Необычный

Куриная Матрица

Любите куриц, а кто нет, ведь они же такие вкусные! Тогда Вам определенно точно не стоит посещать птицефермы, где производство вашего лакомства поставлено на конвейер.

Сразу же после инкубатора петушков, которые невкусные и не умеют откладывать яйца, и забракованных куриц отправляют в устройство под названием мельница, некое подобие большой мясорубки, где их перемалывают лезвия вращающихся ножей.

Те же, кому повезло со здоровьем и полом попадают в самый страшный кошмар любого живого существа – тесные загоны без естественного освещения, где содержаться тысячи их собратьев по несчастью. Цыплят откармливают с применением методов, ускоряющих рост, и очень скоро отправляются на убой. Не жизнь, а сказка!

Проникшись состраданием к этим несчастным созданиям, студент-архитектор Андре Форд (André Ford) разработал революционную технологию выращивания куриц, которая позволит скрасить их безрадостное существование!

Форд предлагает удалять птичкам кору головного мозга для замедления их сенсорного восприятия. Это, по его мнению, поможет цыплятам безропотнотно принять роль низшей ступени пищевой цепи и с радостью переносить все тяготы своего существования. Читать дальше>>

Автор: Admin | 2012-02-17 | Все обо всем, Необычные вещи

Паразиты: Реки вен

Если Вы считаете, что в интернете нет денег, то Вы очень сильно заблуждаетесь: в виртуальной веб-сети люди зарабатывают больше, чем Вы за месяц… или даже за год! Заинтересовались? Тогда, первое, что вам нужно сделать, это посетить блог о заработке www.mrtomas.com, изучив материалы которого Вы сможете постичь азы интернет манимейкерства и сразу же начать получать реальную прибыль.


Паразиты

 

Реки вен

 

Мальчика в постели передо мной звали Джастин, и он не хотел просыпаться. Его кровать — губчатый матрац на металлической раме, в больничной палате небольшого бетонного здания с пустыми оконными проемами. Больница, состоящая из нескольких крытых соломой зданий на широком пыльном дворе, напоминала скорее деревню, чем больницу. Для меня больница — это холодный линолеум, а не козлята во дворе, сосущие материнское вымя и размахивающие хвостиками, и не матери и сестры пациентов, готовящие что-то в больших железных котлах на костерках под манговыми деревьями. Больница стояла на краю унылого городка под названием Тамбура, а город этот находился в южной части Судана, недалеко от границы с Центральноафриканской Республикой. Если направиться от больницы в любую сторону, придется долго ехать через мелкие фермы, где выращивают просо и маниоку, по извилистым дорогам сквозь леса и болота, мимо погребальных сооружений из кирпича и бетона, увенчанных крестами, мимо термитников, похожих на гигантские грибы, мимо гор, где живут ядовитые змеи, слоны и леопарды. Но, поскольку вы не суданец, вы, вероятно, никуда бы не поехали, по крайней мере в то время, когда я там был. Двадцать лет в Судане не прекращалась гражданская война между южной и северной частями Судана. Когда там был я, в Тамбуре уже четыре года правили повстанцы, и любой чужак, прибывший на местный грунтовый аэродром еженедельным авиарейсом, смог бы продолжить свое путешествие только днем и только под их присмотром.

 

Мальчику Джастину было двенадцать лет, у него были узкие плечи и втянутый живот. На нем были шорты цвета хаки и ожерелье из голубых бусин; на подоконнике над кроватью лежали сплетенная из тростника сумка и пара сандалий с металлическими цветочками на ремешках. Его шея настолько распухла, что трудно было понять, где начинается голова. Глаза были выпучены, как у лягушки, а ноздри полностью забиты.

 

— Эй, Джастин! Джастин, проснись! — сказала ему одна из женщин. У постели мальчика нас было семеро: врач-американка Мики Ричер и медбрат, тоже американец, Джон Карселло, высокий мужчина среднего возраста, и еще было четверо медиков-суданцев. Джастин пытался игнорировать нас, как будто надеялся, что мы уйдем и он сможет спать дальше.

 

— Знаешь, где ты находишься? — спросила его Ричер. Одна из суданских сестер перевела ее слова на язык занде. Мальчик пошевелился и сказал:

 

— Тамбура.

 

Ричер мягко приблизила мальчика к себе. Его шея и спина были так напряжены, что совсем не сгибались, и, когда она приподняла его с постели, его тело поднялось целиком, словно деревянное. Она не смогла согнуть ему шею; все это время Джастин, глаза у которого едва приоткрывались, умолял оставить его в покое.

 

— Когда такое случается, — подчеркнуто твердо сказала Мики суданке, — вы должны срочно звать доктора.

 

Врач пыталась скрыть раздражение от того, что ее не позвали раньше. Негнущаяся шея мальчика означала, что он на грани смерти. Уже несколько недель его тело было наводнено одноклеточным паразитом, и лекарства, которые давала ему Ричер, не оказывали нужного эффекта. В больнице у Ричер была еще сотня пациентов, больных тем же смертельным заболеванием, известным как сонная болезнь.

 

Я приехал в Тамбуру ради местных паразитов, так же как другие едут в Танзанию ради львов или на Комодо ради драконов. В Нью-Йорке, где я живу, слово «паразит», в общем-то, не означает ничего или по крайней мере ничего конкретного. Когда я говорю кому-нибудь, что изучаю паразитов, меня иногда переспрашивают: «Вы имеете в виду солитеров?», — а иногда спрашивают иначе: «Вы имеете в виду бывших жен?» Вообще, там это скользкое слово. Даже в научных кругах его значение может варьироваться. Оно может означать все, что живет на поверхности или внутри другого организма за счет этого организма. Такое определение включает в себя и вирусную инфекцию дыхательных путей, и бактерию, вызывающую менингит. Но, если вы скажете кашляющему приятелю, что в нем живет паразит, он, пожалуй, подумает, что где-то у него в груди притаился монстр, который только и ждет возможности вырваться на свободу и истребить все вокруг. Паразитам место в ночных кошмарах, а не в приемной доктора. К тому же так исторически сложилось, что сами ученые предпочитают называть этим словом все, что ведет паразитическую жизнь, кроме бактерий и вирусов.

Но даже если брать это узкое определение, паразитов великое множество. К примеру, Джастин лежал на больничной койке и мог в любой момент умереть, потому что его тело стало прибежищем для паразита под названием трипаносома. Трипаносома — одноклеточное существо, но по строению она гораздо ближе к нам, людям, чем к бактериям. Эти существа проникли в тело Джастина при укусе мухи цеце. Пока муха пила его кровь, трипаносомы пробирались внутрь. Оказавшись в крови мальчика, они начали воровать у него кислород и глюкозу и размножаться, ловко избегая внимания иммунной системы.

 

Они наводнили внутренние органы и даже прокрались в мозг. Сонная болезнь получила свое название потому, что трипаносомы нарушают работу человеческого мозга, биологических часов и как бы превращают день в ночь. Если бы мать Джастина не привезла его в больницу Тамбуры, он бы наверняка умер через несколько месяцев после заражения. Сонная болезнь не знает жалости.

 

Четыре года назад, когда Мики Ричер приехала в Тамбуру, в окрестностях этого городка почти не было случаев сонной болезни, и люди считали, что болезнь вообще уходит в историю. Так было не всегда. Тысячи лет сонная болезнь угрожала людям везде, где обитает муха цеце: это широкая полоса Африканского континента к югу от Сахары. Одна из разновидностей этой болезни поражала также крупный рогатый скот; из-за нее на огромной части континента не было домашних животных. Даже теперь около 12 млн кв. км площади Африки закрыты для домашнего скота из-за сонной болезни, а там, где люди все-таки разводят скот, от нее ежегодно умирает 3 млн животных. Европейцы, колонизируя Африку, вызвали не одну эпидемию этой страшной болезни, заставляя людей жить и работать в местностях, где обитает муха цеце. В 1906 г. Уинстон Черчилль, бывший в тот момент заместителем министра колоний, сообщил палате общин, что в результате только одной эпидемии сонной болезни население Уганды уменьшилось с 6,5 млн до 2,5 млн человек.

 

К началу Второй мировой войны ученые выяснили, что лекарства, помогающие против сифилиса, могут уничтожить и трипаносому в теле человека. Лекарства эти были ядовиты сами по себе, но проявили свою эффективность и были вполне способны держать паразита под контролем. Для этого врачам достаточно было лечить больных и как можно чаще обследовать население районов, где муха цеце особенно многочисленна. Конечно, сонная болезнь полностью не исчезнет, но она должна стать исключением, а не правилом. И кампании против нее, проведенные в 1950-х и 1960-х гг., были настолько эффективными, что ученые заговорили о полной ликвидации угрозы болезни в ближайшем будущем.

 

Однако войны, плачевное экономическое положение африканских стран и их коррумпированные правительства позволили сонной болезни вернуться. Гражданская война заставила покинуть суданский округ Тамбура бельгийских и британских врачей, которые тщательно отслеживали все случаи заболевания. Недалеко от Тамбуры я видел заброшенную больницу, где раньше была специальная палата для больных сонной болезнью; сейчас эта комната служит прибежищем ос и ящериц.

 

Шли годы. Ричер наблюдала, как постепенно растет число случаев сонной болезни. Сначала их было 19 в год, потом 87, затем перевалило за сотню. В 1997 г. она провела специальное исследование; по ее оценке, около 20% населения округа Тамбура — это 12000 суданцев — являются носителями сонной болезни.

 

В том же году Ричер предприняла контратаку, надеясь потеснить паразита хотя бы на подвластной ей территории. На ранней стадии болезни все, что нужно для исцеления, — это десять дней инъекций пентамидина в ягодицу. Тем же, у кого, как у Джастина, паразит проник в мозг, требуется более серьезное лечение. Такие пациенты нуждаются в сильном средстве, способном убить всех паразитов в мозгу; для этого используется очень вредное лекарство меларсопрол, который на 20% состоит из мышьяка. Он способен растворять обычные пластиковые трубки для капельниц, поэтому Ричер пришлось заказать трубки, устойчивые к химическому воздействию. Если меларсопрол просачивается из вены наружу, он может превратить окружающую плоть в распухшую болезненную массу; тогда приходится прекращать на несколько дней введение лекарства, а в худшем случае — ампутировать руку.

 

Когда Джастина привезли в больницу, его мозг уже был поражен паразитами. Медсестры три дня делали ему инъекции меларсопрола, и лекарство уничтожило значительную часть трипаносом в головном и спинном мозге мальчика. Но в результате его мозг оказался полон останками погибших паразитов, и его иммунные клетки перешли от состояния безразличия к лихорадочной деятельности. Выделенные ими яды обожгли мозг Джастина, и теперь воспаление сжимало его, будто тисками.

Пытаясь снять опухоль, Ричер прописала Джастину стероиды. Почувствовав очередной укол, он только слегка всхлипнул, не открывая глаз. Казалось, что ребенку снится кошмарный сон. Было ясно: если ему повезет, стероиды снимут давление на мозг. На следующий день будет ясно: либо Джастин почувствует себя лучше, либо умрет.

 

Прежде чем увидеть Джастина, я несколько дней провел с Ричер и наблюдал за ее работой. Мы заезжали в деревни, где ее помощники запускали центрифугу и начинали разделять кровь на компоненты в поисках характерных признаков присутствия паразита. Нам пришлось ехать несколько часов, чтобы добраться до еще одной ее клиники, где у пациентов брали спинномозговую пункцию, чтобы проверить, движется ли паразит к мозгу. Я сопровождал ее на обходе тамбурской больницы, где она осматривала других пациентов: маленьких детей, которых приходилось держать во время уколов, так они кричали; старух, которые молча принимали в вену обжигающий раствор; мужчину, который так обезумел от лекарств, что стал бросаться на людей и его пришлось привязать к столбу. Время от времени — и сейчас, когда я смотрел на Джастина, — я пытался мысленным взором увидеть паразитов внутри этих людей. На память приходил старый фильм «Фантастическое путешествие», где Ракель Уэлч и ее спутники сели в подводную лодку, которая затем была уменьшена до микроскопических размеров. Лодку ввели в вену некоему дипломату, чтобы экипаж субмарины мог пройти по кровеносной системе к мозгу и спасти его от смертельно опасной раны. Мне тоже пришлось войти в этот мир невидимых рек, где потоки крови расходятся по все более мелким ответвлениям артерий, а затем отправляются в обратный путь по венам, собираясь во все более крупные сосуды, пока не доберутся до мощного насоса — сердца. Там эритроциты катятся и отскакивают от стенок, как мячики, сжимаются, протискиваясь через капилляры, а затем вновь обретают привычную форму шайбы. Там лейкоциты выпускают ложноножки и пробираются в сосуды по лимфатическим протокам, напоминающим потайные двери в доме. А среди них плывут трипаносомы. Я видел трипаносом под микроскопом в лаборатории в Найроби и должен сказать, что они красивы. Их название происходит от греческого слова trypanon, что значит «бурав». Они примерно вдвое длиннее эритроцитов и под микроскопом кажутся серебристыми. У них плоские тела, похожие на небольшие ленточки, при движении они вращаются, как сверло или бурав, откуда и название.

 

Паразитологи, которые проводят много времени за разглядыванием трипаносом в микроскоп, нередко влюбляются в них. В одной серьезной научной статье я наткнулся на следующее предложение: «У Trypanosoma brucei много чудесных черт, делающих этого паразита любимцем экспериментальных биологов». Паразитологи наблюдают за трипаносомами не менее внимательно, чем орнитологи за ястребами, а паразиты глотают глюкозу, уходят от преследования иммунных клеток, постоянно меняя оболочку, и трансформируются в формы, позволяющие им какое-то время прожить в мухе, чтобы затем обрести новый облик, идеально приспособленный к хозяину-человеку.

 

Трипаносома — всего лишь один из множества паразитов, населяющих жителей южного Судана. Если бы вы могли, как в «Фантастическом путешествии», пройти сквозь человеческую кожу, то, вероятно, встретили бы там небольшие узелки — свернутых в клубок червей длиной со змею и толщиной с паутинку. Эти паразиты носят название Onchocerca volvulus;
их самцы и самки проводят в таких узелках десять лет отведенной им жизни и производят при этом тысячи детенышей. Малыши покидают родителей и отправляются путешествовать в толще кожи в надежде попасть под укус мошки и перебраться в нового хозяина. Во внутрен
ностях мошки они вырастут и созреют до следующей стадии; после этого насекомое впрыснет их в кожу нового хозяина, где каждый из них образует собственный узелок. Малыши Onchocerca volvulus, пробираясь сквозь кожу жертвы, вызывают яростную атаку со стороны иммунной системы, но, вместо того чтобы убить паразита, иммунная система покрывает кожу хозяина леопардовыми пятнами сыпи. Эта сыпь вызывает такой зуд, что человек может исчесать себя до смерти. Когда эти черви проходят сквозь наружные ткани глаза, иммунная система вызывает образование рубцов и, как следствие, слепоту. Поскольку личинки этого паразита ведут водный образ жизни и мошка тоже держится у воды, эта болезнь получила название речной слепоты. В Африке есть места, где она унесла зрение едва ли не всех местных жителей старше сорока.

 

Еще в Тамбуре есть ришты: полуметровые существа, которые покидают хозяина через специально устроенную язву на ноге и выползают наружу в течение нескольких дней. Есть черви филярии, вызывающие элефантиаз, или слоновую болезнь; при этой болезни мошонка иногда распухает до таких размеров, что может заполнить целую тачку. Есть ленточные черви—безглазые, безротые существа, которые живут в кишечнике и вырастают до пятнадцати метров и более; они состоят из тысяч сегментов, каждый из которых снабжен собственными мужскими и женскими половыми органами. Есть листовидные трематоды в печени и в крови. Есть одноклеточные паразиты, вызывающие малярию; эти существа проникают в клетки крови и разрывают их в клочья, когда подрастает новое поколение, и каждый новый плазмодий спешит заселиться в собственную клетку. Стоит пожить в Тамбуре подольше, и люди вокруг станут будто прозрачными: внутри каждого можно будет разглядеть внушительный букет паразитов.

 

Но Тамбура — не исключение, как может показаться. Просто здесь паразиты с особенной легкостью находят себе прибежище в человеке. Вообще, большинство людей на Земле носят в себе каких-нибудь паразитов, даже если забыть про вирусы и бактерии.

 

Более 1,4 млрд человек носят в кишечнике круглых червей Ascaris lumbricoides;
почти 1,3 млрд—кровососущих анкилостом; 1 млрд — червей-власоглавов. Каждый год два-три миллиона людей умирает от малярии. И многие из этих паразитов сейчас на подъеме. Может быть, Ричер удастся замедлить распространение сонной болезни в одном небольшом округе Судана, но вокруг болезнь только ширится. В год она убивает до 300 тысяч человек; в Демократической Республике Конго, судя по всему, она уничтожает больше людей, чем СПИД.

 

Если говорить о паразитах, то Нью-Йорк, пожалуй, придется признать более необычным, чем суданский городок Тамбура. А если отступить на шаг и рассмотреть всю нашу эволюцию, начиная от живших 5 млн лет назад обезьяноподобных предков, то окажется, что жизнь без паразитов, которую некоторым людям удается вести в последние сто лет, — всего лишь краткая передышка.

 

На следующий день я зашел проведать Джастина. Он лежал на боку и ел из чашки бульон. Его спина свободно прилаживалась к изгибам матраца; глаза нормально сидели в орбитах; шея вновь стала тонкой; нос очистился. Он по-прежнему был очень слаб и гораздо больше внимания уделял еде, чем разговору с незнакомыми людьми. Но приятно было сознавать, что краткая передышка, о которой мы только что говорили, коснулась и его.

• • •

Побывав в таких местах, как Тамбура, я начал думать о человеческом теле как о крохотном, но почти неисследованном острове, где обитают существа, не похожие ни на кого во внешнем мире. Но стоило мне вспомнить о том, что мы — всего лишь один вид из нескольких миллионов, обитающих на Земле, и мой воображаемый остров расширился до размеров континента, если не планеты.

 

Однажды, через несколько месяцев после поездки в Судан, я шел ночью по коста-риканским джунглям. В воздухе висел
то ли туман, то ли дождь. В руке я держал сетку для ловли бабочек, а карманы плаща были забиты пластиковыми пакетиками. Фонарь на лбу отбрасывал косой луч света на тропинку, которую в двадцати футах передо мной перегородил своей сетью паук. Его восемь глаз сверкали в луче фонаря, как грани бриллианта. Гигантская пилюльная оса уползала от света в свою норку рядом с тропой. Помимо моего фонаря местность освещали зарницы далекой грозы и светляки, то и дело пролетавшие над головой. Трава сильно пахла мочой ягуара.

 

Я шел по тропе вместе с семью биологами; вел нас ученый по имени Дэниел Брукс. Он совершенно не соответствовал моему представлению о бесстрашном биологе, изучающем джунгли: плотное телосложение, длинные висячие усы, большие летные очки, черно-красный спортивный костюм и кроссовки. Но если остальные коротали время в пути за разговором о том, как надо фотографировать птиц или как отличить ядовитую коралловую змею от безобидной ящерки-имитатора, Брукс держался впереди и внимательно вслушивался в раздававшиеся вокруг еле слышные звуки и шорохи. Внезапно он остановился на краю тропинки и сделал нам знак рукой, призывая к тишине. Сам же двинулся к широкой канаве, заполненной дождевой водой, и медленно поднял сетку. Ступив одной ногой в воду, он внезапно накрыл что-то сеткой на дальнем берегу канавы. Сетка начала резко дергаться. Прежде чем поднять добычу, Брукс перехватил сетку посередине. Другой рукой он принял у меня пластиковый пакет, надул его воздухом и посадил в него большую полосатую леопардовую лягушку, а пакет завязал и повесил на пояс. Затем двинулся по тропинке дальше, а пухлый пакет с лягушкой драгоценной ношей висел у него на поясе.

 

Лягушки и жабы в ту ночь попадались на каждом шагу. Чуть дальше по тропе Брукс поймал вторую леопардовую лягушку. Лягушки-тунгара плавали в воде и оглашали все вокруг звуками мощного хора. Жабы-аги, некоторые размером с кошку, дожидались нашего приближения, чтобы одним громадным ленивым прыжком удалиться на безопасное расстояние. Мы проходили мимо клочьев пены — плотной, как в хорошей ванне, из которых в воду ныряли сотни крохотных головастиков. Мы ловили тупомордых микроквакш, у которых крошечные невыразительные глазки располагались прямо на носу и чьи плоские толстые тельца напоминали подтаявшие куски шоколадного пудинга.

 

Для иных зоологов охота на интересных животных на этом бы и кончилась, но Брукс пока даже не знал, кого именно ему удалось добыть. Он принес пойманных лягушек в контору заповедника Гуанакасте, где оставил их до утра в пакетах с водой, чтобы сохранить их живыми. Утром, позавтракав рисом, бобами и ананасным соком, мы с ним прошли в лабораторию, которая представляла собой навес с двумя стенами из крупной металлической сетки.

 

— Местные помощники называют ее jaula, — сказал Брукс. Посередине навеса стоял стол с микроскопами для препарирования, а по бетонному полу ползали жуки и гусеницы бабочки-медведицы. На электрическом шнуре под потолком висело гнездо пилюльной осы. Снаружи на деревьях за оплетающими навес лианами вопили обезьяны-ревуны. Jaula — это «тюрьма» по-испански.

 

— Они говорят, что нам надо оставаться внутри, не то мы перебьем у них всех зверей.

 

Брукс достал из пакета леопардовую лягушку и прикончил ее резким ударом о край раковины. Она умерла мгновенно. Он положил тельце на стол и начал разрезать брюшко. Пинцетом он осторожно вытягивал из тела лягушки кишки. Внутренние органы он переложил в широкую чашку Петри, а пустое тельце лягушки поместил под микроскоп. За три предыдущих сезона Брукс успел исследовать внутренности 80 видов земноводных, пресмыкающихся, птиц и рыб из Гуанакасте. И начал составлять список всех видов паразитов, обитающих в заповеднике. В животных и растениях мира так много различных паразитов, что никто никогда не пытался сделать подобное на территории размером с Гуанакасте.

 

Брукс поправил лампы на длинных гибких черных стойках: они, как две любопытные змеи, не мигая уставились на мертвую лягушку.

 

— Ну вот, — сказал он, — посмотрим.

 

И показал мне свою первую находку: червь филярия, родич паразитирующего на людях ришты, любопытно выглянул из своего домика в одной из вен на спине лягушки.

 

— Вероятно, их переносят комары, которые кормятся на лягушках, — объяснил Брукс.

 

Он вытащил червя целиком и бросил в чашку с водой. К моменту, когда он приготовил уксусную кислоту для консервации червя, паразит успел разорваться и превратиться в белую пену, но Брукс вытащил из тела лягушки еще одного и поместил в уксус целым; в чашке с кислотой паразит замер, распрямился и готов был храниться десятилетиями.

Это был только первый из множества паразитов, которых нам пришлось увидеть в тот день. Из другой вены появилась цепочка трематод, напоминающая извивающееся ожерелье. В почках обнаружился еще один вид трематод, которые достигают взрослого состояния лишь после того, как лягушка будет съедена хищником — цаплей или носухой. Легкие этой особи оказались чистыми, хотя у местных лягушек нередко и в легких обнаруживаются паразиты. В крови у них бывает по несколько видов малярии, а трематоды живут даже в пищеводе и в ушах.

 

— Лягушки — настоящие гостиницы для паразитов, — сказал Брукс. В этот момент он осторожно вскрывал кишечник, стараясь не повредить паразитов внутри. Там обнаружился еще один вид трематод — крохотное пятнышко, проплывшее по полю микроскопа. — Если не знаешь, что искать, можно принять их за случайный мусор. Эти, к примеру, переселяются из улиток в мух, которых затем съедают лягушки.

 

В данном случае трематоде приходилось делить лягушачьи кишки с червем-трихостронгилусом, который попадает туда более прямым путем — вбуравливаясь прямо во внутренности лягушки.

 

Брукс отодвинул чашку из-под микроскопа и сказал:

 

— Да, ребята, вы меня разочаровали.

 

Я думаю, он обращался к паразитам. Надо сказать, что на меня все существа, которых я увидел внутри одной-единственной лягушки, произвели сильное впечатление, но Брукс знал, что в одном виде земноводных может обитать больше десятка видов паразитов, и хотел показать мне их как можно больше. Затем он обратился к покойной лягушке:

 

— Будем надеяться, что у твоего приятеля их окажется больше.

 

Он сунул руку в пакет за второй леопардовой лягушкой. У этой особи на левой передней лапе не хватало двух пальцев.

 

— Это значит, что ей удалось уйти от какого-то хищника, которому повезло меньше, чем мне,- заметил Брукс и прикончил лягушку одним быстрым ударом. Поместив лягушку вскрытым брюшком вверх под микроскоп, он радостно воскликнул:

 

— Ого! Прекрасно! Простите… в некотором смысле это действительно прекрасно.

 

Он пригласил меня заглянуть в окуляры микроскопа. Еще одна трематода — на этот раз горгодерида, названная так из-за сходства с извивающимися змеями на голове Медузы Горгоны, — выползала из мочевого пузыря лягушки.

 

— Они живут в двустворчатых пресноводных моллюсках. Это говорит о том, что лягушка побывала где-то, где есть такие моллюски, для чего необходимы гарантированный источник воды, песчаное дно и богатая кальцием почва. А второй их хозяин — речной рак, так что в той местности должны обитать двустворчатые моллюски, раки и лягушки, причем круглый год. Эта лягушка родилась не там, где мы ее вчера поймали, — он перешел к осмотру кишок. — Да, и вот прелестное сочетание — нематоды рядом с трематодами, которые образуют цисты на коже лягушки. Сбросив кожу, лягушка поедает ее и таким образом заражается снова. Трематоды напоминали живые мешочки с яйцами.

 

Приободрившись, Брукс перешел к микроквакше.

 

— Вот это да, вы принесли мне удачу, — сказал он, заглядывая внутрь. — В этой штуке, наверное, не меньше тысячи остриц. Просто кишмя кишат.

 

В остричной массе корчились радужные простейшие — одноклеточные гиганты, почти не уступающие по размеру своим соседям, многоклеточным червям.

Некоторые из виденных нами в тот день паразитов уже имеют имена, но большинство пока не известны науке. Вот и теперь Брукс подошел к своему компьютеру и ввел примерное описание — нематода, ленточный червь, — которое затем придется уточнить и довести до ума ему самому или другому паразитологу, который придумает этому паразиту латинское название. В компьютере Брукса хранятся описания паразитов за несколько лет работы, в том числе и некоторых из тех, которых мне довелось наблюдать в предыдущие несколько дней. У него на столе успели побывать игуаны с ленточными червями и черепаха с целым морем остриц. Перед самым моим приездом Брукс с помощниками вскрыл оленя, обнаружив в нем и на нем больше десятка видов паразитов, в том числе нематод, обитающих только в ахилловом сухожилии оленя, и личинок мух, откладывающих яйца в его носу. (Брукс называет последних сопливыми.)

 

Вероятно, Бруксу не удастся пересчитать всех паразитов даже в одном отдельно взятом заповеднике. Брукс — специалист по паразитам позвоночных в том смысле, как их обычно определяют, т. е. за исключением бактерий, вирусов и плесневых грибков. К моменту моего визита он насчитал в заповеднике около трехсот таких паразитов, но, по его же оценке, всего их должно быть около 11 тысяч. Брукс не занимается тысячами видов паразитических ос и мух, которые живут в лесу и поедают изнутри насекомых, до самого последнего мгновения сохраняя им жизнь. Он не изучает растения, паразитирующие на других растениях, похищая у своих хозяев воду, выкачанную из почвы, и пищу, изготовленную из воздуха и солнечного света. Он не учитывает грибки, способные селиться в животных, растениях и других грибках. Он может только надеяться, что другие паразитологи присоединятся к нему. Вообще, паразитов на свете гораздо больше, чем паразитологов. Каждое живое существо кормит внутри или на коже хотя бы одного паразита. Многие, как леопардовые лягушки или люди, кормят не одного, а многих паразитов. В Мексике есть попугай, у которого только на перьях живет тридцать видов клещей. Кроме того, у паразитов тоже бывают паразиты, а у некоторых из этих паразитов — свои паразиты. Ученые не знают, сколько всего на Земле видов паразитов, зато они знают другую поразительную вещь: паразитические виды на нашей планете составляют большинство. По некоторым оценкам, число паразитических видов превосходит число свободноживущих вчетверо. Иными словами, наука о жизни — это в основном паразитология.

 

Книга, которую вы держите в руках, посвящена именно этому новому взгляду на жизнь. Десятилетиями о паразитах никто всерьез не думал, но в последнее время они привлекли к себе внимание многих ученых. Вообще говоря, требуется немало времени и усилий, чтобы по достоинству оценить сложнейшие механизмы адаптации, выработанные паразитами; даже увидеть их очень и очень непросто. Паразиты умеют кастрировать своих хозяев и брать под контроль их сознание. Трематода в пару сантиметров длиной способна обмануть нашу иммунную систему и заставить ее считать себя такой же безвредной, как наша собственная кровь. Оса впрыскивает в клетки гусеницы собственные гены, чтобы подавить иммунную систему будущего хозяина.

Только сейчас ученые всерьез задумались о том, что паразиты могут быть не менее важными звеньями экосистемы, чем львы и леопарды. И только сейчас они начинают понимать, что паразиты были одной из главных, а может быть, и самой главной движущей силой эволюции.

 

Возможно, мне следовало здесь сказать — эволюции меньшинства форм жизни, которые не являются паразитическими. К этой мысли нелегко привыкнуть.

Автор: Admin | 2012-02-17 |

Энергетика на водороде — миф или реальность? Часть I

Для автоматизации и сокращения расходов на заключительном этапе производственного процесса Вам потребуется упаковочная линия, приобрести которую Вы сможете по выгодной для Вас цене у представителей компании OMAG S.R.L., поставляющей свою высококачественную продукцию на российский рынок уже более 25 лет. За более подробной информацией обращайтесь по адресу www.omag.ru.


Бедственная экология мегаполисов, повышение содержания СО2 в атмосфере, потепление климата, резкое увеличение числа климатических аномалий, которые все чаще принимают форму метеорологических катастроф, — все это провоцирует разговоры о водородной энергетике как о кардинальном решении экологических проблем. Действительно, при сжигании водорода получается только чистая вода и никаких «парниковых» газов.

 

Президенты, сенаторы, губернаторы, финансовые магнаты и прочие власть предержащие под давлением общественного мнения делают популистские заявления о пользе водорода и отпускают миллиарды долларов на разработку этого направления. Все ведущие автомобильные фирмы уже несколько лет как включились в соревнование по созданию лучшего автомобиля на водороде. Но почему же все это больше похоже на рекламную компанию с целью повышения рейтинга, нежели на действительное стремление сделать кардинальный переворот? Оказывается, есть причина к торможению революционных преобразований, но причина эта мнимая, хотя эксперты уверены в ее объективности. Обсудим эту ситуацию.

 

Следует отметить, что обычный двигатель внутреннего сгорания хорошо работает на водороде. Такие автомобили еще в 1980 году на Московской олимпиаде обслуживали спортсменов на длинных дистанциях. Это были обычные микроавтобусы с обычными двигателями внутреннего сгорания, у которых, помимо баков с бензином, имелись емкости (дюары) с жидким водородом. Однако это уже прошлый век, а в нынешнем столетии создаются принципиально иные автомобили. Оказывается, еще в конце XIX века был известен способ получения электрической энергии непосредственно от химической реакции водорода с кислородом, практически без выделения тепла. Уже тогда обнаружили, что если водород и кислород (кислород атмосферы) разделить проницаемой электролитической мембраной, то реакция образования воды на этой мембране будет проходить без горения, но с выделением электрической энергии в виде создания разности потенциалов. Сегодня топливные элементы такого типа (Fuel Cells) усовершенствованы настолько, что именно от них получают бортовую энергию американские «космические челноки» в орбитальном полете.

 

Теперь представьте себе автомобиль, оснащенный такими топливными элементами. Это электромобиль с очень компактным электродвигателем, которому не нужны ни система питания, ни система зажигания, ни система охлаждения, ни система смазки, ни кривошипно-шатунный механизм, ни… Короче говоря, по сравнению с современным двигателем внутреннего сгорания электродвигатель прост до неприличия, и поэтому он гораздо более технологичен и безотказен. Он никогда не застучит (просто стучать нечему), у него не может быть проблем с «запуском», ему не нужна коробка передач (как она не нужна троллейбусу). У него нет выхлопной трубы, потому что нет самого выхлопа, а потому он бесшумен, и единственное, что он выделяет во вне, это чистейшая вода, которую можно пить без всякого опасения. У такого автомобиля кондиционер или печка работают независимо от двигателя, поскольку эти устройства автономны. Если вас засыпало снегом или вы где-то безнадежно застряли, что иногда бывает, то в новом автомобиле можно неделю ждать помощи в комфортной температуре без всякого риска отравиться выхлопными газами. В общем, это не автомобиль, а какая-то сказочная мечта.

 

На воплощение этой мечты фирма «General Motors» потратила свыше 50 млн. долларов, и в 2000-м году представила на суд публике пятиметрового (в длину) красавца «GM Precept» («precept» — наставление, предписание), способного на одной заправке водородом преодолевать свыше 800 км. Несмотря на свои внушительные габариты, этот чудо-автомобиль показал прекрасные динамические характеристики. Близко к этому времени и другие ведущие автопроизводители поспешили продемонстрировать свои немалые успехи. Помимо всего прочего, автомобили на топливных элементах потрясающе экономичны, КПД их силовой установки достигает 85%, тогда как из современного бензинового двигателя нельзя выжать более 40%, остальное выбрасывается в атмосферу с выхлопом раскаленных газов. Вот так, попросту, большая часть энергии — на выхлоп, да еще в виде удушающих и отравляющих газов. Разве это не «прошлый век»? А теперь представьте, как изменится среда обитания, когда все начнут ездить на новых автомобилях, — наши мегаполисы станут тихими и чистыми.

 

Итак, водород чрезвычайно привлекателен. Но почему же мы продолжаем жить по старому? Проблема в том, где этот водород взять. На поверхности планеты он существует в виде воды. Ее, конечно, можно подвергнуть электролизу и получить водород. Но когда мы употребим этот водород в качестве энергоносителя, то получим меньше энергии, чем было затрачено на его производство. Таким образом, для перевода транспорта и энергетики на водород, придется сжигать больше угля и нефти, придется больше расщеплять урана, и все это для сохранения уже достигнутого уровня энергопотребления. Разумеется, станет несравненно лучше там, где водород будет использоваться, но экология планеты в целом начнет ухудшаться более быстрыми темпами. В этом эксперты от энергетики видят непреодолимый тупик. К тому же полученный из воды водород (как энергоноситель) оказывается гораздо дороже углеводородного топлива. И это, естественно, сдерживает тех инвесторов, которых не волнуют проблемы глобальной экологии. Итак, что же получается? Водородная энергетика — это все-таки миф и чудо-автомобили никогда не заполонят наши дороги? Но давайте немного повременим с таким суровым приговором и обсудим эту проблему с новой (нашей) точки зрения.

 

Когда эксперты выносят свой суровый приговор, они даже не подозревают, что жестоко ошибаются, поскольку находятся в плену ошибочных представлений о строении Земли. Действительно, если наша планета имеет железное ядро, а все остальное у нее силикатное, то о водородной энергетике лучше и не мечтать. Разумеется, это направление можно развивать вне зависимости от того, как устроена Земля. Можно, например, застелить Неваду солнечными батареями, понаставить повсюду «ветряков», получать электрическую энергию и тратить ее на производство водорода. Но даже при самом благоприятном раскладе со всего этого мы будем иметь лишь малую долю того, что требуется, и это не спасет ни нас, ни планету.

 

Теперь посмотрим на проблему в свете новой концепции. Силикатная оболочка нашей планеты имеет мощность 150 км под континентами, Земля расширяется, в зонах рифтогенеза литосфера утоняется и бескислородные интерметаллические силициды поднимаются к поверхности в виде гигантских выступов. Судя по геофизическим данным, в осевых частях океана, под рифтовыми впадинами, эти выступы располагаются на глубине 1,5 км от поверхности дна. На континентах, в зонах современного рифтогенеза, они располагаются на глубине примерно 35 км. Однако местами языки и гребни, отходящие от этих выступов, можно обнаружить на глубине 3 — 5 километров (рис. 55). Если мы найдем эти места и приспособимся добывать оттуда силициды, то каждый килограмм этого вещества (в результате химической реакции с водой) будет давать по 1200 литров водорода и дополнительно к водороду по 13,5 мега-джоулей тепла (13,5 МДж выделяются при сжигании одного килограмма бурого угля). Таким образом, если Земля устроена «по-нашему», то она позволяет добывать водород из воды, не только не затрачивая энергию, но еще и получая ее попутно и в больших количествах. Кроме того, в нашем варианте нет выбросов углекислого газа, о котором так много ведется разговоров в связи с парниковым эффектом и потеплением климата.

Автор: Admin | 2012-02-17 |

Гиперреалистичные скульптуры Бруно Валпоса

Гиперреалистичные художественные произведения демонстрируют высшую степень мастерства художника, способного воссоздает реальность. Большинство из таких работ несут в себе множество подтекстов, однако современная публика, требующая лишь ‘хлеба и зрелищ’, успевает добраться только до яркой красочной обертки, под которой скрыты чувства, мысли, идеи и душевные переживания автора.

Сегодня я хотел бы познакомить Вас с творчеством Бруно Валпос (Bruno Walpoth), выдающегося (по мнению многих критиков) скульптора нашего времени, создающего невероятные скульптуры из дерева, которые просто невозможно отличить от живых людей.
Читать дальше>>

Автор: Admin | 2012-02-15 | Искусство

Внешнее ядро планеты Земля

У каждой современной женщины возникает естественное желание избавиться от нежелательных волос на теле. В салонах красоты качественное исполнение этой процедуры стоит немалых денег и может очень серьезно ударить по семейному бюджету, поэтому я советую каждой бережливой хозяйке всерьез задуматься о приобретении домашнего фотоэпилятора MS Westfalia HPLight, который быстро и безболезненно удалит нежелательные волоски.
Более подробную информацию о фотоэпиляторе и условиях его приобретения Вы сможете узнать на сайте www.hplight-shop.ru


Внешнее ядро планеты Земля

 

1. Поперечные волны не проходят через внешнее ядро, что свидетельствует о его жидком состоянии.

2. Магнитное поле Земли генерируется во внешнем ядре, и поэтому оно должно иметь высокую электропроводность.

3. Плотность на подошве мантии примерно 5,5 г/см3, на поверхности ядра — 9,9 г/см3, т.е. при переходе через границу плотность увеличивается примерно в 1,8 раза.

 

В рамках наших построений внешнее ядро представлено металлами, содержащими водород в основном в виде раствора. И оказывается одного этого (водорода, растворенного в металлах) абсолютно достаточно, чтобы внешнее ядро было жидким, электропроводящим и более плотным в сравнении с металлосферой, из которой водород был дегазирован в прошлые эпохи. Однако по порядку.

 

Технологам хорошо известно охрупчивание металлов при растворении в них водорода. Причину этого явления выясняло уже не одно поколение специалистов по физике твердого тела. Теперь представьте себе, как к этим специалистам приходит неотесанный геолог (ваш покорный слуга) и заявляет, что если металлы с растворенным в них водородом подвергнуть всестороннему (гидростатическому) сжатию, то с некоторого уровня давлений охрупчивание исчезнет, проявится способность к пластической деформации, а при дальнейшем повышении давления металлы потекут, как будто бы они расплавлены. И все это, по нахальному мнению «неотесанного», должно быть при комнатной температуре.

 

Можете представить, что тут началось. Физики ринулись доказывать, что это абсолютно исключено. Рисовали формулы, но это меня не впечатляло по причине моей якобы полной неосведомленности. Они это легко приняли и перешли на более доступные способы убеждения, что, мол, нужно хоть что-то знать в той области, в которой предсказываешь неизвестное ранее физическое явление. Я соглашался с ними, скорбел по поводу своей неотесанности, но уходить не торопился. Наконец, самый маститый из присутствующих, окончательно потеряв терпение, сказал: «То, что вы предлагаете, звучит для Нас так же, как если бы Мы стали уверять вас, что сейчас перед входом в Наш институт на скамейке сидит семейство питекантропов. Вы бы Нам поверили?!». Невозможно было не увидеть в этом заявлении намека на то, что (по их разумению) я сам из этого же семейства. Я резко встал. Физики вздохнули с явным облегчением. Но вместо того, чтобы вежливо исчезнуть, я радостно предложил им пойти и посмотреть на ту скамейку, если сидят, то прогноз верен, а если нет, то, стало быть, нет. Такой реакции они явно не ожидали. Повисло гробовое молчание, но я заметил, что они устали и почти готовы сдаться и проверить предсказанное мной явление хотя бы потому, что такого никто никогда не делал. Они — экспериментаторы, а это чрезвычайно любопытная публика, на что я и рассчитывал.

 

Почувствовав критический момент, я вытащил «бумагу», оформленную на фирменном бланке Академии наук СССР, с подписью академика-секретаря. Он тоже геолог и не мог «не порадеть родному человечку». В письме была настоятельная просьба оказать мне всяческое содействие. Физики заворчали, что, мол, надо было начинать с этого, столько времени зря потеряли. Вопрос был решен.

 

Непосредственные исполнители нашлись в одном академическом институте на Урале, там была подходящая аппаратура. Состоялась встреча, на которой исполнители разочаровали меня своими техническими возможностями, они могли определять пластичность металла только до 12 тысяч атмосфер (при комнатной температуре). Но мне нужен был гораздо больший интервал давлений. Без всякой надежда: на успех я согласился и передал им образец состава TiH0,14 (при такой концентрации водород находится в титане исключительно в виде твердого раствора). На вопрос: «Какой ожидается результат?», я тут же от руки нарисовал график (см. рис. № 8). Нарисовал, разумеется, «от фонаря», но держался при этом столь уверенно, что произвел определенное впечатление на исполнителей, и вопросов они больше не задавали.

Через несколько дней зазвонил телефон: «Здравствуйте, это мы с Урала! Помните нас?» Голос веселый, но вместе с тем какой-то немного прокурорский. Просят о встрече. Ну, думаю, физики хотят позабавиться над бедным геологом… Встретились, они дают мне чертеж и говорят: «Это результат эксперимента». Смотрю и вижу, что этот чертеж один к одному совпадает с моим рисунком (от фонаря!). Озвучил свое наблюдение. Они повторяют, что это результат эксперимента: «просто все получилось именно так, как вы нарисовали». «Но так же не бывает!» — вырвалось у меня. Физики-экспериментаторы посмотрели на меня какими-то странными взглядами и согласились: «Мы тоже думаем, что такого быть не может, и хотели бы знать, где Вы про это прочитали?»… Так вот в чем причина странности их взглядов — они подозревали меня в плагиате.

 


Рис. 8. Появление пластичности в титане, содержащем растворенный водород, в условиях гидростатического (всестороннего) сжатия.

 

 

В голове был полнейший сумбур, все вертелся вопрос: как же такое (?!) могло случиться? Наконец, я успокоился, а что, собственно, произошло? Просто концепция сработала на предсказательность, и немного улыбнулась фортуна в том, что для первого опыта был выбран именно титан, у которого переход от водородной хрупкости к пластичности оказался при таких низких давлениях. Выбрал бы какой-нибудь другой металл и сидел бы сейчас с постной рожей. Как водится у мужиков, страшно захотелось глотнуть «освежающего», однако времена были «застойные», и пришлось удовлетвориться сигаретой.

 

Между тем физики сидели и ждали, когда же я буду «колоться» по поводу плагиата, и, судя по выражениям на их лицах, совершенно неадекватно понимали мои душевные муки. Пришлось рассказать им про новую концепцию, постепенно подводя к выводу, что в рамках этих построений предсказанное мной явление просто обязано быть. Показал на эту тему книгу, опубликованную мною несколькими годами раньше, где все это было обосновано.

 

Смотрю, поверили и уже не слушали, а внимали. Кроме того, при своих прежних контактах с физиками, как с этими ребятами, так и с теми учеными мужами, что записали меня в питекантропы, я немного лукавил, бравируя своей неотесанностью. На самом деле было потрачено много времени на ликбез в данной области, и я мог вести разговор на их профессиональном языке, чем в данный момент постарался воспользоваться в полной мере. Ребята поняли, что перед ними «никем не паханное», загорелись энтузиазмом и, действительно, затем много и быстро сделали.

Оказалось, как я и предполагал, переход от водородной хрупкости к водородной пластичности при гидростатическом сжатии наблюдается во всех металлах, если только в них удается создать твердый раствор водорода и сохранить его при комнатной температуре. А титан вообще начинает течь при давлении в 10—12 тыс. атм., как будто бы он расплавлен, и это при комнатной температуре (справка — температура плавления титана 1665 оС)*.

 

————————————————————————————————————

* Более того, с помощью некоторого «know how» я могу заставить титан (состава, примерно TiH0,1) течь, как будто бы он расплавлен, при давлении порядка одной тысячи атмосфер и температуре, мало отличающейся от комнатной (напоминаю, температура плавления титана 1665 оС). Эти опыты я проводил на установке, которая не позволяла сделать давление меньше 1—1.5 тыс. атм. Однако у меня полная уверенность в том, что титан (с применением моего «know how») потечет и при меньших давлениях, что открывает новую возможность в технологии обработки металлов. Ау! Инвесторы, где вы? Есть возможность кое-что организовать и хорошо заработать.

————————————————————————————————————

 

Вместе с тем кремний в обычных условиях не металл, а полупроводник, и в нем не удается сохранить истинный твердый раствор водорода при комнатной температуре. Поэтому с кремнием эксперименты не проводились. Однако в интервале давлений 112—125 килобар решетка кремния трансформируется в более плотную модификацию, и при этом происходит переход типа «полупроводник → металл», т.е. кремний в недрах нашей планеты с уровня 375 км и глубже становится металлом по всем физическим свойствам. И поскольку в таблице Менделеева он стоит непосредственно над титаном, то свойства металлизированного кремния должны быть очень сходными со свойствами титана.

 

Работа уральских физиков весьма укрепила мою уверенность в собственной правоте, и с этой уверенностью я вновь отправился к ученым мужам, которые так неласково меня приняли поначалу.

 

Разумеется, я жаждал реванша и ждал покаяния. Но ни того, ни другого не получил. У них, у физиков-экспериментаторов, нет жестких канонов, с которыми они за долгое время сосуществования могли бы сродниться душой и телом и воспринимать их крушение болезненно. У них все быстро меняется, и только захочешь что-нибудь возвести в догму, как она рушится в связи с новыми результатами. Они к этому привыкли и восприняли реальность предсказанного мной явления как в общем-то рутинное событие. И все же им было любопытно узнать, какая модель физического процесса позволила предсказать неизвестное ранее физическое явление.

 

Эта модель удивительно проста. Все основано на сопоставлении размеров голого протона и атомов металлов, слагающих кристаллическую решетку. Они различаются на 5 порядков, т.е. в сто тысяч раз! Если представить протон в виде зернышка мака размером в 1 миллиметр, то атомы будут шарами с диаметром в 100 метров, в сечении это будет больше футбольного поля. При уплотнении металлов в 5 раз диаметр этих шаров будет 60 метров, т.е. будет все та же разница в 5 порядков между размерностью протона и атомами многократно сжатого металла. Теперь представьте себе, что практически вся масса атома сосредоточена в ядре (масса покоя электрона примерно в 1850 раз меньше массы протона или нейтрона), и ядро металла, в наших модельных представлениях, будет небольшой горошиной, которая затерялась где-то в центре футбольного поля. Получается, что весь объем заполнен электронами, представляющими собой непонятно что, но только не корпускулы, а скорее какие-то энергетические волны-вихри с эфемерной массой, да еще сильно растянутые по своим орбитам. Среди этих «футбольных полей» гуляет миллиметровая бусинка-протон с точечной концентрацией заряда и массы.

 

Вспомним, что внешняя электронная оболочка металла занимает преобладающую (в несколько раз) долю объема атома, а электронов в ней на порядок меньше. Что запрещает протону заходить в эту сравнительно слабо заселенную зону? «Кулоновский барьер» ядра (?), но он практически полностью экранирован внутренними плотными электронными оболочками. Диффузия водорода в металлах может на 7 порядков превышать скорость диффузии других элементов. Только представьте: водород за секунды проходит расстояние, на преодоление которого другому элементу требуются годы. И все это потому, что водород диффундирует в виде протона, размеры которого исчезающе малы в сравнении с атомами, составляющими решетку (маковое зернышко на футбольном поле).

 

Металловеды также установили, что скорость диффузии водорода одинакова, что через монокристалл, что через образец, в котором после холодной прокатки «набито» великое множество дислокаций, вакансий, границ зерен и др. несплошностей решетки, обычно являющихся путями ускоренной диффузии примесных атомов. Чтобы примесному атому переместиться в соседнее междоузлие, ему нужно преодолеть потенциальный барьер в виде плотно окружающих его атомов кристаллической решетки, на что требуется энергия (энергия активации диффузии). Поэтому примесные атомы для ускорения диффузии используют различные нарушения решетки, где эти барьеры ослаблены или отсутствуют. И совершенно очевидно, что протону эти барьеры не создают никакой преграды, он способен проходить сквозь сами атомы металлов, поскольку для него внешние электронные оболочки, по сути, пустота.

 

Но если протон проникает внутрь атома, то это равносильно увеличению эффективного заряда ядра. Внешние электроны будут подтягиваться внутрь, и атомный радиус уменьшится. Этому атому, внезапно похудевшему, уже гораздо легче проникнуть в соседнее междоузлие, тем более что такому же внезапному похуданию подвержены также атомы, создающие барьер для перехода (схлопотал протон — похудел, потерял — поправился, протоны не связаны химическими связями и гуляют в объеме металла). Короче говоря, наличие протонов в металле разрушает барьеры, препятствующие атомам кристаллической решетки переходить в соседнее междоузлие. Кристаллическая решетка теряет свою жесткость, начинает «оплывать», т.е. становится пластичной. Отсюда водородная пластичность металлов, и эта пластичность обусловлена резким увеличением способности атомов к диффузии. Без водорода такая пластичность наблюдается лишь при сильном нагревании металла (до размягчения), когда колебания атомов становятся столь энергичными, что кристаллическая решетка уже не в состоянии удержать их на своих местах.

 

Все это я поведал физикам, но только более строго, они не любят образности. Реакция опять была абсолютно негативная. Они сказали, что диффузионной пластичности при комнатной температуре быть не может. Скорее всего, всестороннее сжатие образца приводит к резкому увеличению плотности дислокаций, и, по их мнению, появляющаяся пластичность имеет обычный дислокационный характер. Идею о том, что протоны способны проникать внутрь электронных оболочек, физики обсуждать отказались, полагая ее бредовой.

 

Разумеется, вынесенный вердикт меня никоим образом не устраивал. Допустим, я могу объяснить жидкое состояние внешнего ядра планеты присутствием в металлах растворенного водорода, возможность этого показали эксперименты. Но мне обязательно нужно было внедрение протонов в электронные оболочки, чтобы последние подтягивались внутрь и в результате сокращались бы размеры атомов. Ведь внешнее ядро Земли не только жидкое, но и более плотное в сравнении с окружающей его металлосферой. Я спросил физиков, что могло бы поколебать их уверенность в невозможности проникновения протонов в электронные оболочки атомов. Ответом было: «Ну, к примеру, если вы докажете диффузионный механизм водородной пластичности». Схема изящного эксперимента возникла у меня мгновенно, но я благоразумно не стал тут же обсуждать ее с оппонентами.

 

Я решил вырастить алмаз в твердом металле из атомов углерода, содержащихся в этом металле в виде твердого раствора. И если я прав в своих построениях, то алмазы у меня должны вырастать «мгновенно» в твердой среде (в твердой кристаллической решетке металла). Из специальной литературы мне было известно, что введение водорода в металл резко снижает растворимость в нем углерода. Т.е. если в металле имеется твердый раствор углерода и мы введем в решетку водород, то углерод должен «выпасть из раствора» в виде самостоятельной минеральной фазы. И если давления низкие, то это будет графит, а если высокие — будет алмаз. Вместе с тем присутствие водорода в виде протонов обеспечит столь быструю диффузию атомов углерода, что алмазы должны вырастать в твердой решетке металла очень быстро, можно сказать, «невероятно быстро».

 

На ближайшей помойке валялась пришедшая в негодность батарея водяного отопления. Она была чугунная, а в чугуне в виде твердого раствора находится примерно 8—9% (ат.) углерода (что сверх этой концентрации, то присутствует в чугуне в виде графита). Я отколол от этой батареи кусочек, из которого выточил исходные образцы для эксперимента. В одном подмосковном научном центре нашлись люди, увлеченные синтезом алмазов. Они предоставили мне свою технику для создания высоких давлений и терпеливо научили на ней работать. Они же снабдили меня сведениями, согласно которым при 750 оС область стабильности алмаза появляется при давлениях порядка 35 килобар и выше. Вместе с тем меня просветили, что это согласно термодинамическим расчетам, поскольку при данных параметрах никто не синтезировал алмаз, т.к. кинетика процесса при такой температуре столь мала, что никакой жизни не хватит дождаться результата. И поэтому алмазы выращивают при температурах порядка 1200—1250 оС, при которых кинетика становится ощутимой для синтеза кристаллов. Данная ситуация меня вполне устраивала, т.к. я собирался ускорить кинетику (по сути, диффузию) на несколько порядков введением протонированного водорода в решетку металла.

В образец чугуна я заложил источник водорода, который должен был сработать при повышении температуры, и этот «сэндвич» был помещен в установку высокого давления. Сначала его «задавили», потом нагрели до 750 оС, подержали несколько минут, отключили нагрев, отключили компрессор, вынули, положили в пакетик и написали № 1. Затем то же самое еще 4 раза проделали с другими идентичными образцами. Итак, у меня 5 пакетиков и большой скепсис относительно результата, особенно в связи с малой продолжительностью опытов. Однако держать дольше не имело никакого смысла, т.к. водород очень быстро уходил из образца. Через некоторое время я уже был в химической лаборатории, где под тягой на электроплитке стоят 5 стаканчиков, в них в кипящей царской водке постепенно исчезает железо, а из него вываливается какой-то темный мусор. Этот мусор был промыт спиртом, высушен, и вот он уже у меня в виде «дорожки» под бинокуляром.

 

Перебираю эту грязь и меланхолично отмечаю: это графит из чугуна, это карбиды железа, это вообще «не знамо что». И вдруг в поле зрения появляется октаэдр, чистый, играющий всеми цветами радуги, завораживающий своей формой с идеальными треугольными гранями. Безусловно, это алмаз! И его появление среди бесформенного темного мусора казалось нереальным. Чтобы насладиться зрелищем, стал поворачивать его с боку на бок стальной иголкой, неосторожно прижал к стеклу, раздался щелчок, и он выскочил за пределы поля зрения. Я готов был убить себя за неосторожность, проклиная все на свете, вытащил из гнезда осветитель и стал подсвечивать все вокруг. Кристаллик выдал себя своей игрой со светом. Я водворил его на место и стал быстро-быстро просматривать дорожку дальше. Обнаружил еще с десяток монокристаллов с формой куб-октаэдра, размером от 0,3 до 0,7 мм, и десятка два сростков столь занимательной конфигурации, что ими можно было любоваться до бесконечности. Примерно такой же набор был найден еще в двух опытах, а два оказались пустыми. Предположительно, в пустых опытах водород нашел лазейку и вытек, минуя основной объем металла.

 

При давлениях порядка 35 кбар чугун плавится около 1200 оС. Это температура эвтектической горизонтали (Fe—Fe3C), и она на 450 оС выше температуры эксперимента, т.е. в моем опыте алмазы выросли заведомо в твердом металле, и выросли с такой скоростью, какой никто не ожидал, кинетика синтеза выросла на многие порядки. Кроме того, они (алмазы) не содержали включений железа, что также говорит о чрезвычайно эффективной диффузии.

 

Таким образом, мне удалось показать, что протонированный водород в металле действительно резко облегчает диффузию атомов в кристаллической решетке, как своих собственных, так и примесных. И скорее всего, это связано с проникновением протонов в электронные оболочки металлических атомов. По крайней мере, предсказанные на этой основе неизвестные ранее физические явления были установлены экспериментально. А как еще доказывать правомерность сделанных предположений? Но если протоны способны проникать в электронные оболочки атомов и вызывать тем самым сокращение атомных радиусов, то следствием этого должно быть повышение плотности и сжижение металла. Именно это и наблюдается во внешнем ядре планеты.

Теперь относительно электропроводности внешнего ядра, которая должна быть высокой, чтобы обеспечить генерацию магнитного поля. С этим вообще никаких проблем, поскольку внешнее ядро в нашей модели состоит из металлов. Более того, при образовании раствора водорода его атомы отдают свои электроны в зону проводимости металла, при этом, естественно, возрастает электропроводность. К тому же растворение водорода в металлах можно рассматривать как образование в объеме металла полностью ионизированной водородной плазмы, высокая электропроводность которой обеспечивается как подвижностью электронов, так и подвижностью протонов.

Надо сказать, что синтез алмазов оказался настолько захватывающим делом, что я уделил ему гораздо больше времени, чем предполагал вначале. При этом выявились удивительные явления. Началось с того, что полученные мной кристаллы я показал большому специалисту по синтезу алмазов, не раскрывая особенностей их происхождения. Он посмотрел на них и сразу сказал: «Давление можно существенно снизить, тогда будет меньше сростков и больше монокристаллов». Я последовал совету и, сохраняя температуру синтеза в пределах 700—750 оС, стал последовательно снижать давление сначала до 25 кбар, затем до 20 кбар и, наконец, до 16 кбар. И при этих давлениях у меня все равно из твердого раствора углерода получался алмаз, т.е. синтез так и не вышел из области стабильности алмаза, хотя последнее значение давления (16 кбар) на 14—15 кбар ниже кривой равновесия графит — алмаз. Я не знаю, сказывается ли в этом присутствие протонов в решетке металла или это просто следствие сбора кристаллов алмаза по атому из раствора, а не в результате трансформации решетки графита в структуру алмаза? В специальной литературе мне встречались данные о том, что присутствие протонированного водорода в решетке металлов и сплавов резко снижает температуру и давление фазовых переходов. В общем, получается, что алмаз может и не быть показателем высокого давления.

 

В одной серии экспериментов, которая проводилась в цехе предприятия по промышленному производству алмазов, я использовал многокомпонентный сплав, температура плавления которого была около 700 оС. По технологии сборки опыта этот сплав удобнее было использовать в виде порошка. Многокомпонентные сплавы обычно содержат хрупкие интерметаллические соединения, так что издробить их в тонкий порошок не составляет труда. Я обнаружил, что этот сплав активно взаимодействует с атмосферной влагой, а выделяющийся водород растворяется в металле. Чтобы избежать этого, порошок сплава хранился в герметичной таре и открывался только на время сборки опыта. И все же можно было видеть, что со временем его частицы покрывались тончайшей белесой пленкой окисла, а сплав, естественно, насыщался водородом (у порошков большая активная поверхность). Я знал также, что под давлением этот сплав, насосавшийся водорода, может стать жидким и это неминуемо вызовет разгерметизацию и выброс сжиженного металла наружу, что чревато всякими неприятными последствиями. Опыты проводились на большом прессе, и объем испытуемой навески составлял что-то около 15 см3, так что неприятности могли быть немалыми.

 

Я настойчиво предупреждал участников эксперимента о возможных последствиях, предлагал надробить свежего металлического порошка. Но они делали свою рутинную работу, только с другим сплавом, все шло как обычно, и мои страхи казались им необоснованными. В конце концов по своей технологии они всегда после набора давления включают нагрев и плавят металл навески, и если все собрано нормально, без нарушений отработанной технологии, то никаких выбросов не происходит. Я пытался объяснить им, что в своих опытах они плавят после набора давления, т.е. после того, как у них по всем щелям, под нагрузкой, растекся уплотнитель, все запечатал, градиенты уравновесились и давление стало гидростатическим. В моем же случае сплав станет жидким не от нагрева, а в процессе набора давления (на холоду), когда градиенты еще не уравновесились и выброс будет неминуемым, и что все зависит лишь от того, когда сплав накушается достаточно водорода. Однако мне опять не поверили, да и как поверишь в то, что металл может расплавиться без нагрева, на холоду. Но мне и самому стало любопытно узнать, чем все это закончится. Вместе с тем с началом каждого нового эксперимента я стал методично закрывать защитные стальные дверки, предохраняющие окружающих от прямого попадания.

 

Ждать долго не пришлось. В процессе набора давления грохнуло, и так хорошо, как будто выстрелили из чего-то крупнокалиберного прямо над ухом. Работники цеха списали это на изношенность оборудования, поставили новые вкладыши из карбида вольфрама, тщательно провели сборку опыта и снова начали набор давления. Тут уж я стоял и неотрывно следил за стрелкой манометра, хотел знать, при каком давлении произойдет сжижение металла. Нужно было набрать 30 тыс. атм., набрали 20 тысяч, и опять грохнуло. На этот раз навеску выбило струей в сторону зрителей, она ударилась в защитную дверку, сползла вниз и застыла в виде лужицы на горизонтальной поверхности на виду изумленной публики. Забавно было видеть недоумение присутствующих, взгляды которых метались от рубильника (которым включался нагрев) к лужице металла. На лицах читался вопрос: «Как же так, нагрев не включали, а металл навески оказался расплавленным, вот же она, застывшая лужица?». Кто-то, не веря своим глазам, стал осторожно щупать эту лужицу, как щупают раскаленную сковородку, затем осмелел, накрыл ее ладонью и с изумлением произнес: «Но она же холодная!?».

 

Я же стоял и сокрушался по поводу силы стереотипов в нашем мышлении, ну почему раньше мне не приходило в голову, что внешнее ядро планеты тоже может быть холодным (временами) и вместе с тем будет оставаться жидким, электропроводящим и плотным, в рамках моей концепции, разумеется. Позже мы еще поговорим об этом.

Автор: Admin | 2012-01-26 |

Внутреннее ядро планеты Земля

Внутреннее ядро планеты по геофизическим данным представляется твердым и, по бытующим воззрениям, имеет плотность порядка 12 г/см3. В рамках наших построений оно представлено гидридами металлов, среди которых резко преобладают кремний и магний (см. табл. 1). В настоящее время отсутствуют экспериментальные данные по сжимаемости гидридов при давлении порядка миллиона атмосфер и более (давление во внутреннем ядре от 3 до 3,6 мегабара). Я надеюсь, что они появятся в связи с моими публикациями. И в этих будущих экспериментах следует учитывать, что гидриды достаточно нестойкие вещества и могут разлагаться на фронте ударной волны (от резкого термического нагрева). Кроме того, они достаточно активно реагируют с влагой атмосферы, а некоторые при контакте с влажным воздухом взрываются. Поэтому следует предусмотреть сборку опытов в сухой инертной атмосфере и лучше направить свои усилия для создания статического сжатия.

 

И все же давайте обсудим некоторые аспекты сжимаемости кристаллических тел, и гидридов в их числе. Вдруг обнаружится что-нибудь принципиально важное?

 

В условиях всестороннего (гидростатического) сжатия в кристаллических телах сначала закрываются поры и микротрещины, затем происходит трансформация кристаллической решетки до плотнейшей упаковки. Но когда эти возможности исчерпаны, а давление растет, то дальнейшее уплотнение происходит из-за уплотнения самих атомов (из-за уменьшения атомных радиусов). При этом наблюдается четкая корреляция чем более рыхлой является внешняя электронная оболочка атома, тем больше сжимаемость. В процессе сопоставления данных под «рыхлостью» мы принимали объем, приходящийся на электрон внешней оболочки, и, естественно, чем больше этот объем, тем больше рыхлость. Чемпионами в этом плане являются щелочные металлы, у них только один электрон во внешней оболочке, которая занимает внешнюю половину радиуса атома. Поэтому щелочные металлы обладают гораздо большей сжимаемостью по сравнению с другими элементами.

 

Здесь важен один момент, который обсудим на примере калия. У этого элемента объем, занимаемый внешним электроном, примерно в 5 раз больше того объема, в котором ютятся остальные 18 его электронов. При давлении в 100 кбар калий уплотняется в 2 раза, а при 200 кбар — только в 2,3 раза. При еще больших давлениях кривая вообще «выходит на плато» (см. рис. 6) и даже при давлении в 500 кбар уплотнение вряд ли будет больше 2,5 раз. Это ограничение на сжимаемость обусловлено тем, что при сокращении объема внешней оболочки ее электрон входит в кулоновское взаимодействие с внутренними электронными оболочками, которые полностью заполнены и практически несжимаемы.

Однако у гидрид-иона (протон с двумя электронами) нет внутренних оболочек. Это и есть то самое «принципиально важное», что отличает ионные гидриды по сжимаемости от всех других кристаллических тел. Итак, в ионных гидридах остов кристаллической решетки сложен из гидрид-ионов, в которых отсутствуют внутренние электронные оболочки, и поэтому ионные гидриды должны обладать аномально высокой сжимаемостью. Это полностью подтверждается экспериментальными данными (см. рис. 6). И буквально «бросается в глаза» то, что градиент сжимаемости гидрида калия остается постоянным (постоянно высоким!) вплоть до давлений в 250 кбар (далее к сожалению нет данных).

 

 


Рис. 6. Сжимаемость калия в виде металла и гидрида в условных единицах. За единицу принята плотность калия при нулевом давлении.

 

Кроме того, при одной атмосфере плотность гидрида калия в 1,7 раза больше плотности калия-металла. Казалось бы, парадоксальное явление, металл поглощает сотни объемов водорода на один свой объем и при этом не только не разбухает, а, напротив, существенно уплотняется. И это уплотнение происходит не за счет добавления атомов водорода в кристаллическую решетку, а в связи с уменьшением расстояний между атомами металла в решетке гидрида в сравнении с исходной металлической. Причина данного явления в электростатическом (катионно-анионном) сжатии решетки ионных гидридов, которое деформирует легко сжимаемые гидрид-анионы, сокращая тем самым расстояния между центрами металлических атомов.

 


Рис. 7.Характер трансформации кристаллической решетки ионного гидрида в условиях сверхвысоких давлений: знаками «-» помечены гидрид-анионы, знаками «+» помечены катионы металлов.

 

Аномальная сжимаемость гидрид-иона позволяет предположить, что в условиях мегабарного диапазона давлений гидрид-ионы будут иметь столь малые размеры, что плотнейшую упаковку ионного остова решетки будут создавать катионы металла, тогда как многократно сжатые гидрид-ионы займут пустоты (октаэдрические, тетраэдрические) между ними (рис. 7). Образование такой конструкции означает достижение предела сжимаемости ионных гидридов. При переходе Mg → Mg2+ радиус уменьшается от 1,6 до 0,66 ангстрема; у кремния, при Si → Si2+, от 1,34 до 0,55 ангстрема. При этих значениях плотность магния и кремния в виде ионных гидридов может увеличиться в 14 раз (это в пределе и в условиях сверхвысоких давлений).

В стандартных условиях плотности кремния и магния -2,33 г/см3 и 1,74 г/см3. Если эти значения умножить на 14, то получим плотности (соответственно 32,62 г/см3 и 24,36 г/см3), превышающие плотность внутреннего ядра в центре планеты (12,46 г/см3). Это показывает, что в рамках нашей модели Земли с гидридным внутренним ядром высокая плотность последнего не представляется неразрешимой проблемой. Скорее проблема в том, что внутреннее ядро имеет недостаточно высокую плотность.

 

В таблице № 2 приведен список элементов, которые уплотняются в виде гидридов в стандартных условиях (при комнатной температуре и атмосферном давлении). Приведенные здесь гидриды принято называть ионными. Однако расчеты показывают, что даже в солеобразных гидридах щелочных металлов тип связи имеет промежуточный ионно-ковалентный характер и связь является ионной лишь на 30 — 45%. Наиболее ионным из перечисленных является гидрид цезия. У цезия максимальная разница с водородом по электроотрицательности, и весьма показательно, что именно он обладает максимальным уплотнением в виде гидрида (при атмосферном давлении).

 

Таблица № 2

Уплотнение металлов в виде ионных гидридов при комнатной температуре и атмосферном давлении.

Плотность 

LiH 

NaH 

KH 

RbH 

CsH 

CaH2

SrH2

BaH2

EuH2

YtH2

Металла, г/см3

0,53 

0,97 

0,86 

1,53 

1,90 

1,55 

2,60 

3,50 

5,24 

7,01 

Гидрида, г/см3

0,82 

1,40 

1,43 

2,59

3,42 

1,90 

3,26 

4,21 

5,90 

7,96 

Уплотнение,

% 

52,8 

43,8 

65,8 

69,2 

80,0 

22,6 

25,4 

22,0 

12,5 

13,5 

 

Вместе с тем, по нашей оценке, в составе планеты резко преобладают кремний, магний и железо. Эти элементы мало отличаются от водорода по электроотрицательности, и поэтому их гидриды имеют ковалентный тип химической связи и соответственно меньшую плотность в сравнении с плотностью металлов (отсутствует катионно-анионное сжатие решетки). Однако это при давлении в одну атмосферу. Теперь мы знаем об аномально высокой сжимаемости гидрид-аниона, и знаем так же, что в условиях повышения давления все большую устойчивость приобретают наиболее плотные фазы. Отсюда однозначный вывод: в условиях повышения давления характер химической связи в гидридах должен становится все более ионным, с тем чтобы могла реализоваться по максимуму потенциальная способность гидрид-иона к уплотнению.

Энергетический аспект. Изменение характера химической связи — процесс всегда энергоемкий, и эта энергоемкость измеряется сотнями килоджоулей на моль, т.е. для насильственной трансформации ковалентной связи в ионную необходимы большие энергетические затраты. Откуда поступала эта энергия? Выше (в разделе 4) уже упоминалось, что «в случае изначально гидридного состава потенциальная энергия, выделявшаяся при гравитационном уплотнении планеты, не приводила к ее разогреву, а преимущественно расходовалась на преобразование химических соединений в недрах Земли». Оценим эту энергию, выделявшуюся при гравитационном уплотнении изначально гидридной Земли. Допустим кремний уплотнялся от 2.33 г/см3 (плотность кремния при одной атм.) до 12.4 г/см3 (плотность внутреннего ядра). Предположим, что это уплотнение происходило в интервале давлений от 0 до 1 мегабара и что градиент уплотнения на всем интервале давлений был постоянным. Предположение о постоянном градиенте уплотнения не меняет сути явления, но очень упрощает счет, который показывает выделение энергии порядка 500 кДж/моль. Допустим, то же самое уплотнение происходило в интервале давлений от нуля до 2-х мегабар, тогда выход энергии был бы порядка 1000 кДж/моль. Таким образом, те самые «сотни килоджоулей на моль», необходимые для трансформации химической связи, получались автоматом в самом процессе уплотнения изначально гидридной Земли в связи с реализацией потенциальной энергии гравитационного сжатия планеты.

Эта энергия, запасенная в гидридах на стадии формирования твердого тела планеты, впоследствии являлась основным энергетическим источником тектонической активности планеты. Но об этом мы будем говорить позже.

Автор: Admin | 2012-01-24 |

ГЕОХИМИЧЕСКАЯ МОДЕЛЬ СОВРЕМЕННОЙ ЗЕМЛИ

Если Вы или кто-то из ваших близких столкнулся с таким страшным заболеванием как псориаз, тогда Вам просто необходимо прочитать статью: «Псориаз: ОТ ТЕОРИИ К ПРАКТИКЕ», которая поможет не только установить первопричины заболевания, но и наметить план по борьбе с ним.


ГЕОХИМИЧЕСКАЯ МОДЕЛЬ СОВРЕМЕННОЙ ЗЕМЛИ

 

Из приведенных выше данных строение современной Земли представляется следующим:

 

Сфера 

 

Интервал глубин, км 

Состав 

Литосфера 

 

0 -150 

Силикаты и окислы 

Металлосфера 

 

150 — 2900 

Сплавы

и соединения на основе кремния, магния и железа

Ядро:

внешнее


 

2900 — 5000  

Металлы с растворенным в них водородом и гидриды металлов

внутреннее 

 

5000 — 6371 

Гидриды металлов 

 

 

Эта модель отличается от традиционно принятой (ядро — железное, мантия — силикатная) прежде всего ограниченным распространением кремний-кислородной оболочки на глубину. Под континентами ее мощность составляет в среднем примерно 150 км, а под океанами существенно меньше. Более того, в осевых частях океанов силикатно-окисная литосфера практически сходит на нет, и об этом мы будем говорить в специальных разделах. По нашему мнению, основной объем планеты представлен металлосферой из сплавов и соединений на основе кремния, магния и железа с соответствующими добавками других элементов (см. таблицу 1), но без кислорода. Кислород из металлосферы практически весь вынесен во внешнюю геосферу, за счет чего и сформировалась литосфера. Ядро Земли сохранило исходный состав планеты, но если во внешней зоне водород присутствует в основном в виде раствора в металлах, то внутреннее ядро сложено водородистыми соединениями — гидридами.

Ниже, в соответствующих разделах, будет показано, как в этой модели находят свое место: земная кора, астеносфера, переходный слой мантии, слой «
на границе ядра и мантии и другие явления, установленные геофизическими методами.

 

Здесь хотелось бы напомнить расхожий афоризм, утверждающий, что «новое — это не что иное, как хорошо забытое старое». Оказывается еще в 30-х годах XX века наш великий соотечественник В.И.Вернадский предполагал:

 

«Наши представления о термодинамических и химических условиях глубин нашей планеты заставляют нас видеть в них среды, благоприятные для существования водородистых тел. Здесь активность химических реакций уменьшается, кислород быстро сходит на нет, начинают все более и более преобладать металлы типа железа и, по-видимому, растет количество водорода. В то же самое время температура и давление повышаются. Все это должно привести к сохранению в этих глубинах водородистых соединений, и в том числе растворов водорода в металлах» (В.И.Вернадский, Избранные сочинения, том 4, кн. 2, стр. 13—14, 1960).

 

Ссылка на великого соотечественника дана мною отнюдь не из-за стремления спрятаться за непререкаемый авторитет. В то время все это могло быть лишь на уровне интуитивной догадки. И все же мне представляется сверхъестественным, как можно было угадать суть, имея в активе лишь понимание того, что водород занимает «несравнимое с другими элементами господствующее положение в химии мироздания» (Вернадский, там же). Вместе с тем, академик Вернадский придавал большое значение этой гипотезе, и основывал на ней многие свои построения. И весьма примечательно, что тогда высказывание альтернативы не было сопряжено с риском для репутации. Иными словами, тогда версия «ядро — железное, мантия — силикатная» еще не была «канонизированной догмой», каковой она стала в дальнейшем, к 60-м годам XX века, несмотря на отсутствие четкой доказательной базы. Для историков науки, видимо, будет интересно выяснить причину столь необычного хода событий.

Автор: Admin | 2012-01-24 |

Откуда появилась тибетская поющая чаша?

Многие связывают поющие чаши с Тибетом. Поэтому это даже отразилось в том, что независимо от того, где изготовлена поющая чаша, она, в большинстве случаев, называется «тибетская чаша». Но надо признать, что изготавливать эти тибетские поющие чаши могут не только в Гималаях, но и во Вьетнаме, Монголии, Японии и Китае.

Читать дальше>>

Автор: Admin | 2012-01-22 | Необычные вещи

Зеркальное «Здание» Леандро Ирлича



Зеркальная инсталляция Bâtiment (в пер. с франц. «Здание»), вышедшая из под пера гениального художника Леандро Ирлича (Leandro Erlich), стала одним из главных украшений проходящей во Франции выставки In_Perceptions. Читать дальше>>

Автор: Admin | 2012-01-22 | Искусство

ОПРЕДЕЛЕНИЕ ИСХОДНОГО СОСТАВА ЗЕМЛИ

Вы твердо решили, что свой следующий отпуск обязательно проведете заграницей, рассудив, что отдых в Египте станет для Вас более захватывающим и незабываемым приключением, чем, скажем, посещение достопримечательностей Вологодчины. В таком случае я просто обязан донести до вашего сведения, что ведущая туристическая компания «Мир Странствий» готова взять на себя все заботы по подготовке вашего путешествия.

Более подробную информацию Вы сможете получить у менеджеров компании по адресу www.pro-travel.ru.


 

ОПРЕДЕЛЕНИЕ ИСХОДНОГО СОСТАВА ЗЕМЛИ

В конце 50-х годов ХХ века Фрэд Хойл высказал идею о том, что при отделении протопланетного диска собственное магнитное поле небулы играло определяющую роль (Fred Hoyle — блистательный астрофизик и писатель фантаст в одном лице). Эта идея осталась практически невостребованной в космогонических построениях, однако она органически вписалась в наш сценарий происхождения Солнечной системы. Немного найдется космогонических концепций, которые можно было бы подвергнуть экспериментальной проверке. Но именно такова блистательная идея Хойла!

Схема этого теста удивительно проста. При формировании протопланетного диска вещество, сброшенное с протосолнечной небулы, должно было двигаться поперек магнитных силовых линий (см. рис. 2). Ионизированные, то есть заряженные, частицы не могут пересекать магнитные силовые линии (если у частиц не «релятивистские», а «тепловые» скорости перемещения), поэтому они захватываются магнитным полем и останавливаются в нем, тогда как нейтральные атомы свободно проходят через магнитное поле.

 


Рис. 2. Магнитная сепарация заряженных частиц при формировании протопланетного диска. Черные точки — ионизированные частицы, светлые кружки — нейтральные атомы.

 

Атомы различных химических элементов различаются по склонности к ионизации. К примеру, атом цезия может потерять свой электрон от света свечи или керосиновой лампы, в то время как атом гелия может оставаться нейтральным и в непосредственной близости от звезды. Таким образом, если идея Хойла и наши построения правомерны, то при формировании протопланетного диска элементы, которые легко ионизируются, должны были захватываться магнитным полем и останавливаться в околосолнечном (околопротосолнечном) пространстве, тогда как трудно ионизируемые элементы уходили в более удаленные зоны. Иными словами, мы предполагаем, что при формировании протопланетного диска происходило разделение элементов (магнитная сепарация) в зависимости от их потенциалов ионизации*.

 

—————————————————————————————————————————————————

* Способность того или иного элемента к ионизации оценивается либо энергией, которую необходимо затратить для отрыва от атома первого электрона, либо потенциалом ионизации первого электрона. В справочниках энергия ионизации приводится в электрон-вольтах, а потенциал ионизации — в вольтах.

—————————————————————————————————————————————————

 

Чтобы проверить это, необходимо провести ревизию данных о химических составах тел Солнечной системы. Само собой, для рассмотрения следовало брать только надежные, эмпирические (то есть аналитически установленные) данные и ни в коем случае не принимать в расчет «результаты», полученные на основе традиционно сложившихся умозрительных представлений о составе Земли и других планет, сколь бы убедительными они ни представлялись с точки зрения «бытующего здравого смысла». Какими же данными мы сегодня располагаем?

 

Во-первых, благодаря спектральному анализу нам известен состав фотосферы Солнца. Фотосфера отражает состав внешней зоны конвективного перемешивания, а в этой зоне заключено примерно 70% объема звезды.

 

Во-вторых, на Земле нам доступен только материал ее внешней геосферы до глубины примерно 150 км, и то в основном по обломкам глубинных пород, вытащенных на поверхность кимберлитовыми трубками взрыва.

 

В-третьих, образцы, собранные на Луне, позволяют судить о составе ее внешней оболочки.

 

Наконец, в-четвертых, по коллекциям метеоритов (собранных «в падениях») нам хорошо известен пояс астероидов, который отстоит от Солнца в три раза дальше Земли. Сведения по другим объектам Солнечной системы пока еще слишком фрагментарны.

 

Итак, мы знаем определенно лишь кое-что на Земле и Луне, но достаточно полно представляем состав Солнца и удаленного от него (на три астрономических единицы) пояса астероидов. Проведем сопоставление этих составов в парах: Земля — Солнце, Земля — пояс астероидов и Земля — Луна. По оси ординат откладываем относительную распространенность элементов, по оси абсцисс — их первые потенциалы ионизации. Результаты представлены на рис. 3, 4, 5. И они однозначно показывают, что распределение элементов в Солнечной системе действительно зависит от их потенциалов ионизации. Выходит, Хойл был все-таки прав! Пожалуйста, не торопитесь и вглядитесь в эти рисунки более внимательно. Хотелось бы, чтобы они отпечатались в вашей памяти. Это фундамент и основа всей концепции, и, как вы видите, этот фундамент установлен эмпирически на фактических данных, и в нем нет ничего умозрительного*.

 

—————————————————————————————————————————————————

* Много лет назад, когда я сообразил, что можно проверить идею Хойла на фактических данных и получил явные свидетельства ее правомерности, то сразу же обратился к нашему соотечественнику, не менее блистательному астрофизику И.С.Шкловскому. Он долго отказывался от встречи под разными надуманными предлогами, ссылаясь то на исключительную занятость, то на плохую погоду, которая не дай бог меня «простудит» и не дай бог сведет в могилу, и что он потом никак не простит себе этого. Я догадывался, таких людей, как Шкловский, часто осаждают люди, которые уверены, что они решили все проблемы мироздания. У этих «пророков» часто бывает не все в порядке с психикой, и общаться с ними тягостно, а иногда просто опасно, и тому были примеры. Однако я проявил настойчивость, лучше сказать — назойливость, а мягкая интеллигентность соотечественника не позволила ему ответить решительным отказом. Когда состоялась встреча, то Шкловский сразу увел меня подальше от коллектива (там ведь были беззащитные женщины), посадил на длинный диван в огромном пустом коридоре, сам сел с другого края и с вкрадчивой осторожностью обратился ко мне: «Скажите, Вы шизофреник?» До меня наконец-то дошел весь комизм ситуации, но я постарался наполнить взгляд искренностью идиота и с достоинством ответил: «Нет, что вы, гораздо хуже, я — невротик!» В глазах собеседника полыхнула паника, однако он преодолел себя и участливо спросил: «А что это такое?» Я стал объяснять: «Ну как, вы не знаете? Шизофреник уверен, что дважды два это пять! И это его никак не волнует. А невротик знает: дважды два — четыре, но это его постоянно раздражает». Видимо, мне не удалось «сохранить лицо», собеседник углядел лукавинку в моих глазах, его сразу отпустило, он заразительно расхохотался, подсел рядом и уже с интересом спросил: «Ну что там у вас?». Я достал объемистый текст, он замахал руками: «Нет-нет, увольте, читать ничего не буду, изложите суть в двух словах, а лучше покажите». Тогда я показал ему эти самые рисунки (3, 4, 5), и тут меня потрясла быстрота его реакции. Он глядел на них не более секунды, затем взглянул на меня ошарашенно и спросил: «А что, разве Хойл этого не сделал ?». Видимо, в моих глазах стало проявляться недоумение (кто же, кроме астрофизика Шкловского, может лучше знать об этом). Он понял неуместность своего вопроса и пробормотал: «Ну да, конечно, Хойл этого не сделал». Несколько секунд мы сидели молча, потом он вскинул на меня свой взгляд и вопрошающе произнес: «Но почему?» Некоторое время мы сидели и смотрели друг на друга с полнейшим недоумением. Затем я выступил у них (Шкловский и сотоварищи) на семинаре, где меня хорошо поддержали. По тем временам это было в диковинку, когда геолог выступал перед звездочетами с проблемой по астрофизике.

—————————————————————————————————————————————————

 

Теперь можно зримо представить, как протекала магнитная сепарация элементов по их потенциалам ионизации, которая и предопределила составы тел планетной системы. Во время формирования протопланетного диска вещество проходило через своеобразный магнитный сепаратор. Ионизированные частицы (с низкими потенциалами ионизации) захватывались магнитным полем и оставались в околосолнечном (околопротосолнечном) пространстве, в зоне формирования Земли (рис. 3), тогда как элементы с высокими потенциалами ионизации проходили без задержки и оказались в более удаленной от Солнца зоне. Поэтому относи -тельное содержание, например, углерода на Земле в тысячи раз меньше, чем на Солнце, его атомы, будучи преимущественно ней -тральными, проскочили мимо зоны Земли. Пояс астероидов отстоит от Солнца в три раза дальше зоны формирования Земли. И сразу становится понятным, почему в метеоритах много (по земным меркам) того же углерода, а также серы, золота, платиноидов, ртути, бериллия, — у этих элементов высокие потенциалы ионизации, и они слабо задерживались магнитным сепаратором (рис. 4). Вместе с тем, в метеоритах мало цезия, урана, калия, рубидия, которые легко ионизируются. Эти последние в своей основной массе не смогли просочиться сквозь магнитный сепаратор и были остановлены в зоне планет земного типа. Наконец, Земля и Луна находятся на одном расстоянии от Солнца, и магнитный сепаратор сработал для них (рис. 5) одинаковым образом (по всей видимости, они являются «двойной планетой» и их разделение произошло из-за быстрого вращения протопланетной сферы, набранного на стадии сбора протопланетных глобул).

Теперь мы подошли к самому главному, к определению исходного состава Земли, и здесь нам помогут два обстоятельства.

 

 




Рис. 3. Распространенность элементов на Земле относительно их обилия на Солнце.

 

Первое: состав Солнца за всю историю своего существования в виде Звезды сравнительно мало изменился: уменьшилось содержание водорода, добавилось гелия, частично выгорели в термоядерном синтезе литий и бериллий. Баланс остальных элементов остался практически неизмененным. Следовательно, по составу современного Солнца можно судить о составе протовещества, некогда сброшенного с Протосолнца при формировании протопланетного диска.

Второе обстоятельство: нам крупно повезло в том, что внешняя геосфера Земли, состав которой мы приняли к рассмотрению, сохранила различимый отпечаток исходного состава планеты, в противном случае мы не смогли бы обнаружить закономерность, которая, однако, проявилась (рис. 3, 4, 5). По этому отпечатку (рис. 3) мы можем провести (и достаточно определенно) тренд изначального положения элементов на графике, которое у них было до того, как включились земные геологические процессы и элементы стали «погуливать» согласно своим геохимическим наклонностям.

Итак, мы: 1) узнали состав того вещества, которое при формировании протопланетного диска проходило через магнитный сепаратор; 2) выявили тренд, по которому можно определить, в какой мере тот или иной элемент задерживался магнитным полем. Нам оставалось лишь взять перо и выписать тот изначальный состав, из которого формировалась планета Земля, что и было сделано (см. таблицу № 1).

Однако к этой таблице все же следует сделать некоторые пояснения. На графике (рис. 3) мы видим «кислородную аномалию». Это означает, что кислорода во внешней геосфере (которую мы приняли к рассмотрению) в десятки раз больше того, что должна была определить магнитная сепарация, согласно его потенциалу ионизации (13,6 В). Обсудим возможные причины появления этой аномалии. Можно предположить, что кислород как химически активный элемент, был связан в химические соединения, потенциалы ионизации которых были существенно ниже 13,6 В, где-то около 9 — 10 вольт, и тогда это самое «в десятки раз больше» было бы для кислорода нормой. Но оказывается, что никаких химических соединений на стадии магнитной сепарации не было и быть не могло.

 

Таблица № 1.

 

Исходный состав протопланетного вещества в зоне формирования Земли.

 

Элемент Атомн. % Вес. % 

Кремний 

19,5 

45 

Магний 

15,5 

31 

Железо 

2,5 

12 

Кальций 

0,9 

3 

Алюминий 

1,0 

2 

Натрий 

0,7 

1,5 

Кислород 

0,6 

1,0 

Углерод 

0,03—0,3 

0,03—0,3 

Сера 

0,01—0,1

0,03—0,3 

Азот 

Менее 0,01 

Менее 0,01 

Водород 

59 

4,5 

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

 

Снова обратимся к рис. 3. Мы видим характерный излом тренда: в области до 8 В он идет горизонтально, но при больших значениях потенциалов ионизации круто поворачивает вниз и вправо. Этот излом тренда в области 8 вольт позволяет определить, что энергетический уровень (или уровень интенсивности) ионизирующего излучения был равен примерно 8 эВ. Все элементы, у которых энергия ионизации равна или меньше этого уровня, были ионизированы практически полностью. Если мы переведем эти электрон-вольты в привычную для термодинамики размерность — джоули на моль, то получим 772000 Дж/моль или 772 кДж/моль*.

 

—————————————————————————————————————————————————

* Для этого 8 эВ следует умножить на «постоянную Авогадро» (6,022045 . 1023 моль-1) и разделить на 6,24 . 1018 эВ/Дж (это число электрон-вольт в одном джоуле).

—————————————————————————————————————————————————

 

Эта величина примерно вдвое (и более раз) превышает энергию одинарной химической связи кислорода с другими элементами. Вывод: покуда сохранялся такой уровень ионизирующего излучения, стабильное существование химических соединений было невозможно, все было полностью диссоциировано и частично ионизировано.

 

Но если кислород при магнитной сепарации присутствовал в виде отдельных атомов и задерживался магнитным полем согласно своему потенциалу ионизации, то его содержание в зоне формирования Земли должно быть порядка одного процента (как указано в таблице). Ниже будет показано, что действительная причина «кислородной аномалии» — это перераспределение исходно низкого содержания кислорода в теле планеты в начальную эпоху ее эволюции уже как твердого космического тела.

Не следует также забывать, что протовещество, стекавшее некогда с Протосолнца, это, прежде всего, водород. Его нет на рис. 3, так как нет данных о его содержании на Земле. И это правильно (то, что нет данных), поскольку гравитация нашей планеты не способна удерживать водород и он легко утекает (диссипирует) в космическое пространство. Совершенно ясно, что раньше его было больше. Но сколько его было изначально? Теперь мы знаем положение тренда, которое определено магнитной сепарацией. Это дает нам возможность определить, согласно потенциалу ионизации водорода, что исходная концентрация этого элемента в зоне формирования Земли была около 60% (в атомных количествах, см. таблицу 1). Вполне достаточно, чтобы при образовании тела планеты все остальные элементы оказались в виде водородистых соединений — гидридов.

Предвижу вопрос внимательного читателя: «Но каким же образом можно удержать водород в глобулах и затем заставить его войти в твердое тело планеты?» Действительно, ведь даже Земля не в состоянии удерживать своей гравитацией водород, и что же говорить про глобулы, гравитация которых на несколько порядков меньше. К примеру, Луна, сила тяжести которой всего в шесть раз меньше земной, уже не способна удерживать не только водород, но и другие газы. Очень справедливый вопрос. Вместе с тем, мы имеем четкое свидетельство того, что при всем процессе аккумуляции Земли ка -ким-то образом осуществлялось удержание газов. Об этом свидетельствует «хвост» инертных газов на рис. 3, который однозначно показывает, что их концентрации на Земле остались такими же, какими их определила магнитная сепарация.

Я не буду исследовать причины данного явления, поскольку не считаю себя специалистом в астрофизике. Но если кто заинтересуется этой проблемой, то на мой непросвещенный взгляд за «газоудержание» прежде всего были ответственны следующие параметры. Во-первых, характерные размеры глобул, порядка миллиона км в диаметре, из такой структуры просто долго бежать. Во-вторых, низкие ионные температуры и, соответственно, малые скорости ионов и атомов (напомним, плазма была неизотермическая, с низкой ионно-атомной температурой и высокой электронной). В-третьих, сохранялся источник ионизации, и вещество находилось в виде частично ионизированной плазмы. Это означает, что каждый атом водорода также периодически подвергался ионизации на какое-то время. В-четвертых, в глобулах присутствовали магнитные силовые линии (скорее всего, смотанные в клубок из-за собственного вращения глобул), которые препятствовали выходу заряженных частиц наружу. По всей видимости, сбор глобул в протопланетную сферу происходил быстрее, чем потеря водорода.

Плотность сферы прото-Земли, с радиусом порядка миллиона километров, была в 1000 раз меньше плотности воздуха (при давлении в 1 атм). Следовательно, прото-Земля была прозрачна для тепловых фотонов, и по этой причине не могла иметь высокую температуру. Скорее всего, она была в интервале между 0 оС и 0 оК. И все же к началу конденсации, в связи с вымиранием короткоживущих изотопов, температура в протопланетной сфере была заведомо выше температуры застывания водорода и других газов, в том числе инертных. В этих условиях химически активный кислород еще в газовой фазе образовывал химические соединения (оксиды), которые уже и конденсировались в твердые частицы. Водород и азот менее активны химически, а благородные газы неактивны вообще, и их захват при конденсации происходил в связи с адсорбцией на поверхности «снежинок», растущих из кремния, магния, железа и др. металлов (см. таблицу № 1). Помните, мы говорили про «мягкий снегопад»? Конденсация приводила к образованию весьма рыхлых частиц твердой фазы, что весьма способствовало адсорбции (на их рыхлой поверхности) атомов водорода и других газов. В данной связи сошлюсь на эмпирический факт: при конденсации железа в водородной атмосфере каждый атом металла захватывает с собой по два атома водорода. Я понятия не имею, зачем металловеды делали эти опыты в 20-х годах прошлого века. Вряд ли они имели в виду проблемы космогонии. И тем не менее мне хочется выразить свою признательность исполнителям. Всегда приятно лишний раз убедиться, что «рукописи не горят», что факт, добытый в прошлом веке, остается фактом на все времена.

Итак, мы определили, как образовалась наша планета и какой состав она получила при рождении. Несмотря на «приближенно количественный» характер этих данных, они однозначно свидетельствуют против бытующих представлений. «Главная догма» в науках о Земле гласит: «ядро — железное, оболочка — силикатная». Для такой

планеты требуется 30% (вес.) кислорода и 40% железа. Однако магнитная сепарация отмерила возможную концентрацию кислорода в массе Земли порядка одного процента, а железа — около 10% (такая концентрация железа обычна для глубинных мантийных пород). В свете наших построений, преобладающими элементами в теле планеты являются (по убывающей) — кремний, магний и железо. В сумме они составляют примерно 87% массы планеты. Содержание кальция, алюминия и натрия на порядок меньше. О кислороде мы уже сказали. Концентрации остальных элементов не превышают долей процента. И все эти элементы в новорожденной планете присутствовали в виде водородистых соединений — гидридов. Поэтому ранние монографии на эту тему, изданные на русском, имели название «Гипотеза изначально гидридной Земли». В следующих главах мы рассмотрим, в каком направлении шло развитие изначально гидридной планеты и как согласуется эволюция ее внутренней структуры с фактами, накопленными геологами, по тектонике, петрологии, геохимии, палеомагнетизму, металлогении, сырьевым и энергетическим ресурсам и другим аспектам.

Однако, прежде чем мы перейдем к Земным делам, мне хотелось бы еще сказать несколько слов по поводу рисунков 3, 4, 5. Они отражают зависимость распределения элементов в Солнечной системе от их потенциалов ионизации, и эта зависимость оказалась исключительно информативной. Поскольку она установлена эмпирически, то любая космогоническая спекуляция обязана (как минимум) объяснить причину появления этой зависимости. Если же этого нет, значит, имеет место быть игнорирование эмпирически установленных фактов. Простите за протокольный язык, в данном случае я применил его, чтобы не сорваться на «неформальную лексику» в связи с этим самым игнорированием. О чем же свидетельствует обнаруженное нами явление?

Сначала примем к сведению очевидное: разделить сразу все химические элементы по их потенциалам ионизации (и разделить в едином процессе) можно только в том случае, если вещество было в частично ионизированном виде, то есть в виде плазмы, и если атомы и ионы этой плазмы перемещались поперек магнитных силовых линий (иного не дано). Естественно, такое было возможно только в протопланетную стадию развития Солнечной системы. Значит, на этой стадии вещество было (а) частично ионизировано (а — это первая буква в начавшемся перечислении). Далее, каким-то образом генерировалось исключительно мощное магнитное поле (б), эффективное воздействие которого распространялось на расстояние не менее 3-х астрономических единиц (в). При этом протопланетное вещество двигалось от центра на периферию (г), иначе мы бы имели иную картинку на рис. 4. Кроме того, выявленная нами зависимость позволяет поддержать мнение о том, что Солнце и планеты произошли из единой порции протовещества (д), а «хвост инертных газов» (на рис. 3) заставляет предусмотреть газоудержание (е) при аккумуляции тела Земли. По сути дела, все эти указатели от «а» до «е» так строго размечают сценарий происхождения Солнечной системы, что остается очень мало возможностей для полета фантазии. А как славно и смело «летали». Но теперь многие «результаты» этих полетов придется оставить, к сожалению.

Возьмем, к примеру, такую яркую идею, как «солнечный ветер», который якобы «выдул» из внутренней части протопланетного диска легкие элементы, и поэтому планеты земного типа обогащены металлами (в частности, железом), тогда как внешние планеты — это водород-гелиевые гиганты. Однако посмотрите на рис. 4. Почему в таком случае в поясе астероидов много (в сравнении с Землей) золота, платины, осмия, иридия? Разве эти элементы легкие? Или почему на том же графике тяжелая и легкоплавкая ртуть оказалась рядом с углеродом, легким и тугоплавким? Эти два элемента полярны по всем своим свойствам, единственное, что их объединяет — близкие потенциалы ионизации первого электрона, поэтому-то они и оказались рядом. Согласно магнитной сепарации — это норма, в свете «солнечного ветра» — это нонсенс. Такой же нонсенс, в рамках «солнечного ветра», положение легкого бериллия на графике рядом с самыми тяжелыми металлами — платиной и иридием. Однако в нашем понимании только так и должно быть. Наконец, водород и, особенно, гелий имеют высокие потенциалы ионизации, поэтому они в своей основной массе оказались во внешних планетах. Туда эти легкие (и, главное, трудно ионизируемые) элементы определила магнитная сепарация.

Это затянувшееся отступление от смысловой канвы повествования было сделано с единственной целью — показать, что в основе наших космогонических представлений лежит эмпирически установленный факт, который гласит: «распределение химических элементов в Солнечной системе зависит от их потенциалов ионизации». И это дает нам большое (вернее сказать неоспоримое) преимущество в сравнении с теми концепциями, которые базируются на умозрительных исходных посылках. По моему мнению, в области наук о Земле умозрительные гипотезы имеют скорее эстетическую ценность, нежели естественнонаучную значимость. И по -куда они в своей основе не будут подтверждены эмпирическими фактами, к ним надо относиться как к упражнениям по изящной словесности на заданную тему.

Автор: Admin | 2012-01-21 |
28 страница из 45« Первая...10...242526272829303132...40...Последняя »

GIF
Видео
Видео
Все обо всем
Забавно!
Иллюстрированные факты
Искусство
Истории
Все размещенные на сайте материалы без указания первоисточника являются авторскими. Любая перепечатка информации с данного сайта должна сопровождаться ссылкой, ведущей на www.unnatural.ru.