периодом около суток, и интуиция подсказала ему, что этот период следует измерить с максимальной точностью. В итоге он сделал настоящее открытие: оказалось, что этот период — 23 часа 56 минут — совпадает с периодом обращения Земли по отношению к неподвижным звездам. Источник помех, следовательно, находится вне Солнечной системы и, похоже, спрятан где-то в Млечном Пути. Это смог подтвердить космолог-любитель Гроте Ребер — он специально построил параболический приемник в своем саду в Уитоне, штат Иллинойс, чтобы выяснить, откуда исходит обнаруженный Янским сигнал. Исследования эти тогда не заинтересовали астрономов, и еще десятилетие в космогонии ничего не менялось.

 


Карл Янский – американский физик, которого по праву называют основоположником радиоастрономии

 

Но вот наступил 1942 год. Многие физики в то время занимались оборонными исследованиями. Среди них был и Дж. С. Хей. В его задачи входило улучшение работавшей со сбоями системы радаров Британской армии. Тогда английские ученые оказались вовлечены в особое состязание с немцами: кто искусней исказит чужой сигнал или помешает ему достигнуть адресата. Хей буквально загорелся этой работой.

 

Неплохая подготовка, сверхважный оборонный заказ и интригующие условия работы — все это подпитывало мой энтузиазм.

 


Военные судна «Гнайзенау» (слева) и «Шарнхорст» (справа)

 

Весь 1941 год враги, из разу в раз все активней, пытались создать помехи нашим радарам. Военное министерство опасалось, как бы они не сделались окончательно бесполезными. 12 февраля 1942 года через Ла-Манш практически незамеченными прошли два немецких военных судна, «Шарнхорст» и «Гнайзенау«. Англичане обнаружили их только тогда, когда атаковать врага было уже поздно и бессмысленно. Вся операция сопровождалась помехами, наведенными с берегов Франции. Этот случай заставил военных чиновников серьезнее отнестись к борьбе с радиопомехами. Чтобы разобраться с такой нелегкой проблемой, они обратились за помощью к Армейской группе операционных исследований. Изучение помех трудно назвать самой интересной темой для исследований. Скорее, наоборот. Тем не менее на вызов следовало ответить, и я с готовностью принял предложение стать ответственным за анализ помех на армейских радарах, а также давать консультации по мерам противодействия. Вместе с офицерами мы составляли инструкции для операторов радаров и организовывали систему незамедлительных отчетов. Передвижную «помехонаблюдательную» лабораторию из стратегических соображений разместили на утесах Довера и укомплектовали членом моей группы. Мне отводилась особая роль — гражданского специалиста на ключевой позиции в армейской системе, а работа оказалась не только не скучной, но даже захватывающей: любой мой совет срочно рассматривали в специальной Противовоздушной комиссии и в самом Военном министерстве.

 

27 и 28 февраля 1942 года во множестве отчетов из самых разных областей страны одновременно сообщалось, что противовоздушные радары с рабочей длиной волны 4 и 8 метров днем испытали серьезные помехи и что невероятная интенсивность помех сделала дальнейшую работу радаров невозможной. К счастью, в тот момент не происходило никаких авианалетов, но тревогу все равно объявили всюду, где был замечен новый вид помех. Осознав, что направления максимальной интерференции, зафиксированные операторами, повторяли маршрут Солнца на небе, я немедленно позвонил в Королевскую обсерваторию в Гринвиче, чтобы узнать, не стряслось ли чего-нибудь экстраординарного с солнечной активностью. Мне сообщили, что хотя и шел всего второй год (если отсчитывать от минимума) одиннадцатилетнего солнечного цикла, но, однако, на Солнце появилось невероятно активное пятно, которое медленно пересекало солнечный диск, а 28 января оказалось на центральном меридиане. (Солнечные пятна путешествуют за счет вращения Солнца вокруг своей оси, они — сильные магниты, хотя Солнце в целом — слабый магнит.) Мне стало ясно, что Солнце должно излучать электромагнитные волны — ничем иным объяснить совпадение направлений нельзя — и что источник этих волн лежит в зоне активного пятна. Я знал, что магнетронные установки генерируют сантиметровые радиоволны (то излучение, которое, отражаясь от самолета, позволяет радару его заметить) за счет электронов, движущихся в килогауссовых магнитных полях. Тогда, размышлял я, почему бы зоне активного пятна — с ее огромными запасами энергии и умением испускать потоки частиц, таких как ионы и электроны, — в магнитном поле порядка ста гауссов не порождать метровое излучение?

 

Когда я написал статью с изложением деталей происшествия, мой начальник Б. Ф. Дж. Шёнланд вспомнил про открытие Янским галактического радиошума, но с этим открытием я прежде не был знаком. Поразительно, но некоторые радиофизики, занятые изучением ионосферы и проблем связи, отнеслись к моим выводам с недоверием. Им было трудно допустить, что такие мощные всплески активности остались незамеченными в прежние десятилетия, когда радиофизика уже вовсю развивалась.

 

Для относительного новичка в этой области было едва ли не наглостью представлять статью про явление большой мощности, связанное с радио, на Солнце.

 

У открытия мощного радиоизлучения со стороны Солнца было много общего с открытием Янского, который обнаружил радиошум в космосе. Оба были примерами наблюдений, сделанных с определенной целью, но указывающих на прежде неизвестное явление. В обоих случаях целью было изучить разновидности интерференции, ограничивавшие эффективность какой-нибудь системы.

 


Сегодня лаборатории Белла – это целый городок, где живут и трудятся тысячи ученых

 

Работам Хея и похожим результатам, полученным в лабораториях Bell независимо от него, но чуть позже, пришлось ждать публикации до конца войны. Хей предполагает, что в ошибке прежних исследователей, которым не удалось зафиксировать столь явное и заметное излучение Солнца в период появления активных пятен, которое, говорит он, «буквально кричало, чтобы его заметили», виновата распространенная тогда догма: никто не слеп настолько, чтобы не увидеть очевидного. Один только астроном-любитель подобрался к этой теме вплотную в 1938 году.

Автор: Admin | 2012-12-29 |

Повар знает, как лучше

Вы – хозяин своей жизни, который способен контролировать все… кроме, конечно же, своих снов. Однако, вашей воле может быть подчинен даже этот загадочный физиологический процесс: осознанные сновидения — это уже не фантастика, а реальность!

Только на сайте www.remee.su Вы сможете приобрести ночную маску, которая позволит Вам контролировать ваши сны!



Американский физик Уилларду Либби Франк разработал метод радиоуглеродного датирования. Этот метод до сих пор широко используется в археологии для определения возраста найденных образцов

 

Появлением метода радиоуглеродного датирования мы обязаны химику Уилларду Либби (1908-1980). Углерод, который присутствует во всех жизненно важных соединениях, содержит в небольших количествах радиоактивный изотоп. Когда организм гибнет, метаболизм прекращается, и окружающая среда больше не поставляет новые порции этих соединений; изотоп в них постепенно распадается. Поэтому, если измерить радиоактивность мертвого животного или растения, можно узнать, насколько давно это животное или растение умерло. Метод произвел переворот в археологии, а Либби в 1960 году стал лауреатом Нобелевской премии. Ниже — рассказ американского биохимика Дэниэла Кошленда (1920-2007), который в то время был его аспирантом:

 


Сегодня бывшего аспиранта знаменитого на весь мир Уилларда Либби, Дэниэла Кошленда, по праву называют самым выдающимся ученым современности

 

Помню, как однажды в субботу Фрэнк Вестхеймер (известный химик, научный руководитель Кошленда) влетел в лабораторию и сказал: «Иди сюда немедленно. Мы тут совещаемся, и ты нам нужен». Я послушно пошел в его кабинет и увидел там Билла Либби, Джорджа Велана, еще двух профессоров и кучку аспирантов. Проблема, которую Либби поставил перед нами, заключалась в следующем: Либби желал знать, как сжечь пингвина. Кто-то убедил его, что ему нужно получить современные образцы с достоверно известным углеродным составом и сравнить их с теми древними образцами, на которых он проверял свой метод углеродного датирования. То есть необходимо собрать животных с Южного полюса, с Северного полюса, с экватора и т.д.

 


Фрэнк Вестхеймер – американский химик, основное направление исследований которого сводилось к изучению механизмов органических и биохимических реакций

 

Пингвина прислали из Антарктики, и нам предстояло решить, как превратить в CO2 весь углерод мяса, клюва, когтей и перьев. Группа начала с очевидных советов: дымящая серная кислота, царская водка (смесь соляной и азотной кислот), дымящая азотная кислота, хромовая смесь и т.д. Каждое предложение кто-нибудь забраковывал, ссылаясь на собственный опыт. В конце концов мы все в унынии разбрелись ужинать. Несколько дней спустя мне посчастливилось встретить Либби, и я поинтересовался, на чем он остановил свой выбор. Либби сказал, что химического решения не нашлось, зато он поделился проблемой с женой. Та, заметив, что все вещества любых живых организмов синтезируются из одного материала, посоветовала сварить пингвина и собрать жир, который, само собой, легко окислить до CO2. Мы последовали ее совету — и задача была решена. И сам ход наших мыслей, и обмен идеями между аспирантами и профессорами, который длился часами, — все это делало атмосферу научной жизни в Чикаго тех лет удивительно привлекательной.

Автор: Admin | 2012-12-22 |

Как Герц открыл радиоволны


Основным достижением Герца стало научное доказательство существования электромагнитных волн

 

В 1886 году Генрих Герц, чьим именем названа единица частоты (в Герцах измеряют, к примеру, число электромагнитных колебаний в секунду), был молодым профессором Университета Карлсруэ, тихой учебной заводи, где он вел курсы вроде метеорологии для агрономов. Располагая минимумом средств и не слишком веря в успех, он прилагал все усилия, чтобы в университете велись хоть какие-то научные исследования. Его самого занимало электромагнитное излучение и в особенности теория Максвелла. Летом 1886-го он женился, и в день его великого открытия, в ноябре того же года, жена Герца, весьма интересовавшаяся его работой, оказалась у него в лаборатории. Герц приспособил индукционную катушку, чтобы генерировать гигантские искры в зазоре между парой небольших сфер на концах металлических стержней. Это была довольно обычная установка для демонстрационных опытов, однако Герц внес в нее кое-какие усовершенствования: стержни были длиннее, а сферы на концах, служившие конденсаторами, где накапливался заряд, больше, чем обычно. Ширину зазора можно было варьировать, а реостат (проводник с переменным сопротивлением) регулировал разность потенциалов в зазоре. Доведя сопротивление реостата до нуля, чтобы вызвать разряд, Герц с удивлением заметил, что слабые искры не прекращают проскакивать. На скамье рядом с прибором лежала еще одна металлическая катушка с парой контактов, куда были насажены сферы, а между ними оставлен зазор для искрового разряда. Во время работы с индукционной катушкой Герц (или, может, его жена) заметили не только ослепительную вспышку между сферами того контура, который катушка подпитывала, но и едва различимые искры в катушке поодаль (которая не была никуда подключена). Ученому выпал редчайший шанс. Как впоследствии писал он сам, «невозможно было прийти к этому явлению, основываясь только на теории».


Всем тем, кто в ближайшее время планирует отправиться заграницу следует на несколько минут отложить прочтение данной статьи и посетить сайт www.finatica.by, со страниц которого Вы узнаете курсы валют в Витебске. Благодаря этому полезнейшему интернет-ресурсу Вы сможете сделать необходимый Вам денежный обмен с выгодой для себя!



Схема экспериментального аппарата Герца, собранная им в 1887 году

 

Тогда Герц осознал, что странное и необъяснимое происшествие — знак чего-то нового. Совсем немного времени потребовалось, чтобы заключить, что контур-приемник реагировал именно на колебания тока в искровом промежутке первого контура, и измерить частоту колебаний с помощью простейшего стробоскопа — вращающегося зеркальца. Герц показал, что он наблюдал вовсе не явление индукции, как предполагал вначале: до катушки-детектора добиралось излучение, которому для этого приходилось пройти сквозь всю комнату. Длина волны излучения была невероятно большой, зато путешествовало оно со скоростью света. Так был открыт путь к радио и всему, что за ним последовало. До технологической революции, вызванной его открытием, Герц не дожил: вскоре он умер от заражения крови в возрасте 36 лет. Случилось это в Бонне — ученый переехал туда, поскольку ему предоставили более высокую должность в Боннском университете. Вот что Герц писал родителям незадолго до смерти:

 

Что бы со мной ни стряслось, не печальтесь. Наоборот, вам стоит слегка гордиться — ведь я из тех избранных, которым отведено прожить недолго и при этом ровно столько, сколько следует. Я не выбирал себе такую судьбу, но, раз она мне досталась, следует ею довольствоваться; и, если бы мне дали право выбирать, я, возможно, ее бы и выбрал.

 

Это напоминает слова Энрико Ферми, который умер — и тоже обидно рано — спустя 70 лет. «Столь ранняя смерть не слишком меня беспокоит, — заявлял Ферми, — поскольку большую часть того, на что я был способен, я сделал».

 


Оливер Лодж — английский физик, ставший одним из изобретателей радио. Первую успешную радиотелеграфию он продемонстрировал 14 августа 1894 года

 

Обнаружение радиоволн — пример синхронного открытия, какие часто встречаются в истории науки. Идеи носятся в воздухе. Англичанин Оливер Лодж наблюдал электромагнитное излучение в том же году, что и Герц. Однако вместо того, чтобы написать статью, он отправился покорять Альпы, собираясь по возвращении подготовить работу к печати.

 

Но было уже поздно: в Лондоне его поджидало известие о статье Герца. Удивительно, но, похоже, Лодж не слишком тогда расстроился.

Автор: Admin | 2012-12-18 |

Перетягивание каната в борьбе за нить жизни

Хотите научиться виртуозно играть в карточную игру под названием подкидной дурак? Тогда Вам следует прочитать тут, на сайте durolom.com, интереснейшую статью, которая познакомит Вас со всеми аспектами этой увлекательнейшей игры.


Открытие структуры ДНК Фрэнсисом Криком и Джеймсом Уотсоном — один из самых драматичных эпизодов в истории науки. Еще драматичней он выглядит в красочном изложении самого Уотсона. В 1952 году 24-летний Уотсон был приглашенным сотрудником Кавендишской лаборатории в Кембридже. Экспериментальные данные, на которые Уотсону с Криком приходилось опираться, были скудны, и при этом оба ученых ясно понимали, что в своих исследованиях они неодиноки. Работе, которая велась в Королевском колледже Лондона, мешала взаимная неприязнь двух главных действующих лиц, Мориса Вилкинса и Розалинды Франклин; главных конкурентов, как казалось Уотсону, следовало искать в Калифорнии, где обосновался грозный Лайнус Полинг — по всеобщему мнению, лучший структурный химик в мире. По счастливой случайности соседом Уотсона по кабинету был сын Полинга Питер, аспирант Кавендишской лаборатории. Чаще всего, вспоминает Уотсон, разговор у них заходил о девушках, однако…

 

…когда Питер одним декабрьским днем плавно вплыл в наш кабинет и закинул ноги на стол, ничего милого в его улыбке от уха до уха, расползшейся по лицу, не было. В руках он держал письмо из Штатов, которое забрал на почте по пути с обеда в Питерхаусе.

 

Письмо было от его отца. За обычными разглагольствованиями о семейных делах следовала новость, которой мы давно опасались: Лайнус располагает структурой ДНК. Про детали не было ни слова, так что с каждым разом, когда письмо переходило от Фрэнсиса ко мне и обратно, мы становились все грустнее. Фрэнсис принялся расхаживать туда-сюда по комнате, рассуждая вслух, что надеется невероятным интеллектуальным усилием восстановить то, до чего, возможно, додумался Лайнус. Раз Лайнус не сообщил нам правильного ответа, то наши заслуги признают равными, если только объявить об открытии одновременно.

 

Ничего стоящего так и не случилось, но какое-то время спустя мы поднялись попить чаю и рассказали Максу Перутцу и Джону Кендрю про письмо. Там мы заметили Брэгга (директора лаборатории), однако никто из нас не решился ему рассказать, что американцы, похоже, в очередной раз обставят английских исследователей. Пока мы поглощали шоколадные бисквиты, Джон пытался приободрить нас, уверяя, что Лайнус может и ошибаться. В конце концов, тот ни разу не видел картинок Мориса и Рози (фотоснимков рентгеновского рассеяния, полученных в Королевском колледже). Сердце, однако, подсказывало нам обратное.

 


Фрэнсис Крик – британский молекулярный биолог, сформулировавший центральную догму молекулярной биологии

 

И вот наступила развязка: в феврале Полинг дописал свою статью и направил копию в Кембридж. Уотсон от ожидания был уже на грани нервного срыва.

 

На самом деле, в Кембридж пришли два экземпляра: один сэру Лоуренсу (Брэггу), другой — Питеру. Первым импульсом Брэгга было отложить статью. Не зная, что Питер получил другой экземпляр, он долго колебался, прежде чем отнести свой в лабораторию Максу. Там ее мог увидеть Фрэнсис — и затеять новую охоту за дикими гусями. Согласно графику, насмешки Фрэнсиса предстояло выносить еще восемь месяцев. Разумеется, если тот завершит свою диссертацию в срок. Затем на год (если не больше) Крик отправится в бруклинское изгнание (в Политехнический институт, где ему предстояло работать), а тут воцарятся мир и спокойствие.

 

Пока сэр Лоуренс колебался, стоит ли отвлекать Фрэнсиса от его диссертации, Фрэнсис и я сосредоточенно изучали копию, которую после обеда принес нам Питер. Лицо Питера, когда он переступил порог, выдавало нечто важное, и у меня заныло в животе от предчувствия, что все потеряно. Видя, что ни Фрэнсис, ни я не в состоянии дальше ждать, Питер немедленно сообщил нам, что модель — трехцепочечная спираль с сахарно-фосфатной связью посередине. Это выглядело настолько похоже на наши прошлогодние изыскания, которые было решено прервать, что я сразу подумал: не осади нас Брэгг, мы уже прославились бы, сделав великое открытие. Не оставляя Фрэнсису ни шанса выпросить статью, я выудил ее из кармана куртки Питера и стал читать. Потратив меньше минуты на выводы и введение, вскоре добрался до рисунков с расположением ключевых атомов.

 

И сразу почувствовал: что-то тут не так…

 


Американский биолог Джеймс Уотсон – один из первооткрывателей структуры ДНК

 

Модель Полинга противоречила экспериментальным данным: Фрэнсис и Крик были с ними знакомы, а Полинг — нет. Что еще хуже, модель была неправильной с химической точки зрения. Считаные недели спустя Уотсон и Крик определили структуру ДНК. Их модель была убедительной до мельчайших деталей — сомнений в ее правильности практически не оставалось.

 

Случай, о котором говорит Уотсон, — когда американцы обставили английских ученых — связан с выяснением структуры полипептидной цепи, то есть структуры белка. Данные рентгеновского рассеяния говорили, что нерастворимый белок кератин (вещество волос, ногтей и наружного слоя кожи) обладает регулярной структурой, почти наверняка спиральной. Несколько лабораторий выдвигали предположения о том, какую форму может принимать эта упорядоченная структура. Брэгг, Перутц и Кендрю напечатали статью со своими гипотезами, которые, как вскоре выяснилось, были неверны.

 


Лайнус Полинг – лучший структурный химик своего времени

 

Окончательную ясность внес Полинг. В 1948 году он в качестве приглашенного профессора работал в Оксфорде. В послевоенные годы университет был местом унылым и безрадостным. Полинг серьезно простудился и заразился синуситом, который приковал его к постели. «В этот день я впервые открыл детектив, — писал он позже, — я просто старался не чувствовать себя несчастным. На второй день было все то же самое. В конце концов такое положение дел меня утомило, и я подумал: «Почему бы мне не поразмышлять о структуре белков?» Взяв ручку, карандаш и бумагу, он набросал полипептидную цепь с линейной геометрией. Значительную часть своей жизни Полинг посвятил измерению и истолкованию длин химических связей между атомами углерода и азота, углерода и кислорода и т.д., а также углов между такими связями; поэтому для него не составило труда извлечь эти числа из своей обширной памяти. Нарисованную цепь он вырезал и завернул, а потом, принимая во внимание, что атомы углерода при азоте будут образовывать водородные связи (слабое, но важное взаимодействие второго порядка) с кислородными атомами других аминокислот в цепи, он попытался выстроить регулярную структуру.

 

Вскоре Полинг нашел спиральную конформацию, которая выглядела весьма убедительно; тогда он подозвал жену и попросил принести транспортир, чтобы измерить у спирали геометрические параметры. Чтобы структура повторяла себя, требовалось 18 аминокислотных остатков, и эти остатки образовывали пять витков спирали. От радости Полинг забыл о своих бедах. Об открытии своем он никому не рассказал, поскольку оно не слишком хорошо согласовывалось с экспериментом: уже интервалы между аминокислотными остатками, критические для всей теории величины, отличались от данных рентгеноструктурного анализа. Впрочем, сворачивая бумагу, Полинг в конце концов обнаружил знаменитую структуру, которую мы знаем под названием альфа-спирали. Брэгг с коллегами упустили ее, поскольку ограничили себя требованием, чтобы на каждый виток приходилось целое число аминокислотных остатков. Когда Полинг предъявил структуру с 18 остатками на 5 витков, кембриджская группа была потрясена.

 

Макс Перутц описывает свою реакцию на выход статьи Полинга — это случилось, когда он субботним утром копался в библиотеке. Перутца откровение Полинга поразило как удар молнии, в смятении он сел на велосипед и отправился домой обедать. Раздосадованный упущением и явным расхождением модели с рентгенограммами, он внезапно вспомнил свой визит к человеку, который эти рентгенограммы сделал, — Уильяму Эстбури из Лидса. И тут Перутц понял: конструкция прибора Эстбури просто не позволяла разглядеть пятно от рентгеновских лучей в том месте, где, согласно Паули, оно должно было быть.

 

В сумасшедшем оживлении я поехал обратно в лабораторию и отыскал лошадиный волос, который хранился в ящике. Закрепив его в гониометрической головке (это устройство для точного выставления углов) под углом в 31° относительно падающего рентгеновского пучка, я заменил плоскую пластинку, какой пользовался Эстбури, свернутой в цилиндр пленкой — она позволяла фиксировать все рассеянные лучи под брэгговыми углами (это углы между падающим и рассеянным рентгеновскими лучами, отвечающие разным симметриям переноса в структуре) до 85°. Через пару часов, когда я проявил пленку, сердце мое готово было выскочить наружу. Как только я вынес пленку на свет, то обнаружил ярко выраженный сигнал, отвечающий расстоянию в 1,5 ангстрема — как раз той величине, что соответствовала α-спираль Полинга и Кори.

 

Утром в понедельник, когда Перутц появился перед своим начальником, сэром Лоуренсом Брэггом, на его лице можно было увидеть и досаду, и торжество. Когда Брэгг поинтересовался, как идея эксперимента пришла ему в голову, Перутц ответил, что всему виной их неумение увидеть то, что увидел Полинг, — это его и разозлило. Брэгг отреагировал фразой: «Лучше бы я разозлил вас раньше» Под таким заголовком и вышла книга Перутца, в которой он рассказывает эту историю.

Автор: Admin | 2012-12-15 |

Своенравная совесть Эддингтона


Гениального английского астрофизика Артура Эддингтона называли научным философом, который своими трудами и идеями продвигал науку в массы

 

Первое время теорию относительности Эйнштейна (и общую, и специальную) никак нельзя было назвать общепринятой истиной. Одни ее противники не могли отказаться от представлений об эфире, гипотетической светоносной среде; других пугала мысль, что время — понятие относительное, а скорость света — максимально возможная. Среди самых стойких защитников Эйнштейна в этих непрекращающихся спорах был выдающийся английский астроном сэр Артур Эддингтон (1882-1944).

 


Ученик блистательного Артура Эддингтона — Субраманьям Чандрасекар – приоткрыл перед миром завесу тайны внутреннего строения и эволюционного развития звезд

 

Эддингтон был болезненно стыдлив, но отнюдь не скромен. Его блистательный ученик Субраманьям Чандрасекар вспоминал мельком услышанный диалог Эддингтона с другим астрономом, Людвигом Зильберштейном. Зильберштейн мнил себя большим знатоком теории Эйнштейна и потому сделал Эддингтону комплимент, назвав того одним из трех человек в мире, которые эту теорию понимают. Эддингтон выглядел смущенным, и Зильберштейн дружески посоветовал ему отбросить ложную скромность — на что последовал ответ: «Дело вовсе не в этом. Просто я пытаюсь догадаться, кто же третий». Помимо всего прочего, Эддингтон был квакером и пацифистом и потому весьма симпатизировал Эйнштейну, который не побоялся всеобщего осуждения, выступая против германского милитаризма с самого начала Первой мировой войны. В этом, возможно, и стоит искать причину, заставившую Эддингтона доказывать правоту Эйнштейна.

 


Я думаю, что этот человек, теории которого Эддингтон отстаивал до своего последнего вздоха, не нуждается в представлении

 

Эйнштейн страстно желал проверить экспериментально те предсказания, которые давала его теория (скорее для того, чтобы убедить скептиков, чем для собственного спокойствия, — сам он ни секунды не сомневался в своей правоте). Одно из предсказаний, допускающих проверку, заключалось в том, что гравитация искривляет свет; самый простой способ в этом убедиться — измерить видимое смещение звезды, достаточно близко подошедшей к солнечному диску. Эти звезды видны во время полных солнечных затмений, и одно из таких затмений ждали-29 мая 1919 года. Эддингтон настоял, чтобы Британия снарядила для наблюдений сразу две экспедиции — одну в бразильский Собраль, а другую (под руководством самого Эддингтона) — на остров Принсипи у западного побережья Африки.

 

Задача, однако, оказалась сложнее, чем думали. Великий Лаплас в начале XIX века и немецкий астроном Георг фон Зольднер немногим позже независимо предсказали, что свет, рассматриваемый как поток частиц, будет изгибаться гравитационным полем. (Работа Зольднера пылилась в архивах, пока ее не отыскал оппонент Эйнштейна Филипп Ленард, чьи антисемитизм и раздражение росли день за днем, и теперь он использовал Зольднера в борьбе со своим заклятым врагом.) Ньютонова механика предсказывала сдвиг на 0,875″, а модель Эйнштейна — на 1,75″ Впрочем, сдвиги такого порядка едва выбивались за рамки погрешности измерения самых точных приборов того времени. Могли ли телескопы в Собрале или на Принсипе с достоверностью отличить 0,9″ от 1,8″? Эддингтон предполагал, что могли.

 


Фотография полного солнечного затмения, сделанная Артуром Эддингтоном 29 мая 1920 года

 

Самые благоприятные условия для наблюдений складывались в Бразилии. Лучший из телескопов, привезенных туда, выдавал среднее отклонение в 1,98″ (то есть больше, чем требовала теория Эйнштейна), а на телескопе похуже получили о,86″, неотличимое от прогнозов Ньютоновой механики. На острове Принсипи в самый неподходящий момент появились облака, и только на двух из шестнадцати пластинок, заснятых во время затмения, имелись изображения звезд — не слишком четкие, зато позволяющие сделать хоть какие-то замеры. По ним выходило, что среднее отклонение составляет 1,61″ при стандартной ошибке в 0,3″. Результаты представили на внеочередном собрании Королевского общества и Астрономического общества, созванном специально для этого 6 ноября 1919 года. Председательствовал сэр Дж.Дж. Томсон, президент Королевского общества. Королевский астроном сэр Фрэнк Дайсон выступил первым и сообщил вот что:

 

Астрографические пластинки (то есть фотографические пластинки, экспонированные на специальном телескопе) дают 0,97″ для смещение на лимбе, если проводить калибровку по самим пластинкам, а равное — 1,40″, если калибровать по контрольным пластинкам (то есть снимкам, сделанным на том же телескопе ночью). Однако лучшие пластинки показывают результат 1,98″ — притом что Эйнштейн предсказывал смещение на лимбе в 1,75″ На этих пластинках согласие между данными для отдельных звезд было наилучшим из возможных.

 

После тщательного анализа пластинок я готов заявить: нет сомнений, что предсказания Эйнштейна подтверждаются. Были получены ясные доказательства того, что свет искривляется в соответствии с Эйнштейновыми законами гравитации.

 

Дайсон ни словом не обмолвился о данных, полученных на Принсипи. Эддингтон, который выступал вслед за ним, результаты с Принсипи не отбраковал, и если забыть про показания менее совершенного телескопа из Собраля, то после усреднения оставшихся величин — избыточно высокой «бразильской» в 1,98″ и не слишком точной «африканской» в 1,61″ — получалось ровно то, что предсказывал Эйнштейн. Тут выступил профессор Зильберштейн: «Другая попытка проверить теорию относительности, основанная на красном смещении света далеких звезд, провалилась. Так почему стоит верить сомнительным данным по искривлению света, полученным на пределе точности приборов?» — спросил он. У Эддингтона не нашлось убедительного ответа. (С загадкой красного смещения справятся позже: оно возникает из-за сдвига в частоте колебаний излучения, испущенного движущимся объектом. Точным аналогом может служить снижение тона у свистка удаляющегося поезда.)

 

Вот воспоминания одного из участников экспедиции на Принсипи:

 

Когда нас познакомили с задачей, имелось три возможных сценария. Первый — никакого отклонения не будет вообще, то есть свет не подчиняется законам гравитации. Второй — случится «отклонение наполовину»: это будет означать, что притяжение все-таки действует на свет, как утверждал еще Ньютон, и ситуацию описывают простые ньютоновские законы. Третий — наконец произойдет «полное отклонение», которое подтверждает правоту Эйнштейна в противовес Ньютону. Помню, как Дайсон разъяснял все это моему коллеге Коттингэму. «Если мы получим двойное отклонение — что это будет значить?» — спрашивал тот. «Тогда, — сказал Дайсон, — Эддингтон сойдет с ума, и вы отправитесь домой в одиночку».

 

Не приходится сомневаться, что главной целью Эддингтона было восстановить согласие между немецкими и западными учеными, подпорченное патриотическим угаром Первой мировой войны.

 

Дело в том, что группа немецких светил (в которую Эйнштейн, разумеется, не входил) в 1914 году подписала так называемую Фульденскую декларацию, где со страны снималась вся ответственность за развязывание войны и подчеркивалось, что немецкие ученые поддерживают армию. Это и последующие события спровоцировали всплеск яростного шовинизма в научных журналах (таких как Nature) в Британии, Франции и США.

 

Выводы экспедиций привлекли к себе одобрительное внимание прессы: появился номер Times с заголовком «Революция в науке: идеи Ньютона отвергнуты», а за Эйнштейном закрепилась репутация героя. Разумеется, во время последующих затмений тоже делались замеры, которые давали противоречивые и двусмысленные результаты, но пререкаться было уже поздно. И лучшие специалисты, и общественность сходились во мнении: теория относительности верна. Что касается Эддингтона, его время от времени мучила совесть, но разве что слегка. Впоследствии он признавался, что сомнения его посещали, однако в некрологе коллеге Дайсон писал:

 

Объявление результатов вызвало живой интерес у общества, и теория относительности, которая прежде была достоянием немногих специалистов, в одночасье стала известна всем. Более того, не обошлось без международного резонанса: эта история положила конец бойкоту немецкой науки. Став первыми в деле проверки и окончательного подтверждения теории, принадлежащей «врагу», наша национальная Обсерватория вернула к жизни лучшую из научных традиций. Этот урок, вероятно, стоит усвоить всему остальному миру.

 

Чисто технически такой поступок был ошибкой, которая пуристу покажется более чем постыдной, — зато совершили ее из самых благородных побуждений.

Автор: Admin | 2012-11-28 |

Как найти высоту дома с помощью барометра

Однако давайте отложим столь сложные темы на несколько часов и уделим время увлекательной игре русская рыбалка, которая будет интересна не только профессиональным рыбакам, но и людям совершенно далеким от этого увлечения.
Хотите присоединиться к виртуальному рыболовному сообществу прямо сейчас, тогда пройдите простую регистрацию на сайте www.rusfish.name!


Как-то на экзамене по физике в Копенгагенском университете профессор спросил одного из студентов: «Расскажите, как найти высоту небоскреба с помощью барометра».

 

Молодой человек ответил так: «Нужно привязать к барометру длинную нить, затем спустить барометр с крыши небоскреба на землю. Длина нити плюс длина барометра дадут нам высоту здания».

 

Этот оригинальный ответ настолько «обрадовал» экзаменатора, что студент ушел с экзамена с двойкой. Уверенный в своей правоте, он подал апелляцию, и тогда университет доверил разрешить конфликт независимому арбитру.

 

Арбитр постановил: ответ действительно правильный, но не свидетельствует о сколь-либо заметном знании физики.

 

Для окончательной определенности студента решили вызвать снова и предоставить ему шесть минут для устного ответа, который бы показал как минимум знакомство с основными законами физики. Пять минут студент просидел в молчании, сморщив в задумчивости лоб. Арбитр напомнил, что время истекает, на что юноша сказал, что у него есть несколько ответов, только вот он никак не решит, какой из них выбрать.

 

Когда ему посоветовали поторопиться, студент начал так:

«Во-первых, можно вылезти с барометром на крышу небоскреба, сбросить его оттуда и засечь время, за которое он долетит до земли. Высота здания выводится по формуле H=0.5gt2, но барометра мы лишимся.

 

Или, — продолжал он, — если на улице солнечно, можно измерить высоту барометра, затем поставить его вертикально и измерить длину тени. Затем, зная длину тени небоскреба, из простой арифметической пропорции получить его высоту.

 

Но если вам хочется действовать строго по-научному, к барометру следует привязать короткую нить и раскачать его как маятник — сначала на земле, а потом на крыше небоскреба. Высота выводится из разности ускорений свободного падения, получаемых из уравнения T=2ω(l/g)1/2.

 

Или, если у небоскреба имеется пожарная лестница, проще всего будет подняться по ней, делая отметки с интервалом в длину барометра, а в конце перемножить одно на другое.

 

Или, если вам просто хочется поступить шаблонно и скучно, вы, разумеется, можете использовать барометр для оценки атмосферного давления на уровне крыши и на уровне земли, а потом перевести величину в миллибарах в футы и получить высоту.

 

Но, поскольку нас регулярно призывают проявлять независимость мышления и применять научный метод, безусловно, лучшим выходом будет постучаться в комнату вахтера и сказать ему: «Хотите прекрасный новый барометр? Я отдам его вам, как только вы сообщите мне высоту небоскреба».

 


Датчанина Нильса Бора (1885-1962) по праву называют отцом-основателем современной физики

 

Студента звали Нильс Бор. Прошли годы, и он получил Нобелевскую премию по физике.

 

Бор определенно имел привычку задумываться, невероятно сосредоточившись, перед тем как выдать ответ на какой-нибудь вопрос. Вот как это описывает физик Джеймс Франк, которого цитирует Пайс:

Иногда он просто сидел с идиотским видом. Лицо теряло осмысленное выражение, руки свисали, и вы не могли знать наверняка, способен ли этот человек хотя бы видеть. В такие минуты его ничего не стоило принять за идиота. В нем не было ни капли жизни. Затем вы внезапно замечали, как по нему разливается сияние и пробегает искра, и вот он уже говорит: «Теперь я знаю!» Такая сосредоточенность завораживает… Вы не видели Бора в юности: иногда совершенно пустое лицо и полная бездвижность. Это было важным ингредиентом сосредоточенности. Я уверен, то же самое случалось в минуты глубоких раздумий с Ньютоном.

 

По мнению многих, Бор был самым глубоким мыслителем среди физиков-теоретиков. Однако, если он говорил, ему редко удавалось внятно донести мысли до слушателей. Его своеобразную манеру вести публичные лекции живее всего описывает Абрахам Пайс, друг и протеже Бора:

Главной причиной было то, что, говоря, он в то же время был весь в своих мыслях. Помню, как однажды, закончив излагать часть доказательства, Бор произнес: «И… и…», замолчал на секунду и добавил: «Но…», а потом продолжил. Между «и» и «но» он успел продумать следующий шаг. Тем не менее он просто забыл проговорить его вслух и поспешил дальше.

 

Вот еще одно описание Бора на лекции:

Величайшего из физиков, Нильса Бора, я впервые услышал в Эдинбурге. К концу сессии, посвященной основаниям квантовой механики, он встал и произнес некое чрезвычайно важное замечание. До этого момента я бесстыдно пробрался в первый ряд, поскольку не хотел упускать ни слова из того, что скажет этот великий человек, а меня предупреждали, что понять его непросто. (Позже, на международной конференции с синхронным переводом, я узнал, что когда Бор выступал на «английском», то специальный синхронист переводил его речь на английский.) Несколько минут он говорил низким горловым голосом (который больше напоминал тихий шепот), отчеканивал каждое слово со страшной интонацией и время от времени размечал свою речь взмахами рук. Любой профан бы понял, что Бор говорит нечто чрезвычайно важное. Важность его слов не ускользнула и от меня, зато совершенно ускользнул смысл. Я не понял ни одной фразы целиком. Когда аплодисменты стихли, я спросил у соседа, Леона Розенфельда (физика родом из Бельгии, который знал французский, английский, немецкий, датский и «борский», поскольку он работал главным ассистентом у Бора в Копенгагене): «Что же он сказал в своем заключении?» — «Он сказал, что сессия у нас была долгой и интересной, что каждый наверняка очень устал и что пришло время освежиться».

 

Бор, разумеется, о своих коммуникативных трудностях не догадывался. Пайс вспоминает, что ученый был совершенно ошеломлен, когда кто-то из коллег на это мягко намекнул. «Только представь, — жаловался Бор Пайсу, — он думает, что я плохой лектор».

 

Бора знали и уважали везде. Он был человеком невероятной нравственной смелости и интеллектуальной честности, но при этом полностью лишен тщеславия.

 

Когда Бор приехал в Физический институт Академии наук СССР, то на вопрос, как ему удалось создать первоклассную школу физиков, он ответил: «Наверное, потому, что я никогда не стеснялся признаться своим студентам, что я — дурак».

 


Нильс Бор во время лекции

 

Е.М. Лифшиц, переводя Бора, в этом месте ошибся, и в его редакции фраза прозвучала несколько иначе: «Наверное, потому, что я никогда не стеснялся признаться своим студентам, что они дураки».

 

Реплика вызвала в аудитории оживление. Затем Лифшиц поправился и извинился за случайную оговорку. Однако П.Л. Капица, присутствовавший в зале, весьма глубокомысленно заметил, что это никакая не оговорка. Фраза точно отражала главное отличие школы Бора от школы Ландау, к которой принадлежал Е.М. Лифшиц.

 


Лев Давыдович Ландау (1908-1968)

 

Лев Давыдович Ландау — великий физик, известный своим высокомерием и политическим безрассудством. Многотомный учебник по теоретической физике Ландау и Лифшица был и остается библией для физиков. В 1930-х годах Ландау был арестован за политическую неблагонадежность и наверняка погиб бы в застенках, не вступись за него Капица. Острый на язык Ландау встретил равного в Вольфганге Паули: однажды продемонстрировав Паули свою работу, он с вызовом спросил, считает ли тот ее бессмыслицей. «Вовсе нет, вовсе нет, — отреагировал Паули. — У вас такая путаница в мыслях, что я просто не в состоянии разобраться, бессмысленны они или нет».

Автор: Admin | 2012-11-03 |

Истории про Ньютона

Решили переждать эту зиму в теплых станах? Тогда Вам просто необходимо посетить страницу http://business-ryazan.ru/index.php/the-news/4366-ryazan-domodedovo, благодаря которой Вы узнаете актуальную информацию по ценам и расписанию автобусов, следующих по маршруту Рязань-Домодедово и обратно.



Сэр Исаак Ньютон не нуждается в представлении

 

Про сэра Исаака Ньютона существует множество легенд. В зрелые годы он был мрачным и мелочным, завидовал современникам и был одержим духом соперничества. В непрерывном споре с ганноверцем Готфридом Лейбницем по поводу того, кто первым придумал дифференциальное исчисление, его ожесточенность доходила порой до неприличия. Когда Лейбниц умер, Ньютон искренне радовался, что «бесповоротно поразил Лейбница в сердце». Недаром Джон Флемстед (1646-1719), первый королевский астроном, однажды сказал: «Я уже мечтаю, чтобы Ньютон наконец-то помер».

 


Единственной привязанностью Ньютона была его племянница, если не считать миниатюрной собаки по кличке Даймонд. Когда собака опрокинула свечу и устроила пожар, уничтоживший ценнейшие книги и рукописи, Ньютон лишь воскликнул: «Ох, Даймонд, Даймонд, тебе не понять, что ты натворил».

 

Несмотря на невеселое детство без отца, маленький Ньютон развлекался как мог. Он склеивал фонарь из мятой бумаги и, вставив туда свечу, шел с ним в школу, если дело было зимним темным утром. По пути он находил какую-нибудь кошку и привязывал ей все это к хвосту. Народ пугался — люди думали, что перед ними комета, а кометы тогда считались предвестниками несчастий.

 


История о яблоке, свалившемся на него в Вулсторпе, может иметь под собой основания или, по крайней мере, исходить от самого Ньютона: большой его почитатель Вольтер услышал ее от племянницы ученого Кристины Кондуит. Во время работы Ньютон умел полностью отключаться от окружавшей его жизни. Рассказывают, что однажды его обнаружили на кухне перед кастрюлей кипятка, где варились часы, а сам Ньютон при этом сосредоточенно разглядывал зажатое в руке яйцо. Его племянник Хамфри в 1727 году, уже после смерти сэра Исаака, писал:

В тех нечастых случаях, когда он решался отобедать в зале (лондонского Тринити-колледжа), он поворачивал налево и выходил на улицу — а там, обнаружив оплошность, останавливался, и иногда, вместо того чтобы возвратиться в залу, отправлялся в свою комнату.

 


Из яблочных семечек ньютонова дерева были выращены их потомки в ботаническом саду Кембриджского университета (слева) и читальном саду университета Balseiro (справа)

 

А вот что можно найти в дневниках Томаса Мора:

Расскажу анекдот о Ньютоне, показывающий его чрезмерную рассеянность. Однажды он пригласил друга (это был доктор Стакли) на ужин и тут же об этом забыл. И вот Стакли прибыл и обнаружил философа в задумчивости. Ужин принесли ему одному. Стакли (не желая отвлекать Ньютона) сидел и ел, а Ньютон, придя в себя, поглядел на пустые тарелки и произнес: «Надо же! Не будь передо мной явных доказательств, я был бы готов поклясться, что не ужинал».

 

И сейчас, спустя более трех столетий, гениальность Ньютона продолжает вызывать благоговейный трепет и восхищение. Описывая главный его труд, Уильям Уивел, ученый Викторианской эпохи, заметил: «Читая Principia, мы ощущаем себя так, как если бы оказались в древнем арсенале, где хранится оружие воинов-гигантов, и не перестаем удивляться, каким должен был быть тот, кто мог этим воевать, тогда как мы едва способны лишь взвалить это на плечи».

 

Марк Кац, польско-американский математик, различал два типа гениев: с одной стороны, есть «обычные гении» — это те, что устроены так же, как и мы с вами, только вот одарены на порядок больше, и, с другой стороны, «волшебники» — те, чье мышление мы в принципе понять не способны. «Волшебником» Кац считал Ричарда Фейнмана. Когда современника и соперника Фейнмана Мюррея ГеллМанна спросили, как Фейнман решал задачи, тот ответил: «Дик делал вот так, — тут он изображал человека в глубокой задумчивости, обхватившего лоб руками, — а потом записывал ответ». (Возможно, в его замечании была некая доля зависти.)

 

Лучший знаток биографии Ньютона Ричард Вестфол писал:

Чем больше я им занимаюсь, тем больше Ньютон от меня удаляется. Мне повезло в разное время быть знакомым со множеством блестящих людей, чье интеллектуальное превосходство я без колебаний признаю. Но я не встречал пока никого, с кем не мог бы себя соизмерить — всегда можно сказать: я равен его половине, или его трети, или четверти, но всегда выйдет некая дробь. Мои исследования о Ньютоне окончательно убедили меня: соизмерять кого-либо с ним бесполезно. Для меня он сделался абсолютным Другим, одним из крохотной горсти высших гениев, придавших смысл понятию человеческого интеллекта; человеком, несводимым к критериям, по которым мы оцениваем себе подобных.

Автор: Admin | 2012-10-25 |
2 страница из 6123456

GIF
Видео
Видео
Все обо всем
Забавно!
Иллюстрированные факты
Искусство
Истории
Все размещенные на сайте материалы без указания первоисточника являются авторскими. Любая перепечатка информации с данного сайта должна сопровождаться ссылкой, ведущей на www.unnatural.ru.