Необычный

Скачущие лунные камни

Среди всех самых невероятных фотографий лунной поверхности, сделанных «Лунным орбитальным зондом» (Lunar Reconnaissance Orbiter), в числе которых и прилунение «Аполлонов», я думаю, моей самой любимой является та, на которой запечатлены скатывающиеся со склона и оставляющие за собой длинные траншеи валуны,.

Я сказал скатывающиеся? Я имел ввиду скачущие!


На этом изображении, показывающем регион протяженностью 655 метров, мы видим ударный 9-метровый кратер Шакборо E (Shuckburgh E). Поверхность кратера неровная, она имеет уклон на левую строну. По различным причинам (сейсмическая активность, или упавший поблизости метеорит) валуны скатываются» с правого края на левый, продолжая некоторое время двигаться, прыгая, словно плоские камешки по морской глади воды.
Читать дальше>>

Автор: Admin | 2012-11-21 | Космос, Фото дня

Как травили Дж. Дж. Сильвестра

Вам жизненно необходимо срочно напечатать 100, 1 000 или 10 000 визиток? Тогда оформите заказ печати визиток на сайте www.24zakaz.ru и через полчаса они уже будут готовы! Эта услуга обойдется вам в сущие копейки и окупиться в разы буквально за несколько дней!



Джеймс Сильвестр является одним из самых известных математиков середины и конца XIX века. Его труды затронули практически все области этой науки

 

Джеймс Джозеф Сильвестр (1814-1897) — ученый, заслуживший себе место в истории науки благодаря блистательным математическим талантам и многогранности интересов. Он был отличным юристом, лингвистом и писателем, сочинил множество стихов и даже трактат «Искусство стихосложения» Сильвестр родился в бедной семье в еврейском районе Лондона, Ист-Энде, и говорил на кокни. Антисемитизм помешал ему сделать академическую карьеру в Англии, хотя он и был избран членом Королевского общества в возрасте двадцати с небольшим. Когда ему исполнилось 27 лет, он уплыл в Америку, где ему предстояло стать профессором математики в Университете Виргинии.

 

Его лекции отличались ясностью и живостью изложения, и студенты полюбили молодого преподавателя. Однако скоро антисемитизм поднял голову и здесь: местная церковная газета сетовала на то, что влияние еврея и, более того, англичанина, который, возможно, даже осуждает рабство, пагубно скажется на американской молодежи. На Сильвестра обрушились нападки и оскорбления со стороны неуспевающих студентов — в особенности двух братьев, которых тот высмеивал за невежество. Факультет малодушно отказался защитить профессора, опасаясь студенческого бунта. Развязка произошла, когда Сильвестру стали угрожать уже напрямую.

 

Сильвестр приобрел себе трость-шпагу. Она была с ним, когда однажды братья преградили ему путь, причем в руках у младшего была дубина.

 


Поблизости случайно оказался близкий друг доктора Дэбни, священника, он и рассказал эту историю. Итак, младший брат шагнул навстречу профессору и потребовал извинений, а потом ударил Сильвестра, сбив с него шляпу, и в довершение нанес сокрушительный удар дубиной по неприкрытой голове профессора.

 

Тогда Сильвестр извлек шпагу и сделал выпад, попав студенту в грудь прямо над сердцем. Тот с отчаянным ревом упал на руки брата, крича: «Я убит! Он меня убил!«. Сильвестр поспешил скрыться и, оставив все свои книги, отправился в Нью-Йорк, а там забронировал место на корабле, отплывающем в Англию.

 

Между тем врач, которого вызвали к студенту, застал того в ужасном состоянии — юноша был смертельно бледен, весь в холодном поту, и шептал молитву, прощаясь с жизнью. Врач разрезал ему жилет и рубаху — и констатировал, что раны по сути нет! Удар пришелся на ребро, шпага по нему лишь скользнула и слегка поцарапала кожу.

Удостоверившись, что рана его не серьезней комариного укуса, умирающий встал, поправил рубаху, застегнул жилет и удалился, все еще нервно дрожа.

 


Благодаря работам Джорджа Халстеда, в числе которых были как его собственные труды, так переводы иностранных авторов, в Америке появилась такая наука, как неевклидова геометрия

 

А Сильвестр тогда так и не уехал в Англию. Он остался в Нью-Йорке, где рассчитывал поработать в Колумбийском колледже (сейчас это Колумбийский университет). Однако совет Университета Виргинии отказался засвидетельствовать, что никакой вины за ним нет. Пробыв в Нью-Йорке безработным больше года, Сильвестр все-таки отправился в Лондон, где открыл юридическую практику. Джордж Халстед, который позже стал его студентом и почитателем — благо Сильвестр все же вернулся в Америку и преподавал потом в Университете Балтимора, — пишет так:

 

Пять статей, написанных Сильвестром в 1841 году, до отъезда в Виргинию, дают представление о самых великих его открытиях. Затем вся его творческая активность внезапно прекращается. Ни статьи, ни единого слова. Только в 1844-м раненая птица снова начинает робко щебетать, и понадобится еще десятилетие, прежде чем она запоет в полный голос.

 


Американский философ Чарльз Сандерс Пирс является основоположником прагматизма

 

Пусть Сильвестр и потратил бесцельно годы, которые у математиков считаются самыми продуктивными, но тем не менее американский философ Чарльз Сандерс Пирс отмечал, что с силой его логики «не могли сравниться удвоенные, а то и утроенные силы всех сынов человечества». В поздние годы Сильвестр сделался предметом почитания в британских академических кругах, стал плодовитым писателем, а его публичные выступления пользовались большой популярностью.

Автор: Admin | 2012-11-20 |

Божественная искра вспыхивает ночью


Многих ученых посещала сверхъестественная вспышка откровения во время отдыха или на границе бодрствования и сна. Примечателен случай австрийского физиолога Отто Леви (1873-1961), профессора физиологии в университете Граца, которого прежде всего помнят за открытие механизма передачи нервного импульса. В 1936 году открытие это принесло ему Нобелевскую премию, которую он разделил со своим другом из Англии, Генри Дейлом. Центральной проблемой нейробиологии тех лет был вопрос о том, передаются ли нервные импульсы мускулам, работу которых они регулируют, с помощью химического вещества-посредника. К тому моменту Генри Дейл уже показал, что присутствующее в организме вещество, ацетилхолин, способно стимулировать нерв — скажем, замедлять биение сердца в точности так же, как при естественной стимуляции блуждающего нерва, управляющего сердечной мышцей.

 


Генри Дейл стал первым человеком, обнаружившим такое вещество как гистамин, введение которого в тело человека увеличивает желудочную секрецию и шанс развития язвенных болезней

 

Однажды вечером Леви задремал над книгой, но внезапно вскочил — с ясным чувством пережитого откровения ослепительной яркости. Леви схватил карандаш и бегло записал его суть. Однако, проснувшись на следующее утро, он не мог не только восстановить осенившую его мысль, но и разобраться в собственных записях. Весь день он просидел в лаборатории, тщетно надеясь, что вид знакомых приборов освежит его память, и безуспешно пытаясь понять написанное. Тем же вечером, укладываясь спать, Леви чувствовал себя невероятно подавленным, однако пару часов спустя он проснулся, потому что идея заново промелькнула в голове. В этот раз он перенес ее на бумагу с куда большей осторожностью.

 

На следующий день он отправился в лабораторию ставить один из самых простых, самых изящных и самых значимых экспериментов в истории биологии. В ходе этого эксперимента и было доказано, что у нервных импульсов есть химический посредник. Леви взял два лягушачьих сердца и погрузил в солевой раствор, чтобы те продолжали биться, затем стимулировал у одного блуждающий нерв, и биение прекратилось. Это сердце он извлек, а на его место поместил второе. К великому удовлетворению Леви, раствор подействовал на второе сердце так же, как стимуляция нерва — на первое: пульсирующий мускул замер. Это породило волну экспериментов, посвященных медиаторам нервного импульса, в лабораториях всего мира: теперь изучали не только связь между нервами, мускулами и железами, на которые те воздействуют, но и между самими элементами нервной системы.

 


Отто Леви – первооткрыватель нервных импульсов

 

Вещество, которым нерв после стимуляции обогащал солевой раствор вокруг сердца, теперь относят к нейротрансмиттерам. В опыте Леви нейротрансмиттером был, разумеется, ацетилхолин.

 


Британский врач Сидни Рингер получил широкую известность благодаря своему детищу — раствору Рингера, который до сих пор применяется для изучения деятельности живых тканей вне органов

 

То, что изолированное сердце может биться часы подряд, тоже выяснилось совершенно случайно. Сидни Рингер (1835-1910), врач из больницы Лондонского университетского колледжа, в свободное время занимавшийся фармакологией, много лет проработал с сердцами лягушек. Эти сердца, помещенные в физиологический раствор, продолжали сокращаться еще полчаса после отсечения от лягушачьего тела. Как-то одно сердце вышло за рамки этого срока, и, казалось, собирается биться неопределенно долго. Рингер был в затруднении: сначала он решил, что эффект связан с сезонными особенностями физиологии амфибий, но затем обнаружил, что лаборант, которому поручили приготовить сердце к опыту на этот раз, вместо дистиллированной воды взял водопроводную. Вот что пишет Генри Дэви:

 

Как объяснял мне сам Филдер (тот самый нерадивый лаборант, я встретился с ним, когда он уже был далеко не молод), он просто не видел смысла терять время на дистилляцию воды для доктора Рингера — тот не почувствует разницы, если взять для солевого раствора воду прямо из-под крана.

 

Рингер поинтересовался у компании «Нью Ривер Хед», тогда отвечавшей за водоснабжение северной части Лондона, какие ионы содержатся в их водопроводной воде; так удалось узнать об исключительной роли ионов кальция в физиологии. Раствор, используемый в физиологических опытах, до сих пор называют раствором Рингера.

 

Что касается Отто Леви, то он, будучи евреем, после аншлюса Австрии был вынужден бежать из страны и нашел убежище в Нью-Йорке, но перед этим был схвачен штурмовиками и брошен в тюрьму. Ожидая худшего и опасаясь за судьбу жены и детей, Леви прежде всего боялся, что результаты его последних опытов не подготовлены к печати и будут утеряны навсегда, если его расстреляют. Он сумел вкратце описать свою работу и подкупить тюремщика, чтобы тот отправил ее в научный журнал. Проделав это, он испытал «невероятное облегчение». Леви не расстреляли: его влиятельный друг, сэр Генри Дейл, пригрозил бойкотом австрийским ученым, и семья Леви счастливо воссоединилась в Америке.

 

Леви был не единственным ученым-евреем, которого сэр Генри Дейл спас от гибели. В 1932 году, за год до прихода Гитлера к власти, Дейл приехал на конференцию в Германию, и пришел в восторг от доклада, посвященного веществу растительного происхождения под названием физостигмин. Это удивительное вещество, открытое Леви, заставляет нервную ткань выделять ацетилхолин. Докладчиком был некто Вильгельм Фельдберг, молодой физиолог. На следующий год еврея Фельдберга выгнали из Берлинского университета. Уже не надеясь найти подходящее место в Британии или в Америке, он все-таки, узнав, что в Берлин приехал представитель Рокфеллеровского фонда, поспешил с ним встретиться.

 

Он (представитель Рокфеллеровского фонда) был полон сочувствия, однако сказал мне примерно так: «Вы должны понимать, Фельдберг: уволено так много знаменитых ученых, которым мы обязаны помочь, что было бы нечестно давать какую-либо надежду на место в университете молодому человеку вроде вас. — И затем, скорее чтобы меня утешить, он продолжил: — Давайте я по крайней мере запишу ваше имя. Никто ведь ничего не знает наверняка». Когда я записал свое имя, он поколебался и сказал: «Кажется, я о вас слышал. Давайте посмотрим». Пролистав страницы своего дневника, он внезапно произнес, обрадовавшись: «Да вот же! У меня для вас известия от сэра Генри Дейла, которого я встретил в Лондоне недели две назад. Сэр Генри просил меня, если я вдруг встречу Фельдберга в Берлине, передать ему, что он, Дейл, будет рад предложить ему работу в Лондоне. Так что с вами все в порядке, — сказал он с теплотой в голосе. — Нашелся хоть один человек, о котором мне не придется больше беспокоиться».

 

Фельдберг сделал впечатляющую карьеру в лондонском Медицинском исследовательском совете, и эта карьера прервалась только тогда, когда ученому исполнилось 89 лет, — по неудачному стечению обстоятельств и довольно нелепо. Фельдберг случайно совершил открытие: по неловкости уронил настольную лампу на брюхо кролика, которому только что ввели обезболивающее. От перегрева уровень сахара в кроличьей крови неожиданно поднялся. Фельдбергу выдали грант на исследование этого эффекта, который представлял некоторый научный интерес. Тем временем группа борцов за права животных, искавшая способ попасть к нему в лабораторию, такой способ нашла. Прикинувшись телевизионщиками, они получили разрешение снять в лаборатории репортаж об исследовательской работе. Фельдберг, которому помогал престарелый лаборант, уже не вполне контролировал себя, и перед камерами не смог правильно обезболить кролика, а потом вдобавок внезапно заснул как раз в тот момент, когда делал животному укол. Когда эти кадры появились в общенациональных газетах, разгорелся скандал. В итоге обиженный и расстроенный Фельдберг вынужден был уйти в отставку. На следующий год он умер.

Автор: Admin | 2012-11-20 |

Сатурн высидел яйцо?

«Кассини» сделал этот снимок 20 мая 2012 года с расстояния в 4 000 км. В этот же день аппарат приблизился к спутнику на максимально близкое расстояние в 1900 км.


Скажите привет Мефоне – самому необычному спутнику во всей Солнечной системе.

Этот спутник Сатурна, примостившаяся между орбитами Мимаса и Энцелада, совсем не похож на своих собратьев – все дело в его правильной яйцевидной форме. Причина столь нестандартной формы кроется в крошечных размерах этого объекта или, если быть более точным, то в его массе. Мефона всего 3 километра в ширину и настолько легкая, что даже не имеет собственной гравитации, под воздействием которой небесные тела и приобретают сферическую форму. Читать дальше>>

Автор: Admin | 2012-11-19 | Необычные люди
Автор: Admin | 2012-11-16 | Иллюстрированные факты

Склока в лаборатории

Решили кардинальным образом изменить дизайн своей квартиры, который навевает на Вас только уныние и скуку? Тогда Вам определенно точно стоит купить светильники schonbek , который станет самой яркой, в прямом смысле этого слова, изюминкой вашей квартиры.

Приобрести такой светильник по самой низкой цене Вы сможете только на сайте www.svetclub.ru!


Если сравнивать то, как разные открытия сказались на жизни и благополучии людей, то открытие инсулина было, возможно, самым ярким событием в истории современной науки. Вплоть до 1920-х диагноз «диабет» (который врачи обычно ставили, увидев пятна высохшего сахара на обуви или брюках пациента-мужчины) обещал раннюю и болезненную смерть. Ее можно было избежать разве что за счет жесткой диеты, не менее мучительной для большинства больных, чем сама болезнь.

 

История инсулина не обошлась без несчастий, злобы и обманов. Когда в 1923 году Нобелевскую премию присудили двум главным действующим лицам — Фредерику Бантингу (1891-1941) и Джону Маклеоду (1876-1935), это вызвало возмущение у тех, кто (не без оснований) считал, что их роль в открытии преуменьшена или забыта. Одним из возмущавшихся был Николае Паулеску, румынский физиолог, чьи наблюдения были решающими в отыскании связи между диабетом и дефицитом активного компонента поджелудочной железы. Он открыл, что повышенный уровень сахара в крови и моче собак, у которых диабет был искусственно вызван удалением поджелудочной железы, становился ниже, когда вытяжку из поджелудочной вводили животным обычной инъекцией. Паулеску пришлось отложить свои исследования на четыре года — по той причине, что в его страну в конце Первой мировой вторглись австро-венгерские войска. Когда же он вернулся к этой теме, то Бантинг, Маклеод, Бест и Коллип в Торонто уже вплотную подошли к разгадке.

 


Такого ученого, как Фредерик Бантинг должен знать каждый человек, болеющий диабетом, ведь именно этот канадский ученый открыл инсулин

 

Молодой немецкий врач Георг Цюльцер добился, похоже, потрясающего результата, вводя умирающему пациенту вытяжку поджелудочной — однако его работы также проводились в чрезвычайно неподходящих для этого условиях и были прерваны войной. Куда более известный немецкий физиолог, Оскар Минковский, считал претензии Цюльцера смехотворными: именно Минковский первым установил связь между сахаром и поджелудочной железой. Считают, что он догадался о присутствии сахара в моче собаки без поджелудочной (к тому же страдающей недержанием), когда заметил, что пятна на лабораторном полу собирают мух. В этой истории нет повода сомневаться хотя бы потому, что ее рассказывал знаменитый американский физиолог У.Б. Кэннон; однако сам Минковский всегда отрицал, что причина открытия — случайное стечение обстоятельств. Так или иначе, Минковский, которому научный руководитель поручил исследовать роль поджелудочной железы в расщеплении жиров, действительно диагностировал у собаки, которой удалили эту железу, сахарный диабет. На заявления Цюльцера Минковский отвечал, что ничуть не меньше сожалеет о его неудаче.

 

Окончательной победы добилась группа с факультета физиологии Торонтского университета, которую возглавлял Маклеод. Бантинг был вдохновителем исследований, а Маклеод сначала отнесся к затее с неприязнью, но потом стал ее активно поддерживать. Чарльз Бест, студент факультета, присоединился к ним в качестве ассистента Бантинга, а биохимик Джеймс Коллип был нанят для решения конкретной задачи — чтобы выделить из вытяжки поджелудочной железы неуловимое активное вещество. И Бест, и Коллип были твердо убеждены, что Нобелевскую премию следовало вручить и им, тогда как Бантинг, человек с непреклонными взглядами и характером параноика, считал результат по большей части своим и не упускал случая оговорить и принизить Маклеода. Часть грязи успела прилипнуть, поэтому часто и безосновательно утверждают, что вклад Маклеода в открытие был ничтожен и тот украл заслуженное признание у остальных. Дележ добычи, породивший так много обид, был, вероятно, справедливым, хотя многие и убеждены, что Бест был исключен из числа лауреатов незаслуженно (однако уже скоро был вознагражден множеством наград и почестей), в то время как Маклеод, к ярости Бантинга, излишне подчеркивал заслуги Кол липа. И действительно, Маклеод публично пообещал, что поделится с Коллипом половиной суммы премии; в письме другу он сообщает: «Думаю, я преуспел в том, чтобы убедить людей: его [Коллипа] вклад вовсе не был несоизмерим со вкладом Бантинга». В свою очередь Бантинг заявил, что отдаст половину денег Бесту.

 


Джеймс Коллип

 

Самый яркий за все время охоты за инсулином инцидент произошел в январе 1922 года. Майкл Блисс, автор классического исследования по истории инсулина, описывает его как «одну из самых примечательных личных стычек в истории науки». После ряда огорчительных неудач Коллип наконец сумел приготовить высокоактивный экстракт, который, вероятно, состоял в основном из чистого инсулина. (Совсем скоро он обнаружит, что не в состоянии приготовить его заново, и на повторение достигнутого понадобится еще больше времени.) Вот как Бантинг вспоминает знаменитую ссору двадцать лет спустя:

 

Худшее из наших столкновений случилось как-то вечером в конце января. Коллип становился все менее и менее общительным и в конце концов после недельного отсутствия в полшестого вечера возник на пороге нашей маленькой комнаты. Он остановился сразу за дверьми и произнес: «Коллеги, у меня получилось».

 

Я повернулся и произнес: «Славно, поздравляю. И как же вы этого добились?»

 

Коллип ответил: «Вам я решил не сообщать».

 

Его лицо побелело как мел, и он собрался уходить. Тогда я одной рукой схватил его за воротник плаща и, почти приподняв его, силой усадил на стул. Не помню всего, что тогда было сказано, — помню только, как заявил, что он, к счастью, намного тщедушней, иначе я «вытряс бы из него душу». Он рассказал, что обсудил ситуацию с Маклеодом и что Маклеод одобрил его решение не сообщать нам, каким способом экстракт был очищен.

 

По версии Чарльза Веста, все выглядело несколько иначе:

 

Однажды вечером в январе или феврале 1922 года, когда я работал один в здании Медицинского центра, доктор Дж.Б. Коллип заглянул в небольшую комнату, где у нас с Баннингом стояли собачья клетка и разные химические приборы. Он сообщил мне, что покидает нашу группу и что намерен запатентовать на свое имя наши улучшения в процедуре подготовки экстракта поджелудочной железы. Такое развитие событий меня ошеломило, так что я настоятельно попросил подождать прихода Фреда Бантинга, а для большей уверенности, что он действительно дождется, я запер дверь, а сам уселся на стуле напротив нее. Бантинг вернулся в Медицинский центр очень нескоро. Наконец он появился в коридоре, ведущем в нашу комнату. Я передал ему слова Коллипа, и Бантинг весьма спокойно это выслушал — однако я не мог не почувствовать, как в нем накапливается ярость. О том, что за этим последовало, я умолчу. Бантинг был явно разгневан, поэтому Коллипу следует считать большой удачей, что он остался цел. Поскольку я опасался, что Бантинг совершит что-нибудь такое, о чем нам обоим потом придется горько сожалеть, мне пришлось удерживать его всеми средствами, какие только у меня имелись.

 

Майкл Блисс высказывает предположение, что Коллип и Маклеод были в большой обиде на Бантинга за выходки, которые он позволял себе последние несколько недель — возможно, Бантинг пытался преждевременно устроить клинические испытания неочищенного и потенциально опасного препарата, приготовленного им вместе с Бестом. Блисс пишет:

 

Я предполагаю, что Коллип и Маклеод едва ли были в состоянии руководить действиями Бантинга последние несколько недель, в частности из-за того, что попытка Бантинга приготовить вместе с Бестом экстракт для первых клинических испытаний подрывала сам дух командной работы. Похоже, Бантинг присвоил себе некоторые из усовершенствований, внесенных Коллипом в процедуру приготовления экстракта. Бантинг продемонстрировал им свое недоверие, и теперь у них не было оснований верить ему. Очистка экстракта была задачей Коллипа, а не Бантинга или Беста. Коллип и Маклеод могли решить, что Бантинг покушается на авторство Коллипа. Стоит тому докопаться до подробностей о процессе подготовки экстракта, и он припишет все заслуги себе. Вероятно, события и января (когда они только узнали о превышении Бантингом полномочий) подтолкнули их к убеждению, что Бантингу доверять не следует и что он попытается опередить прочих членов группы, подав заявку на патент. Паранойя столкнулась с паранойей. В результате Коллип и Маклеод решили не делиться с Бантингом и Бестом секретом приготовления эффективного экстракта для борьбы с диабетом.

 

Годы спустя Бантинг и Коллип помирились, и каждый из них признал вклад соперника в великое открытие. Так или иначе, в 1941 году Бантинг, который тогда состоял на службе у канадского правительства, провел последнюю ночь своей жизни в Монреале с Коллипом — а считаные часы спустя бомбардировщик, который должен был отвезти его в Англию, разбился, и все, кто находился на борту, погибли.

Автор: Admin | 2012-11-15 |

Там, где живут пришельцы: Солнечная система

1. Марс




Начнем с краткого описания небесного тела планетарного типа, получившего название Марс:
диаметр 6792 км (0,53 диаметра Земли), гравитация — 0,37 (это значит, что на марсианской поверхности Вы бы ощущали только 1/3 своего веса и подросли минимум на 3 см за счет расправления позвонков вашего позвоночника), атмосферное давление в 80-160 раз меньше Земного. Сутки на красной планете длятся почти столько же, сколько и на нашей, а вот один оборот вокруг Солнца проходит за 687 земных дней.

Климат: Марс находится на границе так называемой «зоны жизни» (она же обитаемая зона). Это значит, что если бы каким-то волшебным образом Земля оказалась на орбите Марса, то она получала бы от Солнца ровно столько тепла, сколько необходимо для существования океанов из жидкой воды на экваторе. Однако из-за крайне разряженной атмосферы моря и реки на Марсе просто не могут существовать: вода частично замерзает, частично испаряется из-за низкого давления. Основная часть воды сконцентрирована под поверхностью планеты в районах полюсов. Тем не менее, видимые из космоса полярные шапки Марса состоят по большей части не из водяного льда, а из замерзшего углекислого газа, температура замерзания которого значительно ниже воды. Читать дальше>>

Тот, кто решает задачи

Фриман Дайсон входит в состав людей, которых называют создателями квантовой электродинамики

 

Фриман Джон Дайсон (родился 1923 г.), один из самых удивительных физиков-теоретиков и прикладных математиков нашего времени, как-то назвал себя «решателем задач», имея в виду (с излишней скромностью), что его главное умение — не придумывать задачи, а решать их. (Еще он ярко и убедительно пишет о развитии науки и о будущем человечества как вида; Дайсон рисует широкими мазками. Он верит, например, что, окажись мы перед угрозой «тепловой смерти», придется подумать о перемещении нашей планеты на более гостеприимную орбиту, а то и о скачке в параллельную Вселенную — если только она существует. По словам Дайсона, мысль, что мы заперты в одной-единственной Вселенной, вызывает у него клаустрофобию.)

 


Ганс Бете (1906-2005) — основоположник теории перенормировок

 

В своих мемуарах Дайсон вспоминает об идиллических временах молодости, когда сразу после Второй мировой он оказался окружен патриархами американской теоретической физики. В 1948 году, когда его совместная с Гансом Бете работа в Корнуоллском университете подходила к концу, юного Дайсона пригласили в Институт фундаментальных исследований в Принстоне. Тем временем Бете уговорил его посетить ежегодную летнюю школу для физиков под патронажем Университета Мичигана в Анн-Арборе — пятинедельное собрание, где молодым физикам давали возможность послушать лекции светил науки, задать вопросы и даже вступить с ними в спор. За две недели до начала школы Дайсон встретил Ричарда Фейнмана, который сообщил ему, что направляется на машине в Альбукерк, штат Нью-Мексико, и позвал съездить с ним.

 

Четыре дня подряд Дайсон и Фейнман беседовали и спорили. Их философские взгляды на физику были взаимно противоположны: Дайсон верил в уравнения, Фейнман — в картину, которая может уложиться в голове; он обладал почти мистическим убеждением в единстве природы и физических законов — том единстве, которое Эйнштейн безуспешно искал последние годы своей жизни — тогда как Дайсон просто нуждался в теории, которая будет работать в отведенных ей пределах. Фейнман не доверял математике Дайсона, а Дайсон относился с подозрением к интуиции Фейнмана. Фейнман сформулировал интуитивную картину того, что позже станет известно как квантовая электродинамика — это правила, управляющие взаимодействием частиц, для которых были придуманы знаменитые фейнмановские диаграммы. Теперь они — привычный инструмент любого специалиста по элементарным частицам. С другой стороны, было известно, что Джулиан Швингер разработал детальную, но, как считало большинство заинтересованных физиков, абсолютно неподъемную математическую теорию таких процессов и собирался представить результаты в летней школе Анн-Арбора. И вот Дайсон прибыл в Анн-Арбор на автобусе фирмы Трэйхаунд и отправился слушать Швингера. После лекции он решил поспорить с мэтром. Швингер был дружелюбен.

 

Я мог говорить с ним как угодно долго, и из этого разговора лучше, чем из лекции, понял, из чего появилась его теория. На лекциях она выглядела ограненным бриллиантом, ярким и ослепительным. В приватной беседе теория предстала передо мной необработанной, какой ее видел сам Швингер, прежде чем приступить к огранке и полировке. Теперь я куда лучше мог разобраться в ходе его мыслей.

 

Я извел на вычисления сотни страниц, пытаясь решать простые задачи методом Швингера. К концу летней школы я почувствовал, что понимаю теорию Швингера как никто другой — за исключением, может быть, самого Швингера. Ради этого, пожалуй, стоило приезжать в Анн-Арбор.

 

Уезжая, Дайсон снова сел на автобус Трэйхаунд» и продолжил свое путешествие на запад — с недолгими остановками в Юте и Калифорнии. Озарение пришло на обратном пути.

 

За три дня и три ночи безостановочной езды я добрался до Чикаго. Все это время мне было не с кем поговорить. Автобус слишком трясло, из-за чего читать я тоже не мог, так что оставалось сидеть и смотреть в окно. Мало-помалу я впал в необременительный ступор. Когда на третий день мы вяло ползли через Небраску, что-то определенно случилось. Я не думал о физике две недели подряд, а теперь физика вызвала своего рода взрыв у меня в сознании. Картинки Фейнмана и уравнения Швингера начали выстраиваться в голове так ясно, как никогда раньше. Впервые я мог свести их вместе. Час или два я складывал и перетасовывал отдельные детали. Наконец я понял, как именно они примыкают друг к другу. У меня не было ни карандаша, ни бумаги, но все было настолько очевидно, что мне больше не требовалось что-либо записывать. Фейнман и Швингер просто смотрели на одни и те же вещи с разных сторон. Соединив их методы, вы получаете квантовую электродинамику со швингеровской математической точностью и фейнмановской гибкостью. В конце концов возникнет теория «срединных территорий» (так Дайсон называл состояния вещества между крупномасштабным — вроде небесных тел, которыми управляет гравитация, — и микроскопическим: неуловимыми и короткоживущими субатомными частицами, встречающимися среди продуктов высокоэнергетических столкновений и в атомном ядре. Последними управляют так называемые сильные взаимодействия). Мне потрясающе повезло оказаться единственным человеком, который имел продолжительную беседу как со Швингером, так и с Фейнманом, и я действительно понял, чем занимается каждый из них. В час озарения я был особенно благодарен Гансу Бете, который сделал это возможным. Весь остаток дня, глядя на закат над прерией, я выстраивал в голове структуру будущей статьи, которую напишу, как только доберусь до Принстона.

 


Дайсон разработал модель утилизации высвобождаемой звездой энергии. Модель получила название сферы Дайсона и в будущем может сослужить человечеству хорошую службу, когда какая-нибудь из близких к Земле звезд не решит переродиться в сверхновую, высвободив достаточное количество энергии для уничтожения всего живого на нашей планете

 

Следующий рассказ о Дайсоне, математике-виртуозе, взят из мемуаров Джереми Бернштейна. Бернштейн пришел в Институт фундаментальных исследований молодым физиком-теоретиком в 1957 году и начал работать с Марвином Гольдбергером (известным под именем Мёрф), позднее — президентом Калифорнийского технологического института. В 1957 году Бернштейн и Гольдбергер как раз вступили в борьбу с задачей электромагнитных взаимодействий фундаментальных частиц.

 

Было, по меркам Института, раннее утро. Большинство сотрудников работало по ночам и не появлялось раньше полудня. Мерф явился в институт с отвратительного вида интегральным уравнением. Не важно, что это было — главное, что оно выглядело весьма неопрятно. Мерф разделил члены уравнения на две группы: одну обозначил G(x), что расшифровывалось как «хорошие (Good) по иксу», а вторую — Н(х), что означало «ужасные (Horrible) по иксу». Тут появился Дайсон с чашкой кофе в руках и принялся разглядывать наше уравнение. Мерф спросил: «Фримен, вам когда-то попадалось что-нибудь вроде этого?» Дайсон ответил, что нет, но, похоже, этим утром он был особенно в форме. Он переписал формулы и исчез. Примерно через двадцать минут он вернулся с решением. Позже его заново вывели другие люди, и уравнение носит их имя, однако тогда я увидел то, что показалось мне — и все еще кажется — невероятным колдовством. Год за годом я наблюдал, как Дайсон решает самые разные математические задачи, и до сих пор не могу себе представить, что значит думать с такой скоростью и такой математической четкостью. Кажется ли при этом, что все остальные заторможены? Такому нельзя научиться, по крайней мере я точно не смогу. Зато я достаточно обучен математике, чтобы радоваться каждый раз, когда такое происходит.

Автор: Admin | 2012-11-10 |

Немезида из Нанси

Вы – настоящий геймер, который любит не только проходить новые игры за один присест на самом высоком уровне сложности, но и обожает читать журналы, посвященные игростроению, не желая упустить из виду ни один из заслуживающих внимания проектов. Именно поэтому я рекомендую Вам прямо сейчас посетить сайт elite-file.com, где Вы сможете скачать игру crysis 2, в которой на высочайшем уровне находятся как игровая, и сюжетная линии.


Роберт Вуд (1868-1955), профессор физики в Университете Джона Хопкинса, основатель спектроскопии, писал стихи (сборник его стихов, вышедший под названием «Как отличить птиц от цветов», переиздается и в наши дни), а также был еще известным шутником и мистификатором. Многие его эскапады стали легендами. Например, жителей Балтимора он пугал так: в дождливые дни плевал в лужи и незаметно подбрасывал туда кусок металлического натрия — в итоге плевок загорался ярко-желтым пламенем.

 

А вот другая история. В юности Вуд жил в Париже, в небольшом пансионе. Как-то постояльцы этого пансиона с удивлением заметили, что Вуд обильно посыпает каким-то белым порошком куриные кости, оставшиеся после ужина на тарелках. На следующий вечер, когда всем подали суп, Вуд принес с собой небольшую спиртовую горелку и уронил каплю супа в пламя. Красная вспышка вызвала у него улыбку удовлетворения: белый порошок, объяснил он соседям по столу, был хлоридом лития, а красный цвет пламени свидетельствует, что хлорид лития теперь в супе. Вуд подозревал, что хозяйка использует кости по второму разу — и теперь подозрение подтвердилось. Стоит, однако, заметить, что подобный сюжет рассказывают и про Георга фон Хевеси, пионера в области радиоактивных меток: как-то он пометил объедки радиоактивной солью и потом обнаружил радиоактивность супа при помощи счетчика Гейгера. Такой тест куда чувствительней, чем с литиевым пламенем. Впрочем, каждая наука подразумевает свою методику. (Знаменитый геохимик Виктор Мориц Гольдшмидт, собираясь бежать из нацистской Германии, запасся ампулой с цианидом калия; когда ампулой заинтересовался коллега с инженерного факультета, Гольдшмидт, по легенде, ответил, что цианид — это только для профессоров химии, а профессорам механики полагается иметь с собой веревку.)

 

В Париже Вуд устроил еще один розыгрыш. Он обнаружил, что домовладелица (или консьержка), которая жила этажом ниже, держит на балконе черепаху. Тогда Вуд приобрел выводок черепах разных размеров, а потом длинной палкой с крюком вытащил с балкона хозяйкиного питомца и подменил его черепахой чуть побольше. Каждый день он заменял черепаху следующей по размеру. Изумленная хозяйка рассказала Буду про удивительную черепаху, и тогда он посоветовал ей проконсультироваться у известного университетского профессора, а попутно сообщить в газеты. Пресса, надо думать, охотно взялась наблюдать за расширяющейся черепахой, и тогда Вуд направил процесс в обратную сторону: животное уменьшалось столь же загадочно, как недавно росло. Догадался ли хоть кто-нибудь в Париже об истинных причинах феномена, не сообщается.

 


Француз Рене Блондло прославился благодаря своей ошибке – открытию так называемых N-лучей, при помощи которых человеческий глаз может видеть слабоосвещенные предметы. Позже было доказано, что подобных лучей не существует

 

Вуд сделал много полезного в спектроскопии (в частности, разработал конструкцию спектрометра с длинным ходом лучей — туда он научил забираться своего кота, чтобы чистить прибор от паутины и пыли). Но чаще вспоминают его участие в одном из самых странных эпизодов в истории физики. Известный французский физик Рене Проспер Блондло открыл нечто, являющееся, по его мнению, новой формой электромагнитного излучения. Это нечто он назвал N-лучами в честь Нанси, своего родного города. Существование N-лучей было очевидно Блондло, его коллегам из Нанси и еще нескольким французским ученым, но в куда меньшей степени ученым из других точек мира. Позже было доказано, что N-лучи — вымысел, и воспринимать их способны только те, кто заранее в них поверил. Заблуждение было окончательно раскрыто Вудом, когда в 1903 году он навестил лабораторию Блондло в Университете Нанси. Вот весьма красноречивый рассказ Вуда о том, как ему удалось вывести на чистую воду неудачника Блондло:

Прочтя о его (Блондло) замечательных опытах, я решился повторить их, но ничего не добился, хотя и потратил на это целое утро. Согласно Блондло, такие лучи спонтанно испускают многие металлы. Детектором может служить лист бумаги, весьма слабо подсвеченный, поскольку — чудо из чудес — когда N-лучи касаются глаза, они усиливают его способность видеть объекты в полутемной комнате.

 


Ошибочные опыты Блондло показали, что невооруженный взгляд воспринимает гораздо больший световой спектр в присутствии иллюзорных N-лучей, которые оказались всего лишь игрой его воображения

 

Масла в огонь подлили другие исследователи. Год не успел закончиться, а в Comtes Rendus (сборнике докладов, сделанных на сессиях Французской академии наук) вышли сразу двенадцать статей о N-лучах. Шарпентье, известный своими фантастическими экспериментами по гипнотизму, заявил, что N-лучи испускаются мускулами, нервными тканями и мозгом, и его невероятные утверждения появились в журнале Comtes, который поддерживал великий д’Арсонваль, главный специалист по электричеству и магнетизму во Франции.

 

Затем Блондло заявил, что сконструировал спектрограф с алюминиевыми линзами и призмой из того же материала, и обнаружил, что спектральные линии разделены темными интервалами — а это свидетельствует о существовании N-лучей с разной преломляемостью и разной длиной волны. Блондло измерил длины волн, а Жан Беккерель (сын Анри, первооткрывателя радиоактивности) заявил, что N-лучи можно передавать по проводам. К началу лета Блондло опубликовал двадцать статей, Шарпентье — тоже двадцать, а Жан Беккерель — десять, и все они касались свойств и источников N-лучей.

 

Ученые в других странах относились ко всему этому с откровенным скепсисом, однако Академия отметила работу Блондло присуждением премии Делаланда в 20 000 франков и золотой медалью «за открытие N-лучей».

 

В сентябре (1904 года) я отправился в Кембридж на собрание Британской ассоциации содействия развитию науки. После заседания несколько ученых остались обсудить, как быть с N-лучами. Профессор Рубенс из Берлина был наиболее выразителен в своем негодовании. Он чувствовал себя в особенности задетым, поскольку кайзер распорядился, чтобы именно он приехал в Потсдам и там продемонстрировал лучи. Две недели бесплодных попыток повторить опыт французов вынудили его со стыдом признаться кайзеру в собственном бессилии. Повернувшись ко мне, он сказал: «Профессор Вуд, не съездите ли вы в Нанси прямо сейчас — посмотреть на опыты, которые там ставят?» — «Да, да, — заговорили разом все англичане, — это хорошая мысль, поезжайте!» Я предложил съездить Рубенсу, поскольку это он оказался главной жертвой, но Рубенс ответил, что Блондло вел с ним весьма учтивую переписку и охотно откликался на просьбы предоставить дополнительные данные, так что выйдет некрасиво, если Рубенс вдруг приедет с инспекцией. «Кроме того, — добавил он, — вы американец, а американцам всё позволено…».

 

Итак, я поехал в Нанси, договорившись с Блондло встретиться рано вечером у него в лаборатории. Он не понимал английского, и я решил разговаривать с ним на немецком, чтобы тот не смущался обмениваться не предназначенными моему слуху репликами со своим ассистентом.

 

Сначала Блондло показал карточку, где светящейся краской были нарисованы несколько кругов.

 

Затем он включил газовую горелку и обратил мое внимание на то, что яркость увеличивается, когда N-лучи включены. Я отметил, что не вижу изменений. Блондло объяснил: это все потому, что мои глаза недостаточно чувствительны, и мое замечание ничего не доказывает. Тогда я предложил поступить так: время от времени я выставлял бы на пути лучей непрозрачный свинцовый экран, а он говорил бы, когда яркость карточки меняется. Почти все его ответы были ошибочными: Блондло сообщал о перемене яркости, когда я не совершал никаких движений вовсе — и это уже многое доказывало, но я пока помалкивал. Затем он продемонстрировал мне едва подсвеченные часы и попробовал убедить меня, что сможет разглядеть стрелки, если будет держать прямо над переносицей большой плоский напильник. Мой очередной вопрос был о том, могу ли я подержать напильник сам. Перед этим я заметил у Блондло на столе плоскую деревянную линейку (а дерево считалось одним из немногих веществ, которые никогда не испускают N-лучей). Блондло с этим согласился, и я, нащупав линейку в темноте, поднес ее к лицу экспериментатора. Ну да, разумеется, он без труда разглядел стрелки — и это тоже кое-что доказывало.

Однако решающая и самая впечатляющая проверка была впереди. Вместе с ассистентом, который уже поглядывал на меня враждебно, я зашел в комнату, где стоял спектрометр с алюминиевыми призмой и линзами. Окуляр прибору заменяла вертикальная нить, окрашенная люминесцентной краской, а специальная ручка (со шкалой и цифрами на ободе) позволяла перемещать ее вдоль участка, куда предположительно проецировался спектр N-лучей. Блондло уселся перед спектрографом и начал медленно поворачивать ручку. Предполагалось, что, пересекая невидимые линии спектра N-лучей, нить будет каждый раз вспыхивать. Подсветив шкалу небольшой красной лампой, Блондло зачитал мне цифры, соответствующие отдельным спектральным линиям. Такой эксперимент сумел убедить не одного скептика, поскольку измерения повторялись в их присутствии, и цифры все время получались одними и теми же. Я попросил приступить к замерам и, вытянув руку в темноте, приподнял алюминиевую призму спектрометра. Он в очередной раз повернул ручку и назвал те же цифры, что и прежде. Прежде чем включили свет, я успел вернуть призму на место, а Блондло сообщил ассистенту, что у него устали глаза. Ассистент тут же попросил у Блондло разрешения повторить для меня опыт. Пока свет не погас, я успел заметить, что призма весьма точно сориентирована на маленькой круглой подставке, так что углы приходятся как раз на обод металлического диска. Выключатель щелкнул, и в темноте я сделал несколько шагов в сторону призмы, и двигался подчеркнуто шумно, но призму на этот раз не трогал. Ассистент как ни в чем не бывало продолжил крутить рукоять, но вскоре, обращаясь к Блондло, торопливо пробормотал по-французски: «Я ничего не вижу, никакого спектра нет. Подозреваю, что американец что-то испортил». Блондло тут же зажег газовую лампу, подошел к призме и тщательно ее оглядел, потом повернулся ко мне, однако я никак не отреагировал. На этом сеанс и закончился.

 

На следующее утро я отправил в Nature письмо с подробным описанием моих наблюдений, не упоминая, однако, последнюю хитрость, а лабораторию Блондло скромно назвал «одним из мест, где ставятся опыты с N-лучами». Французский полупопулярный журнал La Revue Scientifique начал свое расследование, попросив ведущих французских ученых высказаться по поводу N-лучей. Было опубликовано около сорока писем, причем Блондло защищали только шестеро. В самом едком, за авторством Ле Беля (одного из основателей стереохимии), говорилось: «Какое же зрелище являет французская наука, если один из выдающихся ученых измеряет положение спектральных линий, в то время как призма покоится в кармане его американского коллеги!»

 

На ежегодном собрании Академии, где официально объявлялось, кому присуждена премия и медаль, было заявлено, что награда досталась Блондло «за совокупность достижений всей его жизни».

 

Вмешательство Вуда в «дело об N-лучах» было определенно разгромным. С этих пор разговоры об N-лучах прекратились, однако сам Блондло так и не признал свои лучи иллюзией. Он преждевременно покинул университет и в одиночестве продолжал искать неуловимое излучение в своей домашней лаборатории.

Автор: Admin | 2012-11-03 |

Зима в Париже: Беккерель и открытие радиоактивности

Просмотр хорошего фильма в дружной и теплой компании является лучшим препровождением вечера. Именно поэтому я настоятельно советую всем ценителям подобного отдыха занести в закладки своего любимого интернет-браузера сайт go2film, который без преувеличения можно назвать гигантской видеотекой, где собраны тысячи самых лучших фильмов, каждый из которых Вы сможете посмотреть в онлайн режиме!



Анри Беккерель – один из отцов-основателей радиоактивности

 

Анри Беккерель (1852-1908) принадлежал к уважаемой научной династии: кафедру физики в Национальном музее естественной истории он возглавил после отца и деда, чтобы позже уступить ее сыну.

 

В 1896 году Беккерель был поглощен охотой за миражом, Как и всех физиков того времени, его потрясло до глубины души открытие рентгеновских лучей. Если катодные лучи, попадая в стекло, способны порождать вторичное излучение, то почему бы видимому свету не проделывать того же самого с флуоресцентным материалом? Чтобы проверить эту гипотезу, ошибочную от начала до конца, Беккерель в качестве флуоресцентного материала взял кристалл одного из соединений урана. К фотографической пластинке он прикрепил медный крест, спрятал то и другое под слоем черной бумаги, кристалл расположил сверху и выставил всю конструкцию на солнце. И тем не менее, когда пластинку проявили, на ней обнаружился потемневший участок, на котором можно было легко различить контуры креста.

 

Беккереля, казалось бы, должен был обрадовать результат, подтверждавший его теорию. Но все же, как положено честному экспериментатору, он решил повторить опыт. Стояли пасмурные февральские дни, солнца совсем не было, поэтому Беккерель оставил свою конструкцию на несколько суток в ящике стола. Люминесценция всегда слегка запаздывает (именно поэтому циферблаты часов светятся ночью, хотя побывали на солнце днем), и Беккерель решил проявить пластинку, ожидая найти слабое потемнение за счет остаточного эффекта. Английский физик сэр Уильям Крукс, посетивший тогда лабораторию французского собрата, писал, что после нескольких дней отвратительной погоды тот проявил пластинку, потому что «устал ждать (или благодаря бессознательному дару предвидения)». Так или иначе, изображение, которое увидел Беккерель, не уступало в плотности потемнения первому образцу.

 


Изображение пластинки Беккереля, засвеченной излучениями солей урана

 

Беккерель догадался: что бы ни засвечивало пластинку, к солнечному свету это отношения не имеет — и начал перебирать другие соединения урана, которые давали похожий эффект. Так было со всеми, кроме одного: то был минерал, известный как урановая смолка; его действие было гораздо сильнее. Согласно новой гипотезе, минерал содержал вещество с большей радиоактивностью — так Пьер и Мария Кюри позже назовут это свойство. Вскоре Беккерель обнаружил: излучение легко заметить, если поместить образец вблизи электроскопа — простого инструмента, чувствительного к наведенному электрическому заряду. Излучение Беккереля заряжало металл-проводник в электроскопе, откуда следовало, что оно порождает ионы (заряженные частицы), проходя сквозь толщу воздуха. Беккерель так и понял суть своего открытия и оставался при твердом убеждении, что замеченное им явление — новая и необычная разновидность флуоресценции. Другими словами, результат испускания энергии (временно запасенной в молекуле) в форме видимого света. Кюри оставалось найти истинный источник излучения, а Резерфорду в Кембридже — выявить его природу.

 

Забавная историческая ремарка к открытию Беккереля: все успели забыть, что похожее наблюдение уже было сделано в Париже на сорок лет раньше.

 


Абель Ньепс де Сен-Виктор (1805-1870)

 

Абель Ньепс де Сен-Виктор прославился своими нововведениями в фотографии, особенно изобретением альбуминовой печати. Интерес к химии и свойствам света привел его в лабораторию к заслуженному химику-органику Мишелю Эжену Шеврелю. Шеврель, глава Музея естественной истории, был заодно научным консультантом Мануфактуры гобеленов и в свое время заметно повлиял на взгляды Сера и школы пуантилистов. (Шеврель, кстати, мог бы похвастаться наиболее продолжительной в мире научной карьерой — он активно работал до самой смерти в возрасте 103 лет.) При поддержке Шевреля Ньепс провел исследование флуоресцентных и фосфоресцентных веществ, и в 1857 году сообщил буквально следующее: рисунок на картоне, выполненный нитратом урана, оставляет отпечаток на светочувствительной бумаге — примитивном прототипе фотопленки. Фокус с урановым рисунком срабатывал и в темноте, и на солнечном свету. Даже когда фотобумагу отодвигали на 3 сантиметра, все опять повторялось. После 1857-го появилось еще несколько сообщений об этом феномене, и они вызвали заметный интерес — в том числе и у отца Анри Беккереля, Эдмонда. Помнил ли Анри о Ньепсе к 1896 году, когда ставил свой знаменитый эксперимент? И если нет, возможно, все же поддался влиянию каких-то смутных воспоминаний, проявляя свою фотопластинку?

 


Старейшей фотографией является снимок под названием «Выглянув в окно», сделанный в 1826 году Жозефом Нисефором Ньепсом 

 

Открытие радиоактивности, как и открытие рентгеновских лучей, поначалу вызывало недоверие. Английский физиолог сэр Генри Дейл (1875-1968) вспоминал, как проходило специальное собрание Кембриджского клуба естественных наук, где почтенный Р.Дж. Стретт, сын знаменитого лорда Рэлея и сам по себе заметный физик, выступил с речью о наблюдениях Беккереля; его рассуждения заставили одного из студентов (в будущем — известного физика-теоретика) воскликнуть: «Но, Стретт, если эта история про Беккереля правда, то она нарушает закон сохранения энергии!» Своим замечанием он нащупал самое уязвимое место в теории. Только когда природа радиоактивности стала ясна (активный элемент превращается в инертный, возможно, после долгой цепочки превращений, пока вся радиоактивность не сойдет на нет), парадокс был устранен.

Автор: Admin | 2012-11-03 |
24 страница из 55« Первая...10...202122232425262728...4050...Последняя »

GIF
Видео
Видео
Все обо всем
Забавно!
Иллюстрированные факты
Искусство
Истории
Все размещенные на сайте материалы без указания первоисточника являются авторскими. Любая перепечатка информации с данного сайта должна сопровождаться ссылкой, ведущей на www.unnatural.ru.