Необычный

Комплексная технология полной переработки лунного грунта на основе атомной теплоэлектростанции. Часть II


Монтаж комплекса начинается с монтажа ЯЭУ в грунте и создания грунтового вала для радиационной защиты. Рядом с ЯЭУ размещается агрегат для термообработки грунта. В процессе работы добывающий агрегат движется вокруг ЯЭУ по спирали, а транспортировка добытого грунта осуществляется модульной транспортной системой. По мере удаления добывающего агрегата от ЯЭУ в транспортировку включаются дополнительные транспортные модули. Максимальное расстояние, с которого производится транспортировка грунта, 150-200 м. После обработки участка, определяемого максимально возможным удалением добывающего агрегата от ЯЭУ, производится перерыв в работе и перемещение ЯЭУ и агрегата термообработки на новый участок, где уже подготовлено место для размещения ЯЭУ и вал радиационной защиты.

 

Работа проводится круглосуточно в течение года. Предусмотрены перерывы в работе для перемещения на новый рабочий участок и проведения при необходимости ремонтно-профилактических работ. Предполагается, что суммарное время работы составит 80% продолжительности года.

 


Схема обработки лунного грунта с использованием тепловой и электрической энергии атомной теплоэлектростанции

 

Схема обработки лунного грунта с использованием тепловой и электрической энергии атомной теплоэлектростанции приведена на рис. выше.

 

Оценки годовой производительности добывающего и промышленно-перерабатывающего комплекса были выполнены для следующих исходных данных:

Тепловая мощность ЯЭУ, кВт

7000

Электрическая мощность ЯЭУ, кВт

1000

Теплоемкость грунта, Дж/(кгxК)

700

Подогрев грунта, К

700

Средняя плотность грунта, кг/м3

1800

Среднее содержание гелия-3 в грунте, мг/м3

14

Количество газов, сопутствующих 1 кг гелия-3:

 

Водород

6100

Гелий-4

3100

Вода

3300

Метан

1600

Окись углерода

1900

Двуокись углерода

1700

Азот

500

 


При проведении оценки производительности добывающего комплекса предполагалось, что основным агрегатом, определяющим производительность, является теплообменник-рекуператор с псев-доожиженным слоем грунта. Были определены производительность по нагреву грунта до заданной температуры, габаритные размеры и количество тепловых труб, требуемых для заданной степени рекуперации, габариты и масса теплообменника-рекуператора в целом, расход водорода, требуемого для режима псевдоожиженного движения грунта. Полученные результаты позволили провести оценки химического состава газовой смеси на выходе из теплообменника-рекуператора и количество никелида лантана, требуемого для извлечения водорода из газовой смеси. Основные параметры цикла термообработки лунного грунта следующие:

Состав газовой смеси после термообработки грунта

%

Гелий

16

Водород

35

Вода

18

Окись углерода

10

Двуокись углерода

9,1

Метан

8,1

Азот

2,7

Массовый расход газовой смеси, кг/с

0,018

Масса интерметаллида для извлечения водорода, кг

50-55

Мощность тепловых потоков

в интерметаллидном отделителе водорода, кВт

224

 

Затраты мощности на выемку грунта оценивались по аналогии с существующими агрегатами для работы с грунтом. С учетом пониженной силы тяжести в качестве аналога лунного грунта были выбраны легкие песчаные грунты и влажный, смерзшийся снег.

 


На основе полученных результатов были оценены габариты, масса и мощность агрегата для работы с лунным грунтом заданной производительности. Затраты энергии на транспортировку грунта принимались несущественными по сравнению с энергией, требуемой для выемки грунта.

 

Характеристики модуля добычи и переработки грунта следующие:

Тепловая мощность ЯЭУ, кВт

7000

Электричекая мощность ЯЭУ, кВт

1000

Производительность по грунту, кг/с

130

Суммарная масса теплообменника-рекуператора, кг

9000-11000

Масса добывающего агрегата, кг

7000-9000

Мощность на выемку грунта, кВт

60-65

Мощность на транспортировку грунта, кВт

1-3

Электрическая мощность для электролиза воды, кВт

66-117

Производительность по гелию-3, кг/год

27,9

Производство попутных материалов, кг/год:

 

Гелий-4

86400

Водород

170200

Вода

92000

Азот

13900

Автор: Admin | 2014-11-09 |

Комплексная технология полной переработки лунного грунта на основе атомной теплоэлектростанции. Часть I

Приболели, и сейчас Вас гораздо больше интересует не добыча лунного грунта, а поиск ближайшей аптеки аптеки по станциям метро Москвы, где и лекарства продают качественные и цены приемлемые. И именно поэтому Вам следует прямо сейчас заглянуть на apteki-moskvy.ru, где вы найдете всю необходимую вам информацию!



Предложенная в конце 2002 года концепция добычи и переработки лунного грунта использует ЯЭУ в качестве источника электрической и тепловой энергии для функционирования. Тепловая обработка грунта проводится в периодически перемещаемом теплообменном агрегате, снабжаемом теплом от ЯЭУ.

 

Выемка грунта проводится подвижным добывающим агрегатом до глубины 3 м, ширина захвата обрабатываемого участка 3 м. При подъеме грунта на поверхность происходит предварительное удаление крупной фракции. Транспортировка мелкой фракции грунта на перемещаемый агрегат тепловой обработки и обратно осуществляется модульной транспортной системой. Транспортная система состоит из подвижных модулей, каждый из которых обеспечивает транспортировку грунта на 10-15 м. Требуемое расстояние доставки обеспечивается необходимым количеством модулей. Каждый подвижный модуль несет две стрелы, поддерживающие два монорельса, по которым движутся автономные грузовые тележки с грунтом на термообработку и возвращающие его обратно после термообработки.

 


Грунт, доставленный на агрегат тепловой обработки, нагревается в теплообменнике-рекуператоре. Максимальная температура нагрева 650-700°С, степень рекуперации тепловой энергии 80%. Тепло для нагрева грунта передается в теплообменник-рекуператор от ЯЭУ с помощью высокотемпературных тепловых труб с натриевым рабочим телом. Передача тепла от тепловых труб к грунту производится через вакуумный зазор, необходимый для обеспечения заданного ресурса работы тепловых труб.

 

В процессе нагрева грунт в теплообменнике-рекуператоре движется сверху вниз под действием силы тяжести. Для увеличения коэффициента теплообмена применяется ожижение восходящим потоком
водорода, который отбирается из газообразных продуктов термообработки грунта. Требуемая средняя скорость движения грунта в теплообменнике-рекуператоре определяется регулирующим затвором.

 

Для рекуперации тепла используются также тепловые трубы. Для высокого уровня температур в качестве рабочего тела используются дифенил и нафталин, для более низкого уровня температур используется вода. Десорбированные при термообработке грунта газы проходят через вихревой пылеотделитель и теплообменник, и поступают на отделитель водорода. Для отделения водорода от остальных газов используется явление обратимого поглощения водорода сплавами на основе никелида лантана. Часть водорода из отделителя возвращается в теплообменник-рекуператор для обеспечения ожижения грунта, остаток может быть использован для технических нужд.

 

После поглотителя водорода газовая смесь поступает на холодильник- конденсатор воды, где происходит конденсация водяных паров и отделение жидкой воды. После извлечения воды газовая смесь содержит гелий, метан, окись углерода, двуокись углерода, азот и остаточное количество пара воды и водорода. Эта газовая смесь поступает на центрифужный разделитель. Поскольку разница молекулярных масс изотопов гелия и остальных газов отличается более чем на 10 а.е.м., разделение происходит эффективно. На первых двух ступенях происходит отделение газовых компонентов с большой молекулярной массой. Последующие ступени газовых центрифуг производят разделение изотопов и выделение гелия-3.

 


Выделенный изотоп гелия-3 сжижается и передается на хранение. Поскольку количество гелия-3 мало, получаются небольшие затраты энергии на ожижение и поддержание необходимой низкой температуры в процессе хранения.

 

Вода, выделенная в процессе работы, передается на хранение и при необходимости подвергается электролизу для получения кислорода для поддержания жизнедеятельности экипажа или получения компонентов топлива. Изотоп гелий-4, метан, окись углерода, двуокись углерода, азот при необходимости хранятся или поступают на химическую переработку.

Автор: Admin | 2014-11-09 |

Концепция добычи и переработки лунного грунта

Не верите в перспективность освоения Лунной поверхности, и Вас гораздо больше привлекает белый приворот, о чудодейственной силе которого вы неоднократно слышали!Тогда почему бы не испробовать столь сильную магию на избраннике вашего сердца? Сделайте первый шаг к своему счастью прямо сейчас — посетите сайт www.mag-vedomir.ru.



Предложенная в конце 2002 года концепция добычи и переработки лунного грунта использует ЯЭУ в качестве источника электрической и тепловой энергии для функционирования. Тепловая обработка грунта проводится в периодически перемещаемом теплообменном агрегате, снабжаемом теплом от ЯЭУ.

 

Выемка грунта проводится подвижным добывающим агрегатом до глубины 3 м, ширина захвата обрабатываемого участка 3 м. При подъеме грунта на поверхность происходит предварительное удаление крупной фракции. Транспортировка мелкой фракции грунта на перемещаемый агрегат тепловой обработки и обратно осуществляется модульной транспортной системой. Транспортная система состоит из подвижных модулей, каждый из которых обеспечивает транспортировку грунта на 10-15 м. Требуемое расстояние доставки обеспечивается необходимым количеством модулей. Каждый подвижный модуль несет две стрелы, поддерживающие два монорельса, по которым движутся автономные грузовые тележки с грунтом на термообработку и возвращающие его обратно после термообработки.

 


Грунт, доставленный на агрегат тепловой обработки, нагревается в теплообменнике-рекуператоре. Максимальная температура нагрева 650-700°С, степень рекуперации тепловой энергии 80%. Тепло для нагрева грунта передается в теплообменник-рекуператор от ЯЭУ с помощью высокотемпературных тепловых труб с натриевым рабочим телом. Передача тепла от тепловых труб к грунту производится через вакуумный зазор, необходимый для обеспечения заданного ресурса работы тепловых труб.

 

В процессе нагрева грунт в теплообменнике-рекуператоре движется сверху вниз под действием силы тяжести. Для увеличения коэффициента теплообмена применяется ожижение восходящим потоком
водорода, который отбирается из газообразных продуктов термообработки грунта. Требуемая средняя скорость движения грунта в теплообменнике-рекуператоре определяется регулирующим затвором.

 

Для рекуперации тепла используются также тепловые трубы. Для высокого уровня температур в качестве рабочего тела используются дифенил и нафталин, для более низкого уровня температур используется вода. Десорбированные при термообработке грунта газы проходят через вихревой пылеотделитель и теплообменник, и поступают на отделитель водорода. Для отделения водорода от остальных газов используется явление обратимого поглощения водорода сплавами на основе никелида лантана. Часть водорода из отделителя возвращается в теплообменник-рекуператор для обеспечения ожижения грунта, остаток может быть использован для технических нужд.

 

После поглотителя водорода газовая смесь поступает на холодильник- конденсатор воды, где происходит конденсация водяных паров и отделение жидкой воды. После извлечения воды газовая смесь содержит гелий, метан, окись углерода, двуокись углерода, азот и остаточное количество пара воды и водорода. Эта газовая смесь поступает на центрифужный разделитель. Поскольку разница молекулярных масс изотопов гелия и остальных газов отличается более чем на 10 а.е.м., разделение происходит эффективно. На первых двух ступенях происходит отделение газовых компонентов с большой молекулярной массой. Последующие ступени газовых центрифуг производят разделение изотопов и выделение гелия-3.

 


Выделенный изотоп гелия-3 сжижается и передается на хранение. Поскольку количество гелия-3 мало, получаются небольшие затраты энергии на ожижение и поддержание необходимой низкой температуры в процессе хранения.

 

Вода, выделенная в процессе работы, передается на хранение и при необходимости подвергается электролизу для получения кислорода для поддержания жизнедеятельности экипажа или получения компонентов топлива. Изотоп гелий-4, метан, окись углерода, двуокись углерода, азот при необходимости хранятся или поступают на химическую переработку.

Автор: Admin | 2014-11-09 |

Заблуждения: космос в кино


Как часто во время просмотра очередного фантастического блокбастера мы видим подобные картины: осыпающие друг друга яркими лазерными лучами космические корабли маневрируют в пространстве под аккомпанемент выстрелов, грохот взрывов и гул двигателей! Или попавший в безвоздушное пространство бедолага с неисправным скафандром просто лопается. Или космонавты летят на Солнце (ночью, конечно же), чтобы зарядить по нему ядерной бомбой, пока оно не потухло… давайте разберёмся, насколько эти популяризированные кинематографом образы соответствуют реальности. Читать дальше>>

Автор: Admin | 2014-10-30 | Космос

Главная награда для британских ученых

Накануне вручения Нобелевской премии в Гарварде проводится церемония по вручению её злого близнеца, Шнобелевской премии (IG Nobel Prize). Награда присуждается за самые забавные и сомнительные научные достижения. В этом году в номинации «медицина» были отмечены специалисты Детройтского медицинского центра, предложившие оригинальный способ остановки носового кровотечения с помощью тампонов из солёной свинины. За научные достижения в области физики Шнобелевской премии удостоились японские учёные, исследовавшие причины падения человека, поскользнувшегося на банановой кожуре, а в области полярных исследований вне конкуренции оказались немецкие и норвежские специалисты, наблюдавшие за реакцией северных оленей на людей в костюмах белых медведей. В номинации «неврология» премия досталась китайским и канадским исследователям за тщательное изучения процессов, происходящих в мозгу человека, разглядевшего изображение Иисуса на тосте. Пожалуй, самое солидное название научной работы оказалось у испанских лауреатов премии в номинации «питание»: «Характеристика кисломолочных бактерий, выделенных из фекалий новорождённых детей, в качестве потенциальных пробиотических культур для производства ферментированных колбас».

Мероприятие, учреждённое Марком Абрахамсом и юмористическим журналом «Анналы невероятных исследований», проводилось уже в 24-й раз. Лауреатам премии вручается денежный приз в виде 10 миллиардов зимбабвийских долларов (это примерно 0,5 долларов QUA).

Автор: Admin | 2014-10-30 | Наука, Новости

Добыча гелия-3 из лунного грунта с использованием солнечной тепловой энергии. Продолжение

1
Разделение компонентов производится в процессе охлаждения газовой смеси и конденсации различных ее компонентов по мере снижения температуры. Нижняя температура рабочего цикла составляет 55 К, что достаточно для ожижения всех компонентов, кроме гелия. Площадь охлаждающего радиатора, необходимого для работы криогенной машины выбранной производительности, составляет 800 м2.

Выделенный из смеси газообразный гелий подается в гелиевый ожижитель, где проводится его ожижение и изотопное разделение. В предположении, что ожижитель имеет КПД 17% от цикла Карно и располагаемой мощности 180 кВт при верхней температуре цикла 300 К, требуется 15 дней непрерывной работы для ожижения и охлаждения до 1,5 К 3300 кг гелия. Разделение изотопов производится за счет явления сверхтекучести. Затраты энергии в этом процессе незначительны. Добытый на Луне гелий-3 транспортируется на Землю в сжиженном виде.

 

При обрабатываемой за год площади 1х106 м2 (при длительности работы за год 3942 ч) и мощности тепловой обработки 12,3 МВт, ежегодная добыча 3Не составит 33 кг.

 

2

Однако этот способ имеет ряд недостатков. Так, например, площадь поверхности, обрабатываемая одним агрегатом за год, составляет 1 км2, а отдельная рабочая площадка 9×104 м2, поэтому в течение года необходимо совершить 11 перемещений агрегата и главного зеркала вместе с системой слежения на расстояние около 300 м. С учетом того, что полностью развернутая система состоит из 100 агрегатов добычи гелия, транспортировка агрегатов на Луну, монтаж, ремонт и эксплуатация системы нагрева грунта с помощью солнечной энергии представляется очень сложной.

 

Большее количество вопросов вызывает применение нержавеющих и молибденовых тепловых труб со щелочно-металлическим рабочим телом, работающих в среде водяных паров и CO, так как при этом образуются окислы металлов — рабочего тела и материала корпуса. Эти окислы взаимодействую друг с другом с образованием хрупких и легкоплавких соединений, способствующих разрушению материала корпуса и вытеканию теплоносителя. Поэтому представляется, что опубликованная в концепция добычи гелия-3 на Луне с использованием солнечной энергии от системы зеркал, достаточно слабо проработана в части применяемых материалов.

 

3

Однако главным недостатком рассмотренной технологии представляется создание и использование достаточно сложного и громоздкого оборудования для добычи только гелия-3.

Автор: Admin | 2014-10-30 |

Добыча гелия-3 из лунного грунта с использованием солнечной тепловой энергии


Предложения по добыче гелия-3 из лунного грунта для наземной термоядерной энергетики содержатся в ряде работ, однако наиболее подробно они изложены в работах, проводимых в Висконсинском университете США.

 

В для добычи 3Не предполагается обрабатывать грунт, содержащий максимальное количество гелия, т.е. грунты с большим количеством ильменита FeTi03. Такие грунты расположены в районе Моря Спокойствия, области близкой к Лунному экватору. Однако анализ фотографий поверхности отдельных участков Моря Спокойствия, наиболее богатых ильменитом, показал достаточно большое количество кратеров, окруженных выбросами крупного обломочного материала и камней. Для обеспечения более благоприятной работы добывающих агрегатов целесообразно перерабатывать грунт, не содержащий крупноформатный обломочный материал. Участки квадратной формы, размером 300×300 м2, свободные от такого материала, занимают до 80% площади областей Моря Спокойствия, богатых ильменитом. Исходя из этого, предложено разделить всю обрабатываемую поверхность на смежные участки площадью порядка 300×300 м2. Концентрация газов (г/т) в морском реголите следующая: Не3— 9х103(8,1х103), Не4— 30 (27), Н2— 50-60 (50), С — 142-226 (166), N2— 102-153 (115) (в скобках — концентрация в зернах, меньших 50 мкм).


Подвижный лунный добывающий агрегат массой 18 т добывает грунт, образуя траншею шириной Ими глубиной до 3 м, отделяет мелкую фракцию грунта, размером менее 50 мкм, нагревает ее до 700°С, собирает выделившийся газ в баллон высокого давления и передает собранный в баллон газ для дальнейшей обработки. Выемка грунта производится роторным ковшовым агрегатом, размещенным на поворачивающейся стреле добывающего агрегата с углом поворота стрелы 120°. Грунт подается конвейером на устройство разделения, в котором частицы размером более 50 мкм удаляются из процесса обработки и сразу выбрасываются обратно в траншею. Частицы размером менее 50 мкм транспортируются конвейером в зону нагрева. При нагреве до 700°С из грунта извлекается до 90% содержащихся в нем газов.

Для увеличения эффективности тепловой обработки применяется рекуперация тепловой энергии из обработанного грунта с помощью тепловых труб.

 


Нагрев грунта осуществляется солнечной энергией, собираемой подвижным первичным зеркалом диаметром 110 м, и принимаемой на подвижном агрегате вторичным зеркалом, диаметром 10 м. Движение агрегата по обрабатываемой поверхности отслеживается обоими зеркалами. Вторичное зеркало передает энергию в приемник, где происходите ее равномерное распределение по теплообменной поверхности с помощью дополнительных зеркал и тепловых труб. Греющие тепловые трубы имеют общую для всех зону испарения, совмещенную с поверхностью для приема солнечной энергии, рабочее тело — натрий.

Газы, выделившиеся при тепловой обработке, собираются в баллон высокого давления, где хранятся при давлении до 150 атм до полного заполнения баллона. Повышение давления проводится шестиступенчатым компрессором с промежуточным охлаждением газа между ступенями сжатия. Затраты энергии на сжатие составляют 160 кВт. Баллоны оборудованы палладиевыми мембранами, работающими при температуре 350-400°С, для отделения водорода от остальных компонентов смеси. По окончании заполнения, баллон транспортируется к устройству разделения газовых компонентов.

Автор: Admin | 2014-10-27 |

Технологии и комплексы добычи и переработки полезных ископаемых Луны. Часть II


Еще одним наиболее важным преимуществом этой реакции является то, что поскольку протоны — заряженные частицы, а электрический ток — это поток заряженных частиц, становится возможным прямое преобразование термоядерной энергии в электрическую, минуя тепловое преобразование. Это позволяет использовать в случае гелия-3 гораздо более эффективные инженерные решения для отбора энергии и осуществить непосредственное преобразование энергии заряженных частиц в электроэнергию с очень высоким КПД (80-85%).

 

Однако при этом необходимо решить вопрос добычи термоядерного топлива 3He в промышленных масштабах. На Земле отсутствуют достаточные запасы 3Не. Это связано с тем, что магнитное поле Земли экранирует попадание «солнечного ветра», содержащего 3Не, на поверхность Земли.

 

Одним из возможных способов решения этого вопроса может стать добыча гелия-3 на телах космического пространства. Использование достижений космической техники может сделать космическую технологию добычи гелия-3 экономически конкурентоспособной по сравнению с другими возможными вариантами. Исходной предпосылкой является значительно более высокая концентрация гелия-3 в поверхностных породах Луны, нежели в Земной коре и атмосфере.

 


Прогнозируемые запасы гелия-3 на Луне весьма значительны, и, как показано в ряде работ, доставка гелия-3 с Луны возможна не только технически, но и, по-видимому, энергетически выгодна и экономически оправдана.

 

Существующие в настоящее время концепции внеземной добычи гелия-3 ориентированы на переработку лунного грунта. При разработке таких проектов может использоваться идеология наземного добывающего оборудования с поправкой на размещение его на поверхности Луны, поскольку на Луне существует заметная гравитация, высокий вакуум и возможность получения ночью низких температур. Процесс добычи гелия-3 на Луне должен включать следующие стадии:

— добычу поверхностного слоя грунта;

— десорбцию гелия из лунного грунта путем нагрева;

— разделение изотопов гелия-3 и гелия-4;

— доставку на Землю гелия-3.

 

По оценкам полная затрата энергии на поставку гелия-3 составит 2,4×106 МДж/кг. Если учесть, что при термоядерном сжигании гелия-3 выделяется энергия 6,0×108 МДж/кг, то выигрыш по энергии получается в 250 раз. Этот выигрыш стоит сравнить с тем, что при сжигании урана в ядерных реакторах выигрыш в 20 раз, а при сжигании угля — в 16 раз. Может оказаться так, что по энергетическому эквиваленту лунный гелий-3 дешевле земного каменного угля.

 


При возможности добычи гелия-3 на Луне (или других небесных телах) термоядерная энергетика на основе гелия-3 по сравнению с использованием имеющегося на Земле D-T (дейтерий-тритиевого) топлива позволит:

— примерно в 30 раз снизить нейтронный поток от термоядерного реактора;

— существенно снизить радиационную опасность энергетики, так как освободит от манипуляций с большим количеством радиоактивного трития;

— поднять КПД производства электроэнергии и уменьшить тепловые выбросы;

— сделать термоядерную энергетику экономически выгодной.

Автор: Admin | 2014-10-13 |

Испорченные часы: изучаем возможность путешествий во времени | Научная фантастика или реальность?

Интересуясь, как всегда, новинками техники, я кивнул и с охотой втиснулся в аппарат. Едва я там уселся, профессор захлопнул дверку. У меня зачесалось в носу — сотрясение, с каким печурка закрылась, подняло в воздух невычищенные остатки сажи, так что, втянув их с воздухом, я чихнул. В этот момент профессор включил ток. Вследствие замедления времени мой чих продолжался пять суток, и, открыв дверку, Тарантога нашёл меня почти без чувств от изнеможения.
Станислав Лем, «Звёздные дневники Ийона Тихого, Путешествие двенадцатое»

Как известно, путешествия мои нельзя расположить по порядку, так как происходили они не только в пространстве, но и во времени. Иное из них могло начаться в двадцать шестом столетии, а закончиться в двадцатом. Так что, отправляясь в путь, я уже знал о своих будущих приключениях из старинных преданий, в которых, впрочем, никогда не оказывалось ни слова правды. Читать дальше>>

Автор: Admin | 2014-10-04 | Космос

Технологии и комплексы добычи и переработки полезных ископаемых Луны. Часть I

Предпочитаете думать о вещах более приземленных, чем добыча полезных ископаемых на Луне. И сегодня на повестке вашего дня стоит обустройство кухонной комнаты? Тогда рекомендую Вам купить кухонный стол в спб. Он отлично впишется в любой дизайн, а его функциональность сложно переоценить.



В качестве одной из главных целей производственного освоения Луны является добыча и переработка ее полезных ископаемых. При этом рассматривается не только возможность использования добываемых ископаемых для обеспечения систем жизнедеятельности обитаемых лунных баз и изготовления топливных компонентов ракетных двигателей, но и производство для нужд Земли. В дальнейшем предполагается создание замкнутого производства конечной продукции для построения внеземной космической инфраструктуры, в том числе энергопроизводящей системы для обеспечения Земли из космоса электроэнергией, получения энергии из внеземных полезных ископаемых, выноса в космос энергоемких и вредных производств и т.д.. Считается, что это поможет решить проблему истощения земных энергоносителей и, что не менее важно, снизит экологическую нагрузку на Землю, предотвратит экологические кризисы, связанные с интенсивным развитием наземной энергетики.

 

К задаче первой очереди освоения полезных ископаемых Луны можно отнести производство, накопление и длительное хранение таких расходных материалов, как кислород, водород, метан, вода, аргон, ксенон. Ко второй очереди — добыча и употребление в производстве железа, титана, кремния, алюминия и других материалов. При этом должно предусматриваться как использование этих материалов в качестве полуфабрикатов с транспортировкой их на окололунные, околоземные и даже, при необходимости, наземные производственные комплексы, так и глубокий передел на самой Луне с изготовлением разнообразной продукции.

 


О возможности добычи гелия-3 из лунного грунта. По мнению, утвердившемуся в настоящее время, проблема обеспечения энергоресурсами, начиная со второй половины XXI в., будет решаться с широким применением термоядерной энергии, как возможной альтернативы органическому топливу и ядерной энергии деления. Первым этапом развития термоядерной энергетики будет создание реактора, использующего реакцию дейтерий-тритий (D-T):

D + Т = 4Не(3,5 МэВ) + n(14,1 МэВ).

 

Однако эта реакция имеет существенные недостатки — наличие в составе термоядерного топлива радиоактивного трития и термоядерных нейтронов. Поэтому при реакции синтеза D-T, также как и при реакции деления урана в обычных ядерных реакторах атомных электростанций, облучение образующимися нейтронами приводит к радиоактивности конструкционных материалов термоядерной установки. Это делает термоядерный реактор не менее биологически опасным, чем реактор деления, и тем самым снижает конкурентоспособность «идеи термоядерного синтеза».

 

Учитывая экологические стороны этого вопроса, можно с большой долей уверенности предположить, что после создания термоядерного реактора, использующего реакцию D-T, эволюция термоядерной энергетики пойдет по пути использования экологически более чистой реакции дейтерий — изотоп гелий-3 (D-3He):

D + 3Не = 4Не(3,6 МэВ) + р(14,7 МэВ).

 


 

Преимущество этой реакции синтеза — возможность существенного снижения нейтронного выхода и накопления радиоактивного трития (нейтроны и тритий образуются в результате побочной реакции дейтерий-дейтерий (D-D), однако выход их существенно ниже, чем в реакции D-T). Это и определяет D-3He термоядерный реактор как наиболее экологически чистый источник внутриядерной энергии для целей энергоснабжения человеческой цивилизации.

Автор: Admin | 2014-10-03 |
21 страница из 137« Первая...10...171819202122232425...304050...Последняя »

GIF
Видео
Видео
Все обо всем
Забавно!
Иллюстрированные факты
Искусство
Истории
Все размещенные на сайте материалы без указания первоисточника являются авторскими. Любая перепечатка информации с данного сайта должна сопровождаться ссылкой, ведущей на www.unnatural.ru.