Необычный

Тёмная физика

Верите в силу космоса и огромное значение темной материи в жизни всего сущего? Тогда вам определенно точно придутся по вкусу товары Supernatural Merchandise. Эти уникальные амулеты и талисманы не только потрясающе стильно выглядят, но и наделены уникальными, практически магическими свойствами!



Гипотеза о существовании «тёмной материи» появилась в качестве возможного объяснения очередной аномалии, замеченной астрономами. В 1922 году голландец Якобус Каптейн, исследуя странности в движении звёзд, пришёл к выводу, что значительная часть вещества в нашей Галактике невидима. В его работе, вероятно, и был впервые использован термин «тёмная (скрытая) материя». Через десять лет гипотезу поддержал пионер радиоастрономии Ян Оорт, но широкое распространение она получила ещё через год, когда швейцарский астрофизик Фриц Цвикки вычислил радиальные скорости восьми галактик, расположенных на краю скопления Кома (созвездие Волосы Вероники), и сравнил полученные данные с аналогичными, но рассчитанными с использованием видимой яркости скопления. Он установил, что для сохранения устойчивости полная масса скопления должна быть в четыреста раз больше, чем масса входящих в него звёзд. На основание этого Цвикки предположил, что в скоплении присутствует значительный запас вещества, которые остаётся для нас невидимым, но оказывает сильнейшее гравитационное воздействие на галактики, не давая им распадаться. Цвикки ошибся в расчётах на порядок, но поздние, более точные и тщательные измерения подтвердили: масса скопления Кома, если её вычислять двумя разными способами, по результату не сходится в разы!

 


Туманность Андромеды

 

Впрочем, прежде чем делать соответствующие обобщения, требовалось доказать, что подобный эффект наблюдается и у других объектов обозримого космоса. В 1939 году американский астроном Хорес Бэбкок, исследуя вращение ближайшей к нам галактики М31 (Туманность Андромеды), обнаружил, что скорость вращения звёзд вокруг её центра не уменьшается, как предсказывала небесная механика, обратно пропорционально квадрату расстояния, а остаётся почти постоянной. Это означает, что галактика на всём своём протяжении содержит значительную массу невидимого вещества. Бэбкок, правда, не стал связывать аномалию с непонятной «тёмной материей», а высказал предположение, что, вероятно, в наружной части М31 происходят какие-то процессы, меняющие её динамику.

 

К гипотезе «тёмной материи» астрономы вернулись в 1960-е годы, когда появились новые точные инструменты для изучения Вселенной. Прежде всего было установлено, что постоянная скорость вращения звёзд в галактиках — это не уникальное явление, характерное только для Туманности Андромеды, а вполне типичное. В 1975 году на конференции Американского астрономического общества выступили Вера Рубин и Кент Форд, которые заявили, что им удалось получить надёжные данные, свидетельствующие о значительном рассогласовании между теорией распределения масс в галактиках и наблюдаемой реальностью. Учёные использовали самый современный и чувствительный спектрограф, позволявший определять скорость вращения ветвей спиральных галактик даже при виде «с ребра». И установили, что подавляющее большинство звёзд в галактиках двигаются по своим орбитам с одинаковой угловой скоростью, подтверждая невероятное допущение: плотность массы в галактиках распределена равномерно, она практически не отличается как в регионах, где находится большинство звёзд (балдж), так и там, где звёзд мало (на краю диска). Ещё через три года наблюдения Рубин и Форда получили независимое подтверждение, а в 1980 году астрономическое сообщество окончательно признало правоту их выводов. Тогда же Рубин установила, что для согласования теории с практикой галактики должны содержать в шесть раз больше невидимой материи, чем той, которую мы способны разглядеть в телескопы.

 

Тогда же начали поступать и другие доказательства. Во-первых, изучение движения в системах двойных галактик выявило колоссальное влияние на него «тёмной материи», явно нарушающее классические законы небесной механики. Во-вторых, без «тёмной материи» эллиптические галактики быстро теряли бы свой горячий газ, чего не наблюдается. В-третьих, сама «тёмная материя» изгибает свет, о чём свидетельствует эффект гравитационного линзирования.

 

Сегодня считается, что доля «тёмной материи» составляет 84,5% от всей материи, содержащейся во Вселенной.

 


Explorer 66

 

Идея «тёмной материи» пригодилась космологам, когда они не смогли обнаружить предсказанную теорией происхождения Вселенной неоднородность в реликтовом излучении (космическом микроволновом фоне) и объяснить через это возникновение галактических структур. Введение в модель неких частиц, почти не взаимодействующих с обычным веществом, но зато очень тяжёлых, позволяло обойти возникшее затруднение. Однако в начале 1990-х годов неоднородность реликтового излучения была всё-таки выявлена с помощью космической обсерватории COBE (Explorer 66). Казалось, вопрос закрыт, но «тёмная материя» уже настолько очаровала учёных, что они не отказались от неё, а, наоборот, занялись поисками её «носителя» на субатомном уровне.

 

Проблема в том, что «тёмная материя» не взаимодействует с электромагнитным излучением (в том числе с видимым светом), поэтому её нельзя обнаружить традиционными методами. Хуже того, исследование движения четырёх сотен звёзд, находящихся в радиусе 13 000 световых лет от Солнца, не показало какого-либо влияния «тёмной материи», и учёным пришлось сделать вывод, что её в нашей области космоса ничтожно мало (около 500 граммов на объём земного шара), то есть зарегистрировать частицу такого вещества невероятно трудно, если вообще возможно. В последнее время было несколько «ложных тревог», когда космические гамма-телескопы (Compton и Fermi) вроде бы фиксировали проявления «тёмной материи», но позднее выяснялось, что это было либо ошибкой интерпретации, либо результатом флуктуации.

 

Физики пытались решить проблему теоретически, определив параметры гипотетического вещества в опоре на Стандартную модель элементарных частиц. В качестве претендентов рассматривались нейтрино (но они слишком лёгкие) и такие гипотетические частицы, как аксионы, космионы, гравитоны, гейджино, вимпы, магнитные монополи и другие. Вызывает вопросы и наблюдаемое распределение «тёмной материи» в пространстве: ведь если она гравитационно взаимодействует с обычным веществом, то должна стягиваться в центры галактик так же, как обычное вещество, однако этого не происходит — напротив, она заполняет гало в межгалактической среде.

 

Понятно, что странности в поведении «тёмной материи» вызывают инстинктивный протест у ряда физиков, поэтому они отказываются признать её существование, объясняя аномалии в распределении галактических масс другими способами. Например, упомянутая Вера Рубин полагает, что разумнее доработать классические теории, чем вводить в модель принципиально новый класс субатомных частиц. Она сторонница модифицированной ньютоновской динамики (MOND), которая была предложена Мордехаем Милгромом в 1983 году и пока остаётся маргинальной.

 


Телескоп Spitzer

 

Однако новейшие исследования, похоже, вскоре заставят научный мир пересмотреть своё отношение к «тёмной материи». Группа физиков из университета Кейс Вестерн Резерв (Кливленд, штат Огайо) опубликовала 19 сентября статью, в которой анализируются результаты наблюдений 153 галактик с помощью инфракрасного телескопа Spitzer, причём в поле зрения попали и спиральные галактики типа нашей, и галактики неправильной формы, и гигантские галактики, и карликовые. Исследование проводилось для того, чтобы уточнить степень влияния «тёмной материи» на вращение звёзд. И внезапно выяснилось, что никакого влияния нет вовсе, а известные аномалии отлично объясняются распределением нормального вещества.

 

Авторы открытия предполагают, что их результаты кардинально расходятся с предшествующими, потому что впервые для оценки массы далёких астрономических объектов использовались снимки в инфракрасном диапазоне, а не в видимом свете. Многие такие объекты выглядят очень тусклыми, что, вероятно, и приводило к ошибкам при подсчёте их реальной массы. Если данные подтвердятся, то на космологической модели, в основу которой положена гипотеза о существовании «тёмной материи», можно уверенно ставить крест, причём даже не прибегая к пересмотру классической физики.

Автор: Admin | 2016-12-25 |

Фримен Дайсон: сферический ученый в вакууме

«Бог — это разум, переросший границы нашего понимания.»
Фримен Дайсон


Наука — это всегда творчество. Это поиск новых решений и игра воображения. Без всего этого сухая логика бесполезна. Однако порой фантазия способна даже самый блестящий, самый строгий ум завести в неведомые, космические дали. Фримен Дайсон — знаменитый учёный, который придумал поистине фантастический научный концепт. Этот концепт известен больше, чем создатель, хотя и носит его имя. Это одна из самых масштабных конструкций, когда-либо предложенных человеком. Это сфера Дайсона. Читать дальше>>

Автор: Admin | 2016-05-03 | Наука, Необычные люди

Железный рой | Дроны

«Короче говоря, я вижу это так: в эволюционной борьбе победили два вида устройств — наиболее эффективно уменьшавшиеся в размерах и другие — неподвижные. Первые дали начало этим самым чёрным тучам. Лично я думаю, что это очень маленькие псевдонасекомые, способные соединяться в случае необходимости, ради каких-то общих интересов, в большие системы. Как раз в виде туч. Так шла эволюция подвижных механизмов.»
Станислав Лем, «Непобедимый»


Ещё пять лет назад ничто не предвещало беды. Никто не мог представить, что они так плотно войдут в нашу жизнь. Конечно, им ещё далеко до популярности мобильных телефонов, но сомневаться не приходится — прямо перед нашими глазами совершается настоящая революция, которую мы чуть не проморгали. Маленькие и большие, летающие и ползающие, радиоуправляемые и автономные — всё это о дронах. Читать дальше>>

Автор: Admin | 2016-04-07 | Все обо всем

На неверном пути: не подтвердившиеся научные гипотезы


По мнению сайнсфриков, главное, а может, и единственное занятие представителей так называемой «официальной науки» — замалчивание сенсационных открытий. В реальности учёные не меньше простых смертных склонны из всех возможных объяснений предпочитать наиболее интригующие. Однако лишь до тех пор, пока речь идёт о предположениях — гипотезах. И экспериментальная проверка регулярно подрезает крылья фантазии… Но бывает очень трудно доказать, что в тёмной комнате нет чёрной кошки. Читать дальше>>

Автор: Admin | 2016-01-01 | Все обо всем, Космос

Курорты льда и пламени | Туристический путеводитель для фанатов «Игры престолов»

«Бенджен Старк возвращается в Ночной Дозор с бастардом своего брата. Я хочу поехать вместе с ними и увидеть Стену, о которой мы так много слышали… постоять на вершине Стены и пустить струю с края мира.»
Тирион Ланнистер, первый турист Семи Королевств


В мире «Игры престолов» не хотел бы поселиться даже самый ярый фанат сериала и книг Джорджа Мартина. Едва ли кто-то мечтает оказаться там гостем на свадьбе или простым зрителем на арене для поединков. Однако благодаря сериалу «Игра престолов» от HBO поклонники саги могут совершить турпоездку во вполне мирный Вестерос. В этом выпуске фантастического путеводителя мы расскажем, как найти Королевскую Гавань и Винтерфелл, Браавос и ледяное Застенье… прямо на карте Европы. Читать дальше>>

Автор: Admin | 2015-11-08 | Необычные люди

Топ-5: самые крупные выигрыши в казино

1

Газеты и интернет издания пестрят заголовками о сотнях счастливчиков, сорвавших джекпоты в казино и вытянувших счастливые билеты в лотереях. Эти люди в одночасье превратились из простых обывателей со средним (в лучшем случае) доходом в миллионеров и миллиардеров. Многим такое богатство вскружило голову, и они прокутили свое состояние за пару лет, другие вовсе лишились своих миллионов из-за своей беспечности, а третьи и вовсе сложили свои головы на плаху, где палачом была сама госпожа Фортуна. Впрочем, есть и те, кто успешно вложил свои выигранные миллионы и безбедно живет и по сей день на гигантские дивиденды. Сегодня же речь пойдет о пяти самых крупных и знаковых выигрышах в индустрии азартны игр.

2

1. 2004 год, Лас-Вегас. 32-летний англичанин Эшли Ревелл – настоящий сорвиголова – он снял со своих счетов все деньги и… отправился в казино при отеле «Плаза». Он сел за стол для игры в рулетку и приготовился сделать самый рискованный шаг в своей жизни – поставить накопленные за долгие годы 135 тыс. долларов на красное. «Ставки сделаны, ставок больше нет». На глазах у изумленных посетителей казино и родственников Эшли Ревелл, шарик упал в ячейку и крупье произнес: «Семь красное».

Так просто и без особых хлопот Эшли за несколько секунд удвоил свое состояние. В этот вечер он еще 4 раза ставил на красное все деньги и… каждый раз выигрывал. В результате из казино он ушел миллионеров, выиграв в общей сложности более 4 миллионов долларов.

3

2. 2003 год, Лас-Вегас. Обычный программист из Лос-Анджелеса вел обычную, ничем не примечательную жизнь. И была у него всего одна слабость – он обожал азартные игры в Интернете. В свой отпуск он решили посетить Лас-Вегас с одной единственной цель – поболеть за свою баскетбольную команду. Во время очередного перерыва в матче он решил заглянуть в местное казино без каких-либо задних мыслей – просто посмотреть, как происходит игра в реале.

Его выбор пал на игровой автомат Megabucks (аналог такого однорукого бандита выможетенайти, к примеру, тут). Он закинул в него не больше ста долларов, когда на барабанах выпал джекпот, составлявший, задумайтесь на минутку, 40 миллионов долларов! Это был и остается один из самых крупных выигрышей за всю историю азартных игр.

Впрочем, законы штата устроены так, наш счастливчик не смог получить сразу весь выигрыш на руки – следующие 25 лет на его счет будет перечисляться по 1,5 миллиона долларов.

4

3. А сейчас я расскажу вам о первом самом крупном выигрыше в истории казино. Итак, Лас-Вегас образца 1989 года. Главные действующие лица – игровой автомат Megabucks и среднестатистический американец Элмер Шервин. Спустя пару проигранных долларов наш везунчик сорвал джекпот в 5 миллионов долларов. Он стал первым официальным миллионером, сколотившим свое состояние благодаря казино. Весь выигрыш он потратил на путешествия, которые длились ровно 16 лет. Остатки своего былого состояния он решил спустить на этом же слоте. И, вы не поверите, ему в очередной раз выпал джекпот, но теперь уже его размер составил 21 миллион долларов!

Автор: Admin | 2015-07-01 |

Незваные гости: полтергейст в истории и культуре

«В городе говорят о странном происшествии. В одном из домов, принадлежащих ведомству придворной конюшни, мебели вздумали двигаться и прыгать; дело пошло по начальству. Кн. В. Долгоруков нарядил следствие. Один из чиновников призвал попа, но во время молебна стулья и столы не хотели стоять смирно. Об этом идут разные толки.»
Из дневников А. С. Пушкина (1833 год)


Мигнёт и померкнет свет. Ледяным ветром потянет при закрытых наглухо окнах. Тяжело, с ленцой воспарит над кухонным линолеумом возмущённо гудящий холодильник. После в дверь постучат. А за ней — никого… Тем не менее, если в дверь шкафа стучат изнутри, это уже сама по себе очень плохая новость. Читать дальше>>

Автор: Admin | 2015-06-02 | Все обо всем

Особенности эксплуатации ММБ на основе ЯЭРДУ

Планируете в этом году посетить конференцию, посвященную особенностям эксплуатации ММБ на основе ЯЭРДУ, которая пройдет в Кипре? Тогда вот вам сайт, где представлены все пафос отели. Здесь вы сможете не только подобрать устраивающую вас гостиницу, но и забронировать номер, не отходя от своего компьютера!



Использование ЭРДУ в качестве маршевой двигательной установки требует наличия длительных участков ее функционирования. При этом ориентация вектора тяги в пространстве должна изменяться в соответствии с заданным законом управления, который определяется заданием отклонения вектора тяги по углам тангажа и рыскания. Направление вектора тяги в плоскости орбиты (управление по углу тангажа) обеспечивает изменение высотных параметров орбиты (высот перицентра и апоцентра, величин большой полуоси и фокального параметра, а также положение перицентра), а в нормальном к плоскости орбиты направлении (по углу рыскания) — положение орбиты в пространстве (долгота восходящего угла, наклонение орбиты к плоскости экватора).

 

В зависимости от параметров начальной и конечной орбит выбираются соответствующие законы управления вектором тяги по углам тангажа и рыскания, которые реализуются в течение длительного промежутка времени и, тем самым, определяют текущую ориентацию МБ. Для конкретных задач использования двигателей малой тяги, каковыми являются ЭРДУ, эти вопросы можно найти в работах. Однако требования реализация данных законов управления могут противоречить требованиям к ориентации ММБ для обеспечения теплового режима и функционирования целевой аппаратуры. Поэтому эти вопросы требуют системного комплексного подхода.

 


Специфика ММБ с ЯЭРДУ состоит в наличии фермы раздвижения ЯЭУ от ЭРДУ и полезного груза. Наличие этой фермы приводит к значительному линейному размеру ММБ, что позволяет использовать для ориентации КА гравитационную стабилизацию.

 

Особенностью использования ЯЭРДУ является необходимость не только первого запуска ЯЭУ, но и работы на орбитах не ниже так называемой радиационно-безопасной орбите высотой не менее 800 км..

 

Компоновка МБ с ЯЭРДУ может быть с продольным или поперечным приложением вектора тяги. При продольном направлении приложения тяги вектор тяги прикладывается параллельно продольной оси КА (см. рис. 5.19). При этом для управления направлением вектором тяги по углам тангажа и рыскания требуется поворот по этим углам всего ММБ относительно центра тяжести. Управляющие моменты при такой компоновке могут быть значительными ввиду большого момента инерции транспортного аппарата с полезным грузом относительно осей тангажа и рыскания.

 

При поперечном направлении приложении вектора тяги — тяга прикладывается в районе расположения центра тяжести МБ перпендикулярно его продольной оси. Использование гравитационной стабилизации МБ с ЯЭРДУ в поле тяготения Земли (или Луны) позволит снизить затраты на управление вектором тяги ввиду меньших моментов инерции МБ относительно продольной оси (оси рыскания) и автоматического поддержания за счет гравитационной стабилизации требуемого направления вектора тяги по углу тангажа. При этом сводится практически к нулю влияние реактивной струи ЭРД на элементы конструкции МБ и транспортируемого полезного груза, а также на функционирование его бортовых систем, что, в частности, позволяет использовать металлические рабочие тела ЭРДУ.

 


Специфика использования ЭРДУ, особенно на маршевом этапе, накладывает определенные ограничения на условия функционирования не только МБ, но и полезного груза. Эти ограничения связаны с возможным воздействием плазмы реактивных струй ЭРД на элементы конструкции и оборудования как МБ, так и полезного груза. Плазма ЭРД также может оказывать негативное электромагнитное воздействие на работу оборудования полезной нагрузки и бортовых систем МБ. Все это возможно при близком расположении ЭРД от соответствующих элементов конструкции МБ и полезной нагрузки.

 

Следует отметить, что при двухпусковой (и более) схеме развертывания транспортного комплекса актуальной является проблема преодоления квантованности, возникающей вследствие размещения перечисленных систем в двух исходно разделенных блоках. Одним из путей преодоления этого эффекта может быть разделение ЭРДУ (вместе с запасом рабочего тела) на две подсистемы, размещаемые в обоих стыкуемых блоках.

Автор: Admin | 2015-04-01 |

Летим на Луну: состав ЯЭРДУ

Вот и все, с ЯЭРДУ мы закончили, а теперь давайте поговорим о делах земных и гораздо более насущных. Вот, к примеру, вы знали, что дома из СИП-панелей — высококачественное жилье, которое стоит недорого, возводится за считанные дни и стоит десятилетиями! Подробнее о таких постройках читайте на www.rupan.ru.



Укрупнено в состав ЯЭРДУ входят ЯЭУ, ЭРДУ, ферма их раздвижения, а также служебные системы.

ЯЭУ сопрягается с трансформируемой фермой, на которой монтируются:

  • ЭРДУ и блок электропитания ЭРДУ;
  • баки рабочего тела ЭРДУ;
  • преобразователь постоянного тока ЯЭУ в переменный ток высокого напряжения (преобразователь =/~);
  • линия электропередачи высокого напряжения;
  • двигательная установка (для маневрирования на рабочей орбите и выполнения операций стыковки — при необходимости);
  • полезная нагрузка со всеми своими системами;
  • система стыковки.

     

    Облик транспортного средства на основе ММБ с продольным вектором тяги приведен на рис. ниже.

     


    Облик многоразового МБ с продольным вектором тяги

     

    Такой ММБ может быть использован не только в лунной программе, но и для доставки полезных грузов в точки либрации и на высокие
    околоземные орбиты и обратно. Принципиально возможно его использование для снабжения электроэнергией бортовых систем энергоемких КА, в том числе лунной орбитальной станции.

     

    Оценка характеристической скорости. Практическому осуществлению полетов на орбиту искусственного спутника Луны и на Луну предшествовала разработка различных методов исследования траектории полета, в результате чего накоплен большой опыт расчета траекторий полета между Землей и Луной с двигателями большой тяги на основе ЖРД. Однако расчет траекторий полета ММБ с малой тягой, характерных для использования ЭРДУ, исследован в меньшей степени, чем при использовании ЖРД. Ряд вопросов, касающихся межорбитальных перелетов Земля — Луна с малой тягой, остался недостаточно изученным. Одним из них является точное обоснование затрат характеристической скорости, потребной на перелет с околоземной орбиты на окололунную (или наоборот).

     


    В работах с целью выяснения потребных затрат характеристической скорости перелета проведен ряд расчетов с орбиты искусственного спутника Земли на орбиту искусственного спутника Луны. Траектория движения моделировалась численно в рамках ограниченной задачи трех тел. Законы управления вектором тяги определялись с использованием принципа максимума Понтрягина. Начальная околоземная орбита принималась равной 800 км с наклонением 51,6°, а целевая окололунная орбита — высотой 100 км, причем плоскость орбиты совпадает с плоскостью земного экватора. Наклонение орбиты Луны относительно экватора Земли составляло -23°. Расчеты выполнены для типичных значений параметров рассматриваемых ЭРДУ: начальное значение ускорения от тяги а0 = 5,1е-4 м/с2, удельный импульс тяги Iэрду = 30 км/с. Для этих условий необходимый набор характеристической скорости для перелета ММБ с ЭРДУ со стартовой орбиты высотой 800 км на орбиту Луны высотой 100 км составил ∆Vx~8560 м/с. Перелет с низкой земной орбиты высотой 200 км до орбиты 800 км осуществлется с помощью разгонного блока на основе ЖРД и требует ∆VX~333 м/с. Посадка с орбиты 100 км до поверхности Луны при осуществлении тормозным блоком на основе ЖРД в зависимости от условий посадки потребует ∆VX = 1900-2200 м/с.

Автор: Admin | 2015-03-05 |

Заблуждения: этого нет в Библии


Даже если предположить, что Бога нет, Библия всё равно останется важнейшей книгой в истории человечества. Культура, философия и законы целых цивилизаций опирались на неё. Для верующих это священная книга, для неверующих — увлекательный и масштабный эпос, сборник древних мифов с битвами, драмами и чудесами.

Но мифы есть не только внутри Библии — не меньше мифов бытует вокруг неё. Массовая культура, фольклор и интерпретации богословов изменили наше представление о библейских героях и событиях до неузнаваемости. Итак, Библия вовсе не утверждает, что… Читать дальше>>

Автор: Admin | 2014-12-25 | Все обо всем, Необычный Топ
2 страница из 11123456789...Последняя »

GIF
Видео
Видео
Все обо всем
Забавно!
Иллюстрированные факты
Искусство
Истории
Все размещенные на сайте материалы без указания первоисточника являются авторскими. Любая перепечатка информации с данного сайта должна сопровождаться ссылкой, ведущей на www.unnatural.ru.