Необычный

Освоение Луны: ЯЭУ как источник электроэнергии для питания ЭРДУ. Часть IV

Ни для кого не секрет, что российская космическая отрасль переживает настоящий кризис, причиной которого является непродуманная организация всего рабочего процесса и, конечно же, низкое финансирование. Второе целиком и полностью ложится на плечи государства, ну а с первым вполне справится организация проведения специальной оценки условий труда, проведенная сторонними специалистами, на роль которых идеально подойдут сотрудники компании «Технологии труда».



Принципиальная схема космической ЯЭУ с газотурбинной схемой преобразованияэнергии и капельнымхолодильником-излучателей приведена на рис. ниже, а ее оцениваемые характеристики — в табл. ниже.

 


Принципиальная схема ЯЭУ с турбомашинным преобразованием энергии АЗ — активная зона; БВД — бак высокого давления; БНД — бак низкого давления; БО — блок отражателя; БТ — бак теплоносителя; К — корпус реактора;

М — газоциркулятор; Н — насос; Р1 ,Р2 — рекуператор; РЗ — радиационная защита; СБ — стержни безопасности; СОТР — система обеспечения теплового режима; ТГ1 ,ТГ2 — турбогенератор; ТК1 ,ТК2 — турбокомпрессор; ТO1 ,ТO2 — промежуточный теплообменник; ХИ — холодильник-излучатель

 

Параметр

ЯЭУ-100 для ТЭМ

ЯЭУ-500 для ТЭМ

Тепловая мощность, кВт

310

1340

Размеры активной зоны реактора,

 

Размеры

мм:

 

«под ключ»:

-диаметр

326

349

-высота

500

650

Топливная композиция

карбонитрид урана U-Zr-C-N

карбонитрид урана U-Zr-C-N

Обогащение топлива 235U, %

90

90

Загрузка 235U, кг

115

173

Количество ТВС в активной зоне

30

19

Диаметр топливной части ТВС, мм

40

11

Толщина бокового бериллиевого отражателя, мм

120

120

Количество поворотных барабанов

12

12

Количество стержней безопасности

7

7

Рабочее тело ТГУ

98,3%Xe+1,7%He

(масс)

Неон

Температура рабочего тела, К:

   

-на входе реактора

1180

1095

-на выходе реактора

1500

1500

Максимальное давление рабочего тела ТГУ, МПа

0,9

3,5

Расход рабочего тела ТГУ, кг/с

1,2

3,13

Масса реактора с радиационной защитой, кг

2790

Ресурс работы, лет

10

10

Таблица. Основные характеристики реакторов ЯЭУ канального типа для работы в контурах газотурбинных установок

 


С апреля 2010 г. в рамках Президентской программы модернизации экономики России в нашей стране приоритетным направлением работ по созданию ядерной энергодвигательной установки (ЯЭДУ) с уровнем электрической мощности порядка 1 МВт выбрана газотурбинная схема преобразования энергии с газоохлаждаемым реактором на быстрых нейтронах с требованием по обеспечению ресурса ЯЭУ до 10 лет и реализацией в 2010-2018 годах.

Автор: Admin | 2015-02-27 |

Освоение Луны: ЯЭУ как источник электроэнергии для питания ЭРДУ. Часть III

Такое изделие как труба полиэтиленовая используется даже в ракетостроении, поэтому целесообразность ее бытового применения на Земле более чем оправдана. Полиэтиленовые трубы идеально подойдут для обустройства систем водоснабжения, канализации и даже газификации вашего дома.


 

Основные характеристики наиболее компактной 19-модульной ЯЭУ с жестким холодильником-излучателем следующие:

генерируемая в ТРИ электрическая мощность, кВт

670

полезная мощность у потребителя (на клеммах ЭРДУ), кВт

550-600

длина, м

14,6

максимальный диаметр, м

3,8

удельная масса, кг/кВт-эл

13

 

 

Одновременно выполнялись проектные работы по такой ЯЭУ меньшей и большей мощности.

 

Рассматриваемые ЯЭУ являются низковольтными (100-120В) источниками электроэнергии, поэтому в состав ЯЭРДУ должна входить система преобразования постоянного тока в переменный и трансформатор для последующего повышения напряжения.

 

Газо- и паротурбинные схемы ЯЭУ обладают преимуществом перед термоэмиссионной из-за возможности получения относительно
высокого требуемого для питания ЭРДУ напряжения (сотни и тысячи вольт), в результате чего не требуется система преобразования постоянного тока в переменный и последующего повышения напряжения. Преимуществом является также возможность использования задела наземной энергетики.

 

Проектные разработки ЯЭУ с преобразователями динамического типа по циклам Брайтона, Ренкина, а также Стирлинга выполнялись как в США, так и в нашей стране. Рассматривались различные варианты источника тепла — как ядерные, так и солнечные.

 

В США в 60-е годы 20-го века были разработаны и созданы преобразователь энергии по циклу Брайтона, работающий от солнечного или радиоизотопного нагревателя мощностью 25 и 2 кВт. Четыре прототипа проработали на испытаниях в общей сложности более 40 000 часов. Для проектов исследования ледяных лун Юпитера рассматривался динамический преобразователь энергии на основе цикла Брайтона с ресурсом до 5-10 лет при мощности от 100 до 250 кВт и удельной массе менее 40 кг/кВт.

 

В нашей стране было разработано несколько концептуальных проектов газотурбинных ЯЭУ. В НПО «Энергомаш» в кооперации был разработан концептуальный проект вариантов ядерных замкнутых газотурбинных ЭУ (ЗГТЭУ) и энергодвигательных установок (ЗГТЭДУ) электрической мощностью 46 кВт для вывода на ГСО и последующего энергопитания информационного КА. Был выбран вариант с газоохлаждаемым ядерным реактором. Были проработаны три варианта газотурбинных установок мощностью 46 кВт: с ядерным реактором на основе технологии высокотемпературных газовых реакторов; с магнитоплазмодинамическим электроракетным двигателем, с ядерным реактором на основе технологии ЯРД. КА выводятся с промежуточной орбиты 800 км на ГСО или быстро с помощью ядерной ЗГТЭДУ, или медленно с помощью ионных ЭРД, электропитание которых обеспечивается ядерной ЗГТЭУ.

 

НИКИЭТ им. Доллежаля в кооперации разработал концепцию ЯЭУ электрической мощностью 100 и 500 кВт на основе газоохлаждаемого реактора с газотурбинным преобразованием энергии по циклу Брайтона. В системе теплоотвода неиспользованного тепла цикла в качестве холодильника-излучателя (ХИ) рассмотрены твердотельные (трубчато-панельные и на основе тепловых труб) и капельные ХИ.

 

Рассматриваемая ЯЭУ полезной электрической мощностью 100 или 500 кВт состоит из следующих основных систем:

  • ядерного реактора, являющегося источником тепловой энергии;
  • системы преобразования тепловой энергии в электрическую;
  • системы отвода в окружающее пространство тепловой энергии, не использованной в процессе преобразования;
  • силовой и информационной кабельных сетей;
  • системы автоматического управления, размещаемой в приборном отсеке (ПО) модуля служебных систем.
Автор: Admin | 2015-02-18 |

Освоение Луны: ЯЭУ как источник электроэнергии для питания ЭРДУ. Часть II


Первые наземные ядерно-энергетические испытания ЯЭУ «Топаз» были проведены в 1970 г. на созданной в ФЭИ испытательной базе. Однако успешная эксплуатация ЯЭУ «Бук» в составе КА «УС-А» показала нецелесообразность использования ЯЭУ «Топаз» в КА этого типа. Хотя это и задержало вывод в космос КА с ЯЭУ «Топаз», однако испытания ЯЭУ «Топаз» в космосе все же были проведены в составе экспериментального КА «Плазма-А» в 1987-1988 г., оснащенных элек- троракетными двигателями. Отметим, что впервые электроракетные двигатели получали электропитание от ЯЭУ. Первый КА «Плазма-А» с ЯЭУ отработал полгода, а второй — почти год, оба до израсходования рабочего тела (цезия) ТРП ЯЭУ.

 


Космический аппарат «Плазма-А» с термоэмиссионной ЯЭУ «Топаз»

 

Общий вид КА «Плазма-А» с термоэмиссионной ЯЭУ «Топаз» приведен на рис. выше.

К настоящему времени в ФГУП «Красная Звезда» ГК «Росатом» разработаны проекты космических ЯЭУ по технологии «Топаз» электрической мощностью 25-100 кВт.

В начале 60-х годов в РКК «Энергия» одновременно с проведением первых научно-исследовательских и проектных работ по межпланетным пилотируемым экспедиционным кораблям при поддержке С.П. Королева была исследована возможность использования ядерной энергии для питания электроракетных космических транспортных средств. В результате сравнительного проектного анализа предпочтение было отдано космической ЯЭУ по литий-ниобиевой технологии с ТРП на быстрых нейтронах в связи с простыми тепловой и электрической схемами; отсутствием движущихся частей; относительно простым запуском и остановом и возможностью многократного запуска ЯЭУ без затрат электроэнергии; более высокой, по сравнению с другими установками, температурой отвода тепла, не преобразованного в термодинамическом цикле, и, соответственно, более компактным холодильником-излучателем. Недостатком такой ЯЭУ является необходимость иметь систему повышения напряжения до значения, требуемого для питания ЭРДУ.

 

В 60-е годы применительно к рассматриваемым тогда сценариям пилотируемой экспедиции на Марс по этой технологии были разработаны концептуальные проекты ЯЭУ по такой технологии мощностью от единиц до 15 мегаватт.

 


Компоновочная схема ЯЭУ для межорбитального буксира «Геркулес»:

1 — блок генераторов пара цезия и системы удаления газообразных продуктов деления модулей; 2 — термоэмиссионный реактор-преобразователь модульной схемы; 3 — многослойная радиационная защита; 4 — сильноточная шина; 5-многоканальный МГД-насос с общей магнитной системой всех модулей; 6 — трубопровод литиевой системы охлаждения на входе в модуль ТРП; 7 — опорная ферма; 8 — трубопровод литиевой системы охлаждения на выходе из модуля ТРП; 9 – теплообменник литий-натрий зоны испарения тепловой трубы; 10-силовой преобразовательный блок (высоковольтные кабели не показаны); 11 — опорное кольцо (раздвижная ферма полезной нагрузки не показана); 12 — зона конденсации тепловых труб холодильника-излучателя

С середины 70-х до начала 90-х годов прошлого столетия по Госзаказу Роскосмоса в РКК «Энергия» в широкой кооперации организаций интенсивно велись работы по космической ЯЭУ по литий-ниобиевой технологии электрической мощностью 500-600 кВт и межорбитальному электроракетному буксиру «Геркулес» на ее основе применительно к решению задачи по транспортировке на ГСО тяжелых полезных грузов и обеспечения их маневрирования в космическом пространстве. Компоновочная схема ЯЭУ для МБ «Геркулес» приведена на рис. выше.

Автор: Admin | 2015-02-18 |

Освоение Луны: ЯЭУ как источник электроэнергии для питания ЭРДУ. Часть I

Ваш ребенок просто обожает космос и все, что с ним связано, поэтому вы планируете подарить ему развивающую игрушку, которая позволит ему колонизировать Луну, не выходя из дома? Тогда вам определенно точно пригодится детский мир промокод. С ним вы сможете купить такую игрушку гораздо дешевле!



Работы в области атомной энергетики для применения в космическом пространстве были начаты почти одновременно в СССР и США в конце 1950-х — начале 1960-х г. еще на начальном этапе исследования и освоения космического пространства. В СССР разработка космических ЯЭУ была обусловлена необходимостью обеспечить КА систем разведки с радиолокационными станциями на борту достаточно мощным (несколько киловатт) источником электроэнергии. Энергоемкость и компактность реакторных источников энергии выгодно отличали их от распространенных тогда солнечных батарей. Такие преимущества, как лучшие массогабаритные характеристики, отсутствие зависимости генерируемой мощности от положения КА относительно Солнца и принципиальная возможность работы на форсированных режимах сыграли определяющую роль при выборе ЯЭУ в качестве источника электроэнергии разрабатываемых радиолокационных КА морской разведки.

 

На начальной стадии разработки космических ЯЭУ рассматривались различные схемы преобразования тепловой энергии ядерного реактора в электрическую: динамические (паро- и газотурбинные) и безмашинные (термоэлектрические и термоэмиссионные). К разрабатываемым ЯЭУ предъявлялись жесткие требования по массе и габаритам, надежности, ядерной и радиационной безопасности и т.п. В результате предпочтение было отдано ЯЭУ с термоэлектрическим и термоэмиссионным преобразованием тепловой энергии в электрическую, работы по которым с начала 1960-х г. велись практически параллельно.

 

Первой была создана космическая ЯЭУ «Бук» с термоэлектрическим генератором электрической мощностью 3 кВт. В соответствии с Постановлением Правительства полномасштабные работы по такой ЯЭУ для конкретного К А были начаты в 1962 г.

 


ЯЭУ «Бук» была создана НПО «Красная Звезда», в которое вошли ряд предприятий атомной и авиационной промышленности. ЯЭУ «Бук» представляла собой двухконтурную установку с реактором на быстрых нейтронах. В качестве теплоносителя первого и второго контуров использовалась эвтектика натрий-калий, в качестве конструкционного материала — нержавеющая стать. Термоэлектрический генератор был двухкаскадным на основе средне- и высокотемпературных (кремний-германий) термоэлектрических материалов. Холодильник-излучатель — трубчато-ребристого типа, перекачка жидкометаллического теплоносителя обеих контуров осуществлялась кондукционными электромагнитными насосами.

 

КА «УС-А» с ЯЭУ «Бук» с 1970 г. запускались с площадки 95 космодрома Байконур PH «Циклон» на орбиты, близкие к круговым, с наклонением 65° и высотой 250-370 км. По завершению активного функционирования радиационно-опасные части ЯЭУ выводились на орбиту «высвечивания» высотой более 800 км. С 1975 г. ЯЭУ «Бук» была принята в эксплуатацию (на вооружение). Всего с 1970 по 1988 г. за период испытаний и эксплуатации было запущено 32 КА с ЯЭУ «Бук» (рис. ниже).

 


Космический аппарат УС-А с ЯЭУ «Бук»

 

 

Запуски низкоорбитальных КА серии «УС» системы радиолокационной морской космической разведки и целеуказания с ЯЭУ «Бук» решили чрезвычайно важную в то время стратегическую задачу — обеспечили контроль за авианесущими соединениями США и НАТО в акватории мирового океана.

 


Макет ЯЭУ «Топаз»

 

Одновременно в качестве дублирующей ЯЭУ «Бук» выполнялась разработка термоэмиссионной ЯЭУ «Топаз», но с более высоким уровнем мощности (5-6 кВт). Термоэмиссионный преобразователь (ТЭП) является аналогом радиолампы — вакуумного диода, работающего однако не в режиме усиления мощности, а в режиме ее генерации. Принцип действия ТЭП и возможные схемы его конструкционной реализации представляют исключительно благоприятные возможности для энергетического сопряжения с реактором, в том числе с расположением преобразователя непосредственно в активной зоне реактора. Совокупность ядерного реактора и встроенного в активную зону ТЭП называют термоэмиссионным реактором-преобразователем (ТРП). Объединение в одном агрегате — ТРП — источника тепла и его преобразования в электроэнергию позволяет с минимальными потерями температурного потенциала реализовать высокую температуру термодинамического цикла преобразования энергии. В тоже время зона высокой температуры ограничена элементарной ячейкой ТРП — механически не нагруженным электрогенерирующим элементом, оболочка которого изготовлена из вольфрама, а все нагруженные элементы работают при нижней температуре термодинамического цикла. Это существенно облегчает создание всех компонентов ЯЭУ, а свойственная циклу термоэмиссионного преобразования достаточно высокая нижняя температура цикла в условиях космического пространства, где интенсивность отвода тепла пропорциональна температуре в четвертой степени, позволяет свести к минимуму габаритные размеры системы охлаждения и создать компактную ЯЭУ, габариты которой примерно на порядок меньше размеров ЯЭУ с любыми типами преобразователей, расположенных вне активной зоны реактора.

Автор: Admin | 2015-02-14 |

Ракеты-носители для обеспечения грузопотока Земля — орбита спутника Земли. Часть III


Еще одним недостатком второго варианта семейства со сверхтяжелой PH является высокая стоимость создания ракет такого класса, которая может составить до 150 млрд рублей (в ценах 2007 г.). Для сравнения: стоимость создания PH тяжелого класса (полезный груз на опорной орбите 44 т) составляет 50 млрд рублей в сопоставимых ценах.

 

В третьем варианте семейства перспективных носителей размерность PH среднего класса выбирается с учетом более отдаленной перспективы, в том числе исходя из того, что будет создан многоразовый пилотируемый лунный корабль, описанный выше и транспортный пилотируемый корабль нового поколения массой ~12 т (с его помощью экипаж будет доставляться на многоразовый лунный пилотируемый корабль). Кроме того, предполагается, что масса полезного груза, доставляемого на Луну с помощью многоразового посадочного комплекса, составляет не более 12 т. Этот груз, массой 12 т необходимо доставить с опорной орбиты на орбиту базирования многоразового электроракетного буксира. Для этого необходим разгонный блок массой около двух тонн. Таким образом, необходима PH среднего класса, грузоподъемностью до 14 т. В первых двух вариантах семейств ракет-носителей вышеупомянутую задачу (доставку грузов на орбиту буксира) выполняла бы PH грузоподъемностью 16,5 т. Ну, а если Вы гораздо больше, чем мечтать о полетах на Луну, любите играть в азартные игры, то я советую вам поиграть бесплатно онлайн в слоты на сайте free-slots-hall.com — вот ссылка! Здесь вы найдете самые популярные игровые автоматы и самые щедрые системы выигрышей!

 


Размерность PH тяжелого класса выбирается исходя из того, что предполагается совместное выведение разгонного блока и лунного пилотируемого корабля одним пуском. Достоинством данного варианта семейства PH является как сравнительно небольшая частота пусков по программе исследования и освоения Луны (6-7 пусков в год), так и удобство компоновки полезных грузов. Так, например, при массе рассматриваемого разгонного блока 43,5 т, лунного пилотируемого корабля 16,5 т, лунный экспедиционный комплекс хорошо «вписывается» в грузоподъемность такой PH и отпадает необходимость в операциях стыковки на околоземной орбите. Также хорошо вписывается в грузоподъемность PH связка «взлетно-посадочный комплекс + бак с рабочим телом для электроракетного буксира». Масса взлетно-посадочного (посадочного) комплекса составляет 28 т, масса бака с рабочим телом на полный цикл полета буксира околоземная орбита — окололунная орбита — околоземная орбита составляет около 25 т, и плюс к этому добавляется малый разгонный блок (~7 т) для перевода связки с опорной орбиты на орбиту буксира и стыковки с ним. Фактически PH тяжелого класса грузоподъемностью 60-65 т перекрывает весь спектр полезных нагрузок, выводимых на низкую околоземную орбиту, в обеспечении лунной программы.

 


Таким образом, третий вариант семейства ракет-носителей с максимальной грузоподъемностью в 60-65 т обладает рядом преимуществ и, по мнению ряда разработчиков программы из РКК «Энергия», представляется наиболее целесообразным.

 

Максимальная масса полезного груза на опорной околоземной орбите (1-1=200 км, наклонение 51,8°), т

Максимальные габариты

выводимого полезного груза, м

7 — 8

2,7×7

До 22 т

4,1×18

12—14

4,4×6,1

4,1×3,7×9,2

 

6,5×22;

60 — 65

4,5×45

18x13x8

Таблица. Требования к возможностям средств выведения на околоземную опорную орбиту

 

В табл. выше приведены требования к возможностям средств выведения на околоземную опорную орбиту.

Автор: Admin | 2015-02-01 |

Ракеты-носители для обеспечения грузопотока Земля — орбита спутника Земли. Часть II

А сейчас давайте спустимся с Луны на Землю и заглянем в интернет-магазины одежды. Здесь вы, не выходя из дома, сможете обновить свой гардероб! Кроме качественной современной одежды здесь вас ждут самые «вкусные» цены, большие скидки и выгодные акции!



Выполненный анализ показал, что реализация намечаемой программы исследования и освоения Луны возможна при использовании первого варианта семейства ракет-носителей. Однако он обладает существенным недостатком — высокой частотой пусков PH, которая только по программе исследования и освоения Луны будет составлять 14-15 пусков в год. Если же учесть другие программы (развития околоземной инфраструктуры, исследования и освоения Марса, коммерческие запуски и т.д.), то эта цифра может вырасти в три и более раз. Очевидно, что такая интенсивная частота пусков находится далеко за предельными возможностями космодромов (даже с учетом создания нового космодрома «Восточный»), а также производственной и обслуживающей инфраструктур.

 

Для сокращения частоты пусков PH до приемлемой величины очевидным решением может быть создание и использование ракет-носителей сверхтяжелого класса с массой полезного груза порядка 100 т, что позволит сократить частоту пусков примерно в два раза. При этом размерность ракет-носителей среднего и тяжелого класса выбирается исходя из тех же соображений, что в первом варианте.

 


Однако этот вариант может усложнить развертывание лунной базы и станции по следующей причине. Масса элементов лунной инфраструктуры и полезных грузов, выводимых на опорную околоземную орбиту в обеспечении лунной программы не превышает, как уже говорилось, 50 т. Поэтому полезный груз ракет-носителей сверхтяжелого класса будет компоноваться из двух и возможно более элементов. Однако, многие полезные нагрузки плохо компонуются между собой. Например, если одной ракетой-носителем выводить на орбиту Земли разгонный блок и взлетно-посадочный комплекс, то разгонному блоку при выведении придется принять нагрузку не только от собственного веса, но и от веса взлетно-посадочного комплекса (или, наоборот, в зависимости от того какой элемент «сверху»), что приведет к необходимости увеличивать массу несущей конструкции. Кроме того, часть массы полезного груза надо будет отвести на переходные фермы, обеспечивающие передачу нагрузок от одного элемента полезного груза к другому. Так, например, масса разгонного блока оценивается в ~43,5 т, взлетно-посадочного комплекса — в ~28 т, поэтому для доведения выводимого полезного груза до 100 т необходимо добавить третий элемент, например, бак с рабочим телом для многоразового буксира.

 


Расположить эти элементы в зоне полезного груза ракеты-носителя рядом вряд ли представится возможным, так как получится полезный груз большого диаметра (10 м и более, ведь только РБ имеет диаметр 5,5 м). Это повлечет за собой разработку не имеющих аналогов головных обтекателей, и большие аэродинамические потери при выведении, и как следствие — снижение реальной массы полезного груза для лунной инфраструктуры с удорожанием программы. Если же поставить эти элементы один на другой, получиться гигантская (несколько десятков метров) малоустойчивая башня, которая будет отрицательно влиять на устойчивость ракеты в вертикальном положении и создавать большие изгибающие моменты для конструкции ракеты-носителя. Кроме того, возникнет необходимость в перетяжелении конструкции «нижнего» элемента. Все вышеперечисленные особенности могут привести к необходимости решения большого количества новых технических задач и к увеличению стоимости выведения единицы массы полезного груза.

Автор: Admin | 2015-02-01 |

Ракеты-носители для обеспечения грузопотока Земля — орбита спутника Земли. Часть I

Планируете посетить конференцию по освоению Луны в Москве, которая пройдет уже в следующем месяце? Тогда спешу сообщить вам, что гостиница Мидланд Шереметьево в Москве открывает перед вами свои двери. Здесь вас ждут высококвалифицированный персонал, отличные номера и приемлемые цены!



С начала работ по осуществлению пилотируемых полетов к Луне вопрос о выборе типоразмера PH и совмещаемого с ней разгонного блока для доставки пилотируемого корабля с Земли на орбиту Луны был непростым и дискуссионным. Как уже отмечалось, в нашей стране ОКБ-1 С.П. Королева создавало ракету-носитель Н 1Л, в США программа «Аполлон» была реализована с помощью сверхтяжелой PH «Сатурн-5» грузоподъемностью более 100 т. Многие специалисты расходятся в мнениях о том, какие новые PH наиболее целесообразно создавать для лунной программы, конечно, с учетом выведения и других полезных грузов. Одно из таких предложений, предлагаемое РКК «Энергия», рассмотрим более подробно.

 

Проанализируем возможности и эффективность ряда ракет-носителей, включающего существующие и перспективные для выведения на опорную околоземную орбиту полезных грузов на первых этапах создания и эксплуатации лунной инфраструктуры.

Не вызывает сомнения, что практически любые полезные грузы массой до 8 т, включая околоземные спутники связи, навигации, дистанционного зондирования Земли и др., исследовательские КА на орбиты спутника Луны или в точки либрации системы Земля—Луна, а также существующие транспортные пилотируемые корабли типа «Союз», целесообразно выводить на опорную околоземную орбиту с помощью существующих PH типа «Союз». Разгонные блоки типа ДМ, предназначенные для обеспечения облета Луны, также целесообразно выводить на опорную околоземную орбиту с помощью существующей и адаптированной под эти разгонные блоки ракеты-носителя «Протон-М».

 

В то же время, для выведения на опорную околоземную орбиту многих других полезных нагрузок, включая лунный пилотируемый корабль с разгонным блоком, взлетно-посадочный и посадочный комплексы, лунную орбитальную станцию, а также контейнеров с грузами для экипажей элементов лунной инфраструктуры и расходуемыми компонентами многоразовых элементов лунной инфраструктуры, контейнеров с рабочим телом многоразовых буксиров, элементов комплекса по производству кислорода, металлов и кремния из лунных ресурсов и т.д. необходимо создание новых ракет-носителей, так как масса многих из этих полезных грузов, как было показано выше, значительно превышает грузоподъемность существующих ракет-носителей.

 


Не вызывает сомнения необходимость повышения грузоподъемности ракет-носителей для реализации лунной программы даже первых этапов. Однако подход к выбору их размерности разный и в ряде случаев противоречивый.

 

В рамках проектных исследований, проведенных в РКК «Энергия» в 2007-2008 гг., были рассмотрены возможности реализации пилотируемой программы РФ (включая программу исследования и освоения Луны) до 2040 г. с помощью трех вариантов семейства перспективных PH, запускаемых с нового космодрома «Восточный» и выводимых полезный груз (ПГ) на опорную орбиту высотой Нкр = 200 км и наклонением i = 51,6:

 

— первое семейство включает PH среднего класса повышенной грузоподъемности с массой ПГ до 16,5 т и PH тяжелого класса с массой ПГ ~44 т;

— второе семейство также включает PH среднего класса повышен-грузоподъемности с массой ПГ 16,5 т; тяжелого класса с массой ПГ ~44 т, и PH сверхтяжелого класса с массой ПГ -100 т;

— третий вариант включает, как и первые два, PH среднего класса повышенной грузоподъемности с массой ПГ до 14 т, и ракеты-носители тяжелого класса с массой полезного груза 60-65 т.

 


В первом семействе размерность ракеты-носителя среднего класса выбрана исходя из того, что 16,5 т — это начальная масса лунного пилотируемого корабля. Размерность PH тяжелого класса выбрана исходя из оцениваемой массы разгонного блока, предназначенного для выведения на окололунную орбиту лунного пилотируемого корабля. Отметим, что в первом варианте семейства лунный пилотируемый корабль к разгонный блок выводятся на опорную околоземную орбиту по отдельности каждый своей ракетой-носителем, затем стыкуются на низкой околоземной орбите и далее разгонный блок переводит корабль с орбиты Земли на орбиту Луны.

Автор: Admin | 2015-01-28 |

Предполагаемые полезные грузы, выводимые с Земли, для реализации лунной программы

Основные характеристики предполагаемых полезных грузов для реализации лунной программы приведены в табл. ниже.

 

Таблица. Предполагаемые полезные грузы для реализации лунной программы

Наименование

Масса 1 шт. ПГ на опорной орбите, т

Габариты ПГ, м

Лунный пилотируемый корабль (ЛПК)

16,5

4,4×6,1

Транспортный пилотируемый корабль нового поколения (ТПК НП)

12

4,4×6,1

Многоразовый лунный пилотируемый корабль

59

Подлежат

определению

Кислород-водородный

43,5

5,5×10

разгонный блок

Малый разгонный блок Посадочный комплекс (ПК)

~7

3,55×1,55

с полезным грузом (луноходы, модули лунной базы и т.п.)

28

8×6

Взлетно-посадочный комплекс (ВПК)

28

8×6

Многоразовый пилотируемый ВПК Многоразовый грузовой ВПК /

28,5

8×6

Многоразовый посадочный комплекс (МПК)

Сборочный комплект многоразового

28,5

8×6

межорбитального буксира с ЭРДУ и ЯЭУ: гермоотсеки, двигательные модули, элементы радиатора.

Блок баков рабочего тела

25

6,5×22

многоразового межорбитального буксира

23

5,5×15

Универсальный модуль базовый лунной орбитальной станции

30

4,5×22

 

 

Исходные данные для расчета грузопотоков. Масса лунной базы (ЛБ) первого этапа с экипажем из 3 человек, сменяемым каждые 6 месяцев, и состоящей из командно-жилого, складского, лабораторного модулей, ЯЭУ и луноходов, оценивается в ~60 т. Масса лунной орбитальной станции, которая на последующих этапах будет служить транспортным узлом и работать в посещаемом космонавтами режиме, исходя из опыта строительства и эксплуатации околоземных орбитальных станций «МИР» и МКС, может быть оценена в ~30 т. Масса завода по производству компонентов ракетного топлива оценивается в ~30 т.

 

По проработкам РКК «Энергия» для обеспечения жизнедеятельности экипажей орбитальных станций и лунной базы, поддержания работоспособности систем и агрегатов понадобится грузопоток до 3,5 т/год на человека.

 

Рассмотрим различные варианты обеспечения грузопотока.

 

Во-первых, обеспечение грузопотока при использовании существующих технологий, схем полета и одноразовых транспортных средств типа программ «Аполлон» и «Орион».

 

Во-вторых, развертывание и эксплуатация инфраструктуры при новых схемах и технологиях, при использовании которых возможно несколько вариантов обеспечения грузопотока.

 

Первый вариант обеспечения грузопотока. Многоразовый межорбитальный буксир (ММБ) заправляется на орбите у Земли рабочим телом, доставленным с Земли. Взлетно-посадочные комплексы (грузовой и пилотируемый) — одноразовые, доставляются с Земли. Лунный пилотируемый корабль (ЛПК) — частично многоразовый, заправляется (дооснащается) на Земле (с аэродинамическим торможением у Земли).

 

Второй вариант обеспечения грузопотока. ММБ заправляется на орбите у Земли рабочим телом, доставленным с Земли. Многоразовые ВПК (грузовой и пилотируемый) заправляются у Луны топливом, доставленным с Земли. Многоразовый ЛПК заправляется (дооснащается) у Земли (с ракетным торможением у Земли).

 

Третий вариант обеспечения грузопотока. Данный вариант отличается от предыдущего использованием многоразового ЛПК с аэродинамическим торможением. За счет применения аэродинамического торможения у Земли многоразового ЛПК после возвращения с Луны достигается уменьшение массы грузов, ежегодно доставляемых на околоземную орбиту, на 230 т.

 

Четвертый вариант обеспечения грузопотока. ММБ заправляется у Земли рабочим телом, доставленным с Земли. Многоразовые ВПК (грузовой и пилотируемый) заправляются на Луне кислородом, полученным на Луне, на окололунной орбите водородом, доставленным с Земли. Многоразовый ЛПК заправляется у Земли водородом, доставленным с Земли, у Луны — кислородом, доставленным с Луны, с аэродинамическим торможением у Земли.

 

По оценкам, для обеспечения доставки и развертывания базы, орбитальной станции и завода по производству кислорода на Луне на околоземную орбиту понадобится доставить грузы массой ~600 т, так как до создания на Луне завода по производству кислорода обеспечение грузопотока идет по первому варианту.

 

А после развертывания завода для обеспечения работы базы, орбитальной станции, смены экипажа 2 раза в год грузопоток резко падает и потребуется доставлять на околоземную орбиту грузы массой до 90 т ежегодно.

 

Для получения на Луне компонентов ракетного топлива потребуется создание и доставка на Луну добывающих комплексов, комплексов переработки сырья, получения и хранения топлива, а также энергоустановок к ним.

 

Сравнение вариантов обеспечения грузопотока приведено в табл. ниже.

 

Таблица. Сравнение вариантов обеспечения грузопотока


п/п

Вариант

масса

ПГ,т

Количество пусков PH класса

обеспечения

грузопотока

«Протон»

«Ангара-7»

«Энергия»

РНсПГ 60 т.

 

Использование существующих технологий, схем полета и одноразовых транспортных средств типа программ «Аполлон» и «Орион»

1.

Доставка и развертывание ЛБ и ЛОС

740

34

19

8

13

 

Обеспечение эксплуатации в течение одного года

435

20

11

5

8

 

Первый вариант обеспечения грузопотока при новых схемах и технологиях

2.

Доставка и развертывание ЛБ и ЛОС

420

20

11

5

7

 

Обеспечение эксплуатации в течение одного года

300

14

8

3

5

 

Второй вариант обеспечения грузопотока при новых схемах и технологиях

3.

Доставка и развертывание ЛБ и ЛОС

390

19

10

4

7

 

Обеспечение эксплуатации в течение одного года

510

25

13

6

9

 

Третий вариант обеспечения грузопотока при новых схемах и технологиях

4.

Доставка и развертывание ЛБ и ЛОС

390

19

10

4

7

 

Обеспечение эксплуатации в течение одного года

280

13

7

3

5

 

Четвертый вариант обеспечения грузопотока при новых схемах и технологиях

5.

Доставка

и развертывание ЛБ, завода и ЛОС

600

28

15

6

10

 

Обеспечение эксплуатации в течение одного года

90

5

3

1

2

 

 

 

Из сравнения видно, что наиболее предпочтительным с точки зрения уменьшения массы доставляемых на околоземную орбиту грузов является четвертый вариант обеспечения грузопотока.

Автор: Admin | 2015-01-26 |

Главная награда для британских ученых

Накануне вручения Нобелевской премии в Гарварде проводится церемония по вручению её злого близнеца, Шнобелевской премии (IG Nobel Prize). Награда присуждается за самые забавные и сомнительные научные достижения. В этом году в номинации «медицина» были отмечены специалисты Детройтского медицинского центра, предложившие оригинальный способ остановки носового кровотечения с помощью тампонов из солёной свинины. За научные достижения в области физики Шнобелевской премии удостоились японские учёные, исследовавшие причины падения человека, поскользнувшегося на банановой кожуре, а в области полярных исследований вне конкуренции оказались немецкие и норвежские специалисты, наблюдавшие за реакцией северных оленей на людей в костюмах белых медведей. В номинации «неврология» премия досталась китайским и канадским исследователям за тщательное изучения процессов, происходящих в мозгу человека, разглядевшего изображение Иисуса на тосте. Пожалуй, самое солидное название научной работы оказалось у испанских лауреатов премии в номинации «питание»: «Характеристика кисломолочных бактерий, выделенных из фекалий новорождённых детей, в качестве потенциальных пробиотических культур для производства ферментированных колбас».

Мероприятие, учреждённое Марком Абрахамсом и юмористическим журналом «Анналы невероятных исследований», проводилось уже в 24-й раз. Лауреатам премии вручается денежный приз в виде 10 миллиардов зимбабвийских долларов (это примерно 0,5 долларов QUA).

Автор: Admin | 2014-10-30 | Наука, Новости

Вращение для обитаемости

Считается, что для зарождения жизни на планете необходимы определённая температура, наличие воды и пригодной для дыхания атмосферы. Благодаря миссии Kepler стало известно о существовании нескольких небольших планет с условиями, похожими на земные и находящимися в так называемой «зоне жизни», то есть не слишком далеко и не слишком близко от своей звезды. Однако, по мнению исследователей космоса, это ещё не все ключевые факторы. Читать дальше>>

Автор: Admin | 2014-09-04 | Космос
2 страница из 226123456789...203040...Последняя »

GIF
Видео
Видео
Все обо всем
Забавно!
Иллюстрированные факты
Искусство
Истории
Все размещенные на сайте материалы без указания первоисточника являются авторскими. Любая перепечатка информации с данного сайта должна сопровождаться ссылкой, ведущей на www.unnatural.ru.