Необычный

Возможности современных средств наблюдения за космическим мусором. Часть III

Ваши волосы потеряли свою естественную красоту и, не дай Бог, начали выпадать? Тогда Вам следует знать, что решить вашу проблему способна маска для роста волос. Только тут, а если более конкретно, то на сайте www.maskadlyavolos.ru, Вы узнаете несколько рецептов приготовления таких масок, и уже через несколько применений сможете ощутить ее целебные свойства!



Рис. 2. Радары «Хэйстэк» и Хэкс

 

ХЭКС (HAX). Ввиду того, что радар «Хэйстэк» предназначен для работы в интересах Министерства обороны, а его отвлечение на мониторинг засоренности ОКП расходует ресурс не по профилю и требует больших средств, в начале 1990-х гг. был построен радиолокатор ХЭКС (Haystack Auxiliary Radar), специально для наблюдения КМ. Территориально он расположен рядом с «Хэйстэком». Его эксплуатация началась в 1994 г., хотя он был вполне работоспособен уже в 1993 г. В 1994 г. он отработал 371 ч с антенной, направленной в зенит. Оба радара («Хэйстэк» и ХЭКС) показаны на рис. 2.

 

ХЭКС очень хорошо дополняет «Хэйстэк», но имеет несколько системных отличий. Он излучает меньшую мощность и, следовательно, менее чувствителен, чем «Хэйстэк». Поскольку работает на более высокой частоте, имеет более широкий луч (почти в два раза), то может обнаруживать среднеразмерные НОКО. При этом он более производителен и дешевле в эксплуатации. «Хэйстэк» из-за больших размеров антенны (и ее инерции) не может после обнаружения цели переключаться на режим слежения, тогда как ХЭКС лишен этого недостатка. У «Хэйстэка» есть еще одно слабое место. Из-за очень узкой диаграммы направленности при наблюдении крупных КО отраженный сигнал может приниматься по боковому лепестку, что вносит искажения (погрешности) при измерении координат цели. ХЭКС, имея диаграмму направленности почти вдвое шире, легче справляется с такими ситуациями.

 

ХЭКС дает дополнительные данные (к измерениям «Хэйстэка») для юстировки модели НАСА оценки размеров ко [Xu et al., 2005]. Но главное достоинство ХЭКСа по сравнению с «Хэйстэком» — его доступность для измерений КМ. «Хэйстэк», например, большую часть зимы работает на Северо-восточную радиообсерваторию (NEROC) в качестве радиотелескопа, т. е. с удаленным передатчиком.

 

Основные характеристики ХЭКС: пиковая мощность 50 кВ, рабочая частота 16,7 ГГц, ширина импульса 2,009 мс, частота повторения импульсов 94,46 Гц, диаметр антенны 12,2 м, количество некогерентных импульсов накопления для обнаружении цели 12 [Settecerry et al., 1999; Settecerry, Stansbery, 1997; Stansbery, Settecerry, 1997].

 


Рис. 3. РЛС «Кобра Дейн»

 

«Кобра Дейн» (Cobra Dane) — национальное радиолокационное средство разведки США, размещенное на о-ве Шемайя, Аляска, на базе ВВС (рис. 3). оно создавалось для сбора разведданных об испытательных пусках советских баллистических ракет в сторону п/о камчатка и Тихого океана. В 1977 г. «Кобра Дейн» (радиолокатор AN/FPS-108), успешно прошло испытания и было передано командованию ПВО. Антенна локатора — фазированная решетка с пассивным электронным сканированием диаметром 29 м, рабочая частота 1215…1400 МГц (L-диапазон, длина волны 23 см). Пиковая мощность 15,4 МВт, излучается 15 360 активными элементами решетки. Главная задача — обнаружение и слежение за межконтинентальными баллистическими ракетами, в том числе запускаемыми с подводных лодок. Выходная информация — координатная и сигнатурная. Предельный размер обнаруживаемого ко ~5 см, так что радар с успехом может использоваться (и неоднократно использовался) для наблюдения КМ. В 1994 г. он был выведен из штата ввиду бюджетных ограничений, но в марте 2003 г. снова введен в состав СККП, что способствовало существенному увеличению объема каталога КО СККП США (более чем на 2000 НОКО) [Small…, 1999; Stansbery, 2004].

 

Кроме американских, в кампаниях IADC использовались и европейские радары.

 


Рис. 4. РЛС TIRA

 

TIRA (Вачтберг, Германия). оператор — FGAN (Research Establishment for Applied Science). Режим работы радара — моностатический. Его антенна — 34-метровый параболический рефлектор в 49-метровом куполе (рис. 1.3.8). В режиме обнаружения и слежения РЛС работает в L-диапазоне (1,333 ГГц) с пиковой мощностью 1 МВт при ширине луча 0,45° по уровню 3 дБ, протяженность импульса составляет 1 мс, частота повторения — 30 Гц. Этот режим позволяет обнаруживать КО размером 2 см на дальности 1000 км. В функции построения изображения радар работает в Ku-диапазоне (16,7 ГГц), пиковая мощность 13 кВт, ширина луча 0,031° по уровню 3 дБ, частота повторения импульсов 55 Гц, разрешение по дальности 15 см. В рамках мониторинга ОКП РЛС использовалась для контроля входа в плотные слои атмосферы крупных КО, таких как «Скайлэб», «Салют-7», «Мир», процессов сближения в космосе и в режиме построения изображений — для контроля целостности кА («Салют-7», «Мир»). [Flury, 2004; Flury et al., 2003].

 


Рис. 5. 100-метровый радиотелескоп в Эффельсберге, Германия

 

Система TIRA/Effelsberg (Германия). Бистатический режим работы. 34-метровая передающая антенна (TIRA, Вачтберг) и 100-метровая принимающая антенна, работающая в парковом режиме (радиоастрономическая обсерватория в Эффельсберге) (рис. 5). Антенны расположены на расстоянии 21 км одна от другой. Частотный диапазон — L.

 

Минимальный размер наблюдаемого КО ~9 мм (для сравнения в моностатическом — 2 см). Начиная с 1993 г. радиолокатор уже провел для ЕКА 14 кампаний по наблюдению RМ в парковом режиме. В них изучались RJ размером 1-10 см в диапазоне высот от 250 до 2000 км. Кампания 2006-2008 гг. была посвящена бистатической конфигурации совместно с радиотелескопом Effelsberg, который после модернизации был оборудован семилучевым приемником L-диапазона. кроме улучшенной чувствительности, позволяющей теперь обнаруживать КО размером менее 1 см, новый многолучевой приемник существенно повысил точность измерения ЭПР цели и параметров ее траектории [IADC_, 2006; Letsch et al., 2009].


Расшифровку всех приведенных в статье условных сокращений смотреть здесь: «Исследование ближнего космоса: условные сокращения».

Автор: Admin | 2012-06-03 |

Возможности современных средств наблюдения за космическим мусором. Часть II

Если Вы хотите уберечь Ваш новенький MacBook от ударов, падений и взглядов нежелательных элементов, тогда настоятельно рекомендую заковать его в кожаную броню сумки Urbano Compact Attache, которая, кроме всего прочего, подчеркнет и Ваш деловой стиль! Приобрести данную сумку Вы сможете только на сайте www.m-house.ua.


Из радаров США, регулярно привлекаемых комитетом IADC к кампаниям наблюдений КМ, наиболее эффективны следующие.

 


Рис. 2. Радиотелескоп обсерватории «Аресибо»

 

«Аресибо». Радиоастрономическая обсерватория в Пуэрто-Рико, расположенная на широте 18° N, — Национальный центр астрономии и ионосферы США (рис. 2). Крупнейший в мире радиотелескоп с 1963 г. (дата ввода) эксплуатируется корнельским университетом США. Диаметр рефлектора 305 м, глубина зеркала 51 м, поверхность сферическая, собирающая площадь 73 000 м2. Рабочий диапазон радиочастот 50 МГц — 10 ГГц (длина волн от 3 см до 1 м). Фокусное расстояние 132,5 м. Для проведения радиолокационных исследований в обсерватории используется передатчик мощностью 500 кВт. В кампаниях по наблюдению КМ использовалась рабочая длина волны радиоизлучения 10 см (частота 3 ГГц).

 


 

Рис. 3. Бистатическая РЛС Голдстоун. Передающая и приемная антенны

 

«Голдстоун» (Goldstone) — бистатический радиолокационный комплекс дальней космической связи НАСА в Южной калифорнии (32,24° с. ш.) — уникальная комплементарная составляющая в системе радаров «Хэйстэк» и ХЭКС, расположенная в Массачусетсе.

 

Комплекс оснащен одним из крупнейших в мире радиотелескопов бистатического режима работы с 35-метровой передающей и 70-метровой принимающей антеннами, разнесенными на 497 м. Передающая антенна ориентирована в направлении 1,5° от зенита, приемная — 1,441° от зенита. Для наблюдения КМ используется радиочастотный диапазон с рабочей длиной волны 3,5 см (частота 10 ГГц). Средняя излучаемая мощность 460 кВ. Ширина луча по уровню 3 дБ составляет 0,021 °. К сожалению, система не может работать в моноимпульсном режиме, что позволило бы определять, как обнаруженная частица КМ проходит относительно биссектрисы луча. Это приводит к неопределенности в измерении ЭПР КО (измеренная ЭПР оказывается меньше истинной) и неточности определения таких орбитальных элементов, как наклонение и эксцентриситет. Тем не менее, система позволяет получать ценную информацию о размере, радиальной скорости и высоте КО. При обработке от 1 до 5 % измерений бракуются как полученные с помощью боковых лепестков. В измерительной кампании 1998 г. за 146 ч работы система обнаружила 3070 КО, т. е. новый объект выявлялся в среднем каждые 3 мин.

 

Предельный размер наблюдаемых КО — 2 мм на дальности 1000 км. Измерения радара используются также для калибровки моделей засоренности, в частности, модели ORDEM. На рис. 3 показан комплекс «Голдстоун» с инфраструктурой, размещенный в пустыне Мохав (верхний снимок), передающая и приемная антенны (два нижних снимка) [IADC., 2006; Matney et al., 1998; Stokely, 2004].)

В Вестфорде, штат Массачусетс, находится Линкольновский комплекс ККП, состоящий из трех радиолокационных станций, управляемый Линкольновской лабораторией Массачусетсского технологического института. Это «Миллстоун», «Хэйстэк» (рис. 4) и ХЭкС. кроме них в Вестфорде есть еще передвижной радар UHF-диапазона и большой стационарный ионосферный радар (тоже UHF-диапазона) с осью, направленной в зенит.

 


РЛС «Миллстоун»

 

«Миллстоун» (Millstone) — узкодиапазонная РЛС, имеет статус привлекаемой к СККП США и используется в основном для обнаружения и наблюдения ВОКО, хотя способна следить и за НОКО. Она дает очень точную координатную информацию по ИСЗ, а также радиолокационные сигнатуры. Рабочий диапазон частот — L.

 


Рис. 5. Линкольновский комплекс ККП

 

«Хэйстэк» (Haystack) — пожалуй, самая именитая РЛС в части мониторинга мелкого и среднеразмерного КМ. Точное название — радиолокатор построения изображений дальнего действия (Long Range Imaging Radar (LRIR)). Дислоцирован в Тингсборо, штат Массачусетс. Его оператор — Линкольновская лаборатория Массачусетсского технологического института, которая выполняет работы в интересах Минобороны США.

 

На рис. 5 показан весь Линкольновский измерительный комплекс, включая радары «Хэйстэк», ХЭКС, «Миллстоун» и ионосферный [Solodyna, 37 Banner, 2000].

 

Радар «Хэйстэк» большой мощности, диаметр тарелочной антенны 36 м, рабочая частота в Х-диапазоне — несущая 10 ГГц (длина волны 3 см), моноимпульсный режим, ширина импульса 1,023 мс, пиковая мощность 400 кВт, частота повторения импульсов 40 Гц, при частоте зондирования 1 МГц, при определении радиальной скорости по Доплеру разрешающая способность — 7,5 км/с, при передаче — правая круговая поляризация, при приеме — правая и левая круговая. Ширина луча 0,05°. Может обнаруживать КО диаметром 1 см на расстоянии 1000 км. Более поздними исследованиями и экспериментами Линкольновской лаборатории была показана возможность повышения чувствительности радара с целью обнаружения частиц размером 0,5 см на расстоянии 1000 км и 0,25 см на высоте полета шаттла [Foster, 2004; Stansbery, 1997].

 

Из-за очень малого объема зондируемого пространства для получения сколько-нибудь представительного распределения КМ, даже в ограниченной области орбит, приходится собирать данные измерений в течение многих часов наблюдения. «Хэйстэк» работает в «парковом» режиме, т. е. луч фиксируется в определенном направлении. Чаще всего вертикально (угол места 90°), но используются и другие углы — 75, 20, 10°. В наблюдениях фрагментов разрушения китайского спутника «Фен-гюн-1С» использовались фиксированные углы места от 22 до 50° [IADC…, 2006; Johnson et al., 2007; Settecerry et al., 1997; Stansbery et al., 1993].

 


Рис. 4. Измерения «Хэйстэка» и моделированное облако осколков

 

Возможности «Хэйстэка» демонстрирует рис. 4, на котором представлены данные наблюдений при прохождении через его парковый луч облака осколков ИСЗ «космос-2251» [Matney, 2010]. По оси абсцисс отложено время, по оси ординат — доплеровская радиальная скорость обнаруженных осколков. Серые полосы слева и справа — периоды времени, когда «Хэйстэк» не проводил измерений. Зеленые точки — КО, по мнению экспертов не относящиеся к данному облаку осколков. Черные точки — КО, входящие в облако осколков. Красные точки — моделированное облако осколков столкновения.


Расшифровку всех приведенных в статье условных сокращений смотреть здесь: «Исследование ближнего космоса: условные сокращения».

Автор: Admin | 2012-06-02 |

Возможности современных средств наблюдения за космическим мусором. Часть I

Наша жизнь кажется настолько тусклой и унылой на фоне ярких панорам космических пейзажей, которыми в последнее время нас так щедро потчует НАСА. Однако, при должном желании, даже самую обычную комнату можно превратить в полную тайн, загадок и ярких открытия частичку бескрайнего космического пространства! Все, что Вам для этого потребуется — декоративные ленты, из которых с легкостью можно выложить целый инопланетный мир, в котором хватит места для россыпи звездных скоплений и вальяжно обращающихся вокруг желтого карлика планет, многие из которых вполне могут оказаться обитаемыми!
Внести в свою жизнь частичку космического волшебства Вы сможете, если прямо сейчас посетите сайт www.radost.su и приобретете светящиеся декоративные ленты.



Орбита нашей планеты напоминает гигантскую свалку из отходов развития космонавтики

 

Самый банальный, но и самый надежный (относительно гарантированный) способ получения информации о КМ — непосредственное наблюдение его с помощью разнообразных средств. К сожалению, с помощью существующих средств обнаруживается и каталогизируется лишь небольшая доля общей популяции КО, в том числе КМ.

 

Средства наблюдения, используемые СККП, способны обнаруживать и контролировать в штатных режимах в основном ко размером более 10.20 см. Проводятся исследования с целью снижения этого порога. Как выяснилось, это возможно при использовании средств контроля в нештатных (экспериментальных) режимах. Например, при проведении космического эксперимента ODERACS-1 в 1994 г. РЛС «Дон-2Н», работая в нештатном режиме, раньше американских средств контроля обнаружила сферу с наименьшим диаметром ~5 см на высоте ~352 км (при наклонной дальности до цели 500…800 км) [оружие…, 2008; Batyr et al., 1995; Radar…, 1996].

 

Радиолокационные средства наблюдения (наземного базирования)

 

РЛС, ввиду присущих им особенностей, предпочтительнее использовать для контроля низких орбит. Их достоинства по сравнению с оптическими средствами:

• возможность наблюдения вне зависимости от времени суток, погодных условий, естественной освещенности цели;

• высокая производительность и, в частности, обнаружительная способность, определяемая рабочей частотой радара, излучаемой мощностью, параметрами антенны и т. п.;

• возможность одновременного контроля большого количества целей (до нескольких сотен);

 

• допускаются самые высокие скорости пересечения целью зоны действия радара;

• более простое, чем в оптических средствах, программно-алгоритмическое обслуживание процесса измерений.

 

Недостатки радиолокационных средств:

• практически невозможны передислоцируемые варианты;

• высокая стоимость создания и обслуживания РЛС;

• чрезмерно большое потребление электроэнергии во время работы;

• экологическая небезопасность;

• возможная неоднозначность измерений, в частности, при определении размеров наблюдаемого КО;

• зависимость чувствительности от четвертой степени расстояния до наблюдаемой цели.

 


Рис. 1. РЛС «Дон-2Н»

 

Из действующих отечественных РЛС для наблюдения КМ, пожалуй, более всего подходит многофункциональная РЛС кругового обзора «Дон-2Н» (рис. 1), предназначенная для обнаружения баллистических целей, их сопровождения (до 100 целей), определения координат и наведения противоракет (нескольких десятков) при контроле воздушного пространства России и стран Содружества. [Гаврилин, 2008; Диалектика…, 2011; оружие…, 2004, 2008]. Это единственная станция в мире из принимавших участие в космическом эксперименте ODERACS*, которая, как уже упоминалось ранее, первой обнаружила самую маленькую стальную сферу и передала измерения в Джонсоновский космический центр НАСА [оружие…, 2008; Batyr et al., 1995; Radar…, 1996]. После этого эксперимента НАСА порекомендовали привлечь станцию «Дон-2Н» к наблюдению КМ.

 

Это моноимпульсная радиолокационная станция сантиметрового диапазона с крупномодульными фазированными активными антенными решетками (ФАР), электронным управлением характеристиками и положением в пространстве передающей и приемной диаграммами направленности, цифровой обработкой радиолокационных сигналов. В 1989 г. станция была принята на вооружение, а в 1996 г. — поставлена на боевое дежурство.

 

Радиолокационная станция «Дон-2Н» обеспечивает одновременный обзор всей верхней полусферы в зоне ответственности комплекса. Она отличается высокой помехозащищенностью, адаптивностью к условиям обстановки, высокой информативностью, модульностью построения и высокой степенью автоматизации. В настоящее время «Дон-2Н» входит в состав системы ПРО центрального промышленного района А-135 и может использоваться в системах ПРН и ККП.

 

После обнаружения целей станция их сопровождает, автоматически отстраивается от помех и селектирует ложные объекты. Станция такого типа развернута и на полигоне Сары-Шаган (казахстан), но в усеченном варианте.

 

В мирной обстановке РЛС «Дон-2Н» работает в режиме малой излучаемой мощности [Диалектика…, 2011; оружие…, 2004, 2008].

 


*Космический эксперимент ODERACS (Orbital Debris Radar Calibration Spheres), целью которого были проверка обнаружительных возможностей и калибровка РЛС и некоторых оптических средств, проводился NASA в два этапа, соответственно, в 1994 и 1995 гг. (ODERACS-1 и ODERACS-2). С борта МКК «Шаттл» выбрасывались металлические сферы трех размеров — 6, 4 и 2 дюйма в диаметре (соответственно, ~15, 10 и 5 см) — а также диполи. В работе по сферам принимали участие и некоторые российские РЛС UHF-, S- и C-диапазонов. Они обнаружили и сопровождали 15- и 10-сантиметровые сферы с первого их прохождения через зоны действия станций, за исключением РЛС UHF-диапазона, которая устойчиво наблюдала 10-сантиметровые сферы только после снижения порога чувствительности и установки специального программного шумоподавляющего фильтра. 5-сантиметровые сферы обнаружили и сопровождали только РЛС S- и C-диапазонов. Особый интерес представляют результаты работы многофункциональной РЛС ПРО кругового обзора C-диапазона «Дон-2Н». Ее частотный диапазон и потенциальные характеристики практически идеально соответствовали задачам эксперимента — оценить возможности РЛС по обнаружению малоразмерных КО и измерению их ЭПР. В работе по пятисантиметровым сферам использовалась нештатная (экспериментальная) программа с некогерентным накоплением эхо-сигнала. В каждом прохождении сферы сопровождались вплоть до выхода из зоны действия. По результатам работы обе стороны (американская и российская) пришли к выводу, что РЛС «Дон-2Н», работая в указанном режиме, надежно обнаруживает КО размером до 5см в секторе 100…200° на дальности 500…800км и устойчиво сопровождает их до границы 900…1500км. РЛС может быть рекомендована в качестве адекватного сенсора для исследования и мониторинга засоренности низких орбит ОКП малоразмерным техногенным КМ (до 5 см). Для слежения за более мелким КМ или увеличения предельной дальности гарантированного обнаружения может быть использовано более продолжительное некогерентное накопление большего числа эхо-сигналов — до 100 и более, тогда как в эксперименте ODERACS-1 накапливалось не более 10 эхо-сигналов. Для повышения эффективности обнаружения может потребоваться разработка более совершенных поисковых режимов, теоретическая основа для которых разработана в статьях [Вениаминов, 1984, 2010; Veniaminov, 1993]. В процессе проведения ODERACS-1 Россия и США обменивались измерительной информацией, точность которой при сравнении оказалась примерно одинаковой [Batyret al., 1995; Potter et al., 1996].

 

Эксперимент ODERACS не был оригинален. Еще до его проведения в СССР в 1993 г. был осуществлен аналогичный эксперимент «Пион» по исследованию вариаций плотности верхней атмосферы. Дело в том, что определение и прогнозирование вариаций плотности атмосферы — самое слабое место в прогнозировании движения НОКО. Без их корректного учета точность предсказания положения НОКО на сколько-нибудь длительный и не очень длительный срок резко падает. Поэтому баллистики используют любую возможность уточнения параметров верхней атмосферы. Итак, две пассивные калибровочные сферы «Пион-5» и «Пион-6» были выведены на низкую орбиту с помощью КА «Ресурс-Ф». Время их орбитального существования составляло 22 и 23 дня. В течение этого периода российская СККП вела регулярные наблюдения сфер. На основании полученных измерений рассчитывались их точные координаты и значения баллистического коэффициента. Эксперимент помог определить более точно текущие вариации плотности атмосферы и, как следствие, существенно повысить точность прогнозирования движения НОКО во время эксперимента. Интервал прогноза составлял от 1 до 6 сут. Для расчетов плотности атмосферы использовалась ее динамическая модель ГОСТ-25645.115-84. Апостериорный анализ всех данных эксперимента подтвердил целесообразность оперативного определения вариаций плотности атмосферы и использования результатов для улучшения точности прогнозирования орбит. Полный набор оценок вариаций, полученный в различных геогелиофизических условиях, имеет независимую научную ценность и может быть использован для построения более точной модели плотности атмосферы. [Batyr, 1993a].


Расшифровку всех приведенных в статье условных сокращений смотреть здесь: «Исследование ближнего космоса: условные сокращения».

Автор: Admin | 2012-06-02 |

Система контроля космического пространства США. Часть II

Ярким украшением Вашей новой квартиры станут радиусные шкафы, являющиеся на данный момент эталоном современного стиля. Заказать такие шкафы Вы сможете только на сайте www.dormebel.ru.



Часть ведущего передатчика радиолокационного комплекса NAVSPASUR

 

ВМФ имел в своем распоряжении очень мощный радиолокационный комплекс NAVSPASUR, существовавший с 1960-х гг. он состоял их трех передающих (излучающих) и шести приемных РЛС, размещенных по дуге через всю южную часть территории США. Это был полный мультистатический радиолокационный интерферометр непрерывного излучения в частотном диапазоне VHF. каждый приемник мог принимать сигнал, посланный любым передатчиком комплекса и отраженный от КО. Но система состарилась, и была принята программа ее модернизации. Она включала переход на S-диапазон (~3,5 ГГц), повышение чувствительности (обнаружение КО размером 5 см на высоте 1000 км). Точность осталась прежней, емкость каталога — до 100 000 ко. В 2003 г. выполнение этой программы вместе с функциями ККП, персоналом и фондами было передано из ВМФ в ВВС США [Schumacher, 2007]. Есть сведения, что такой каталог уже имеется у модернизированной СККП США. В нем содержится информация и о более мелких КО.

 

В то же время, ЦККП, базировавшийся в горе Шиен, в августе 2007 г. переведен в район авиабазы Ванденберг в калифорнии и переименован в объединенный центр космических операций (Joint Space Operations Center (JSOC)).

 

В июне 2009 г. ВВС США выделили 90 млн. долларов на три контракта с компаниями «Локхид Мартин», «Рейтеон» и «Нортроп Грумман» по разработке концепции S-диапазонного радиолокационного «забора», который по замыслу существенно улучшит возможности СККП США как в отношении глобальности покрытия низкоорбитальной и средневысотной областей ОКП, так и в способности обнаруживать КО размером в несколько сантиметров. Эта система будет размещена в трех географически разнесенных местах, в каждом из которых должны находиться приемно-передающая пара РЛС. Начало функционирования первой пары планируется на 2015 г. [Lockheed…, 2009; Morales, 2009; Space…, 2010; Scully, 2007; US Strategic…, 2007].

 


Рис. 2. КА «MSX» (прототип SBSS)

 

Определенный вклад в информационный поток СККП США вносил экспериментальный космический сенсор видимого диапазона (Space Visible Sensor — SVS), выведенный в 1996 г. на борту ИСЗ MSX (Midcourse Space Experiment), который завершил свою миссию в июне 2008 г. (рис. 2) [Butler, 2008; Space…, 2010; United…, 2010].

 

Эксперимент плавно перерос в разрабатываемую СККП космического базирования (SBSS — Space Based Surveillance System) с целью расширения возможностей обнаружения, слежения и идентификации элементов КМ 27 на ГСО [Space…, 2008, 2010].

 

Но это не главная цель SBSS. Поскольку ее хозяин — Министерство обороны США, она позиционируется как «космическая система с оптическими сенсорами на борту КА, предназначенная для слежения и идентификации КА военного назначения в глубоком космосе с целью обеспечения оборонительных и наступательных противокосмических операций» [Space., 2010]. Запуск первого КА SBSS неоднократно переносился. Последний раз он намечался на 8 июля 2010 г., но также был отложен на неопределенный срок из-за проблем с РН «Минотавр-IV». На программу выделено 824 млн. долларов. Система из нескольких кА будет оснащена оптическими телескопами и способна контролировать каждый спутник на ГСО по крайней мере 1 раз в 24 ч.

 

Вообще-то, в США разрабатываются две СККП космического базирования. Об одной мы только что рассказали. Вторая — «микро-СККП», состоящая из наноспутников, называется АНГЕЛС (ANGELS — Autonomous Nanosatellite Guardian for Evaluating Local Space, т. е. Автономная охранная система для мониторинга локального космоса). Ее КА смогут приближаться к геостационарным КА и проводить их инспекцию с помощью бортового телескопа. Они также будут оборудованы датчиками контроля облучения их радаром. Эти системы помогут США существенно расширить объем каталога КО и повысить его точность [US Air___, 2010].

 

Несмотря на принадлежность СККП США военному ведомству, ее несекретные данные доступны всем, вовлеченным в решение проблем КМ, и, в первую очередь, НАСА, ЕКА и IADC. Другие операторы, в том числе научные учреждения, могут использовать данные каталога ко СККП США на коммерческой основе по контрактам через программу «коммерческие и зарубежные потребители». Пилотный проект получения такой информации через вэб-сайт был запущен в 2004 г. Уже зарегистрировано более 25 000 пользователей этой программы [Bureaucracy., 2008; Space…, 2010; Space Surveillance…, 2010].

 

В обеих СККП (российской и американской) РЛС используются для наблюдения за КО, расположенными преимущественно на низких высотах, а оптические и электронно-оптические — на высоких. Хотя СККП США располагает и радарами глубокого зондирования космоса для контроля ГСО.

 

С помощью радиотехнических средств получают в основном некоординатную информацию только по действующим, более того, излучающим ИСЗ и преимущественно по целеуказаниям. Режим контроля космоса можно назвать режимом «по заявкам в допустимые интервалы времени». Иными словами, ОКП не наблюдается непрерывно и не во всех своих областях. КО могут обнаруживаться, теряться и находиться снова. Каталоги ко обеих СККП содержат информацию об объектах размером более 10.20 см, хотя в последние годы они заметно расширяются в сторону меньших размеров.


Расшифровку всех приведенных в статье условных сокращений смотреть здесь: «Исследование ближнего космоса: условные сокращения».

Автор: Admin | 2012-05-31 |

Система контроля космического пространства США. Часть I

Хотите зарабатывать миллионы, не отходя от своего ноутбука? Тогда Вам стоит прямо сейчас посетить сайт для заработка в интернете acdx.ru, предлагающий интересный и, что самое главное, легкий способ повышения Вашего материального благосостояния!



Как и российская СККП, она наряду со специализированными СН, использует также средства других систем и организаций, которые привлекаются «по-возможности» и «по мере необходимости». На нее работают около 30 радаров и оптических средств, размещенных на 16 площадках [Improving…, 2006; Space…, 2010].

 

Средства наблюдения, используемые в интересах КПП, делятся на три категории: специализированные (dedicated), задача которых — контроль космического пространства; сотрудничающие (collateral) — СН космического командования ВВС США, предназначенные для предупреждения о ракетном нападении; привлекаемые (contributing), принадлежащие другим государственным ведомствам и частным организациям и поставляющие данные наблюдений для СККП по контрактам.

 


Американский радар Cobra Dane

 

Специализированные: узкодиапазонные радары частотного UHF-диапазона модернизированной системы NAVSPASUR (с перспективой перехода на радары S-диапазона) и Эглин; с 2003 г. радар L-диапазона Cobra Dane (о-в Шемайя, Аляска) [Stansbery, 2004]; электронно-оптические AMOS/ MOTIF (о-в Мауи, США), Socorro (Нью-Мексико), MOSS (Морон, Испания), Диего Гарсиа (одноименный остров).

 

Сотрудничающие: радары UHF-диапазона: Клир, Бил, Паркс, Туле (Гренландия), отис, Файлингдейлс Великобритания).

 

Привлекаемые: ALTAIR (UHF- и VHF-диапазоны), TRADEX (L- и S-диапазо-ны), ALCOR (C-диапазон), MMW (Ka- и W-диапазоны), кайена Пойнт (С-диапазон) — все пять на островах в Тихом океане; Миллстоун (L-диапазон), «Хэйстэк» (X-диапазон), хЭкС (Ku-диапазон).]

 

Есть также средства пассивного обнаружения бортовых радиосигналов, т. е. средства радиотехнического контроля (PRF) [Veniaminov et al., 2007].

 


Рис. 1. Пост ГЕОДСС на о-ве Диего Гарсиа

 

Важная составляющая американской СККП, которая вносит значительный вклад в контроль космоса, — наземный электронно-оптический комплекс зондирования глубокого космоса ГЕОДСС (GEODSS — Ground-based Electro-Optical Deep Space Surveillance). В свое время он заменил устаревшие камеры Бейкер-Нанн. Сегодня действуют три штатных поста этого комплекса: в Сокорро, Нью-Мексико, на о-ве Мауи, Гавайи, и на о-ве Диего Гарсиа, британская территория в Индийском океане (рис. 1). Существовала также станция в Южной Корее, но она была закрыта в 1993 г. по причинам смога от ближайшего города, неблагоприятных климатических условий и больших расходов на содержание. Есть еще передислоцируемый телескоп на американской авиабазе Морон в Испании — по сути, дочерняя станция комплекса ГЕОДСС.

 

Комплекс ГЕОДСС контролирует высоты от 4500 км до геосинхронных орбит и выше. каждый пост располагает тремя телескопами с апертурой 1,02 м и полем зрения 2°, оснащенными ПЗС-камерами и наблюдает за ночь более 3000 ко [United…, 2010].

 

СККП США уверенно обнаруживает и сопровождает НОКО размером более 10 см. Центр контроля получает до 500000 измерений ежедневно. В 2010 г. объем официального каталога СККП США составлял более 21 000 ко [Space., 2010]. Раньше этот каталог, в ограниченном объеме и с заниженными точностями элементов орбит, был в свободном доступе в Интернете. С 2004 г. США ограничили этот доступ в интересах национальной безопасности [National…, 2003; Space…, 2010].

 

Основные функции СККП США следующие:

• предсказание места и времени входа КО в плотные слои атмосферы;

• предотвращение ложных тревог в случаях, когда входящий в атмосферу КО может восприниматься радарами как ракетное нападение;

• определение текущего положения КО и параметров его орбиты и предсказание будущего значения;

• обнаружение новых техногенных объектов в космосе;

• ведение динамического каталога техногенных КО;

• определение государственной принадлежности КО, входящего в атмосферу;

• информирование НАСА о КО, представляющих угрозу для полетов МКК «Шаттл», действующих ИСЗ и МкС.

 

Т.о. задачи российской СККП и СККП США во многом схожи, однако есть и различия, в том числе в приоритетах задач.

 

До 2003 г. функции американской СККП были как в ведении ВВС США, так и их военно-морских сил. Средства контроля тоже делились между этими ведомствами. Раньше СККП США имела два ЦККП — основной в горе Шиен в штате Колорадо и запасной (принадлежавший ВМФ США) в Дальгрене штата Вирджиния [Chamberlain, Slauenwhite, 1993]. Функции СККП, прежде всего в части получения и обработки измерительной информации также были разделены. Основной ЦККП отвечал за координатную (позиционную) информацию и слежение за ко, а запасной — за некоординатные данные и идентификацию и распознавание ИСЗ. Тем не менее, оба центра в конце концов владели и той, и другой информацией.


Расшифровку всех приведенных в статье условных сокращений смотреть здесь: «Исследование ближнего космоса: условные сокращения».

Автор: Admin | 2012-05-31 |

Классификация околоземных орбит. Часть III

Обожаете смотреть фильмы и сериалы в интернете, тогда рекомендую Вам flash player для android скачать, который превратит ваш мобильный телефон в настоящий мультимедийный центр. Обзавестись этой программой Вы сможете на сайте www.androtop.org.



КА «Ландсат-7». Его основная и единственная миссия — спутниковая съемка земной поверхности.

 

Переводятся на свои орбиты захоронения КА и с других классов орбит. Так, в 2001 г. 19-летний американский «Ландсат» с 705-километровой рабочей орбиты переведен на орбиту ниже 600 км. В 2005 г. два списанных КА НАСА ERBS и UARS, пролетавшие до этого 21 г. и 14 лет соответственно, и продолжавшие работать на орбитах ниже 600 км, были «опущены» еще ниже, где время их существования сократилось до 25 лет. Американский военно-морской ИСЗ GFO (из серии «Геосат»), запущенный в 1998 г. для океанографических исследований на орбиту с высотой 800 км, в ноябре 2008 г. переведен на орбиту 455×785 км, с которой войдет в атмосферу не ранее, чем через 25 лет. В июле 2009 г. французский 19-летний ИСЗ SPOT-2 с рабочей орбиты высотой 825 км с помощью 11 маневров переведен на орбиту захоронения 575×795 км, где просуществует пассивно не более 25 лет. То же самое сделали с его предшественником SPOT-1 в ноябре 2003 г. [Monheim et al., 2009].

 

Перемещение отработавшего КА в область «захоронения» уменьшает риски на рабочих орбитах, но увеличивает их на орбитах захоронения. Причиной могут быть не только столкновения, но и взрывы ко из-за «энергетических» остатков на борту (горючего, аккумуляторов и т. д.). И в том и другом случаях следствием могут стать многочисленные осколки, способные пересечь рабочие орбиты. Этому способствует и тенденция роста эксцентриситета, в частности, у средневысоких орбит. Поэтому необходимо при выводе ИСЗ на орбиты захоронения минимизировать начальный эксцентриситет таких орбит и выбирать конфигурацию орбиты захоронения, минимизирующую его рост. Вместе с тем, практикуемое сейчас пассивирование энергетических остатков уменьшает вероятность взрывов на орбитах захоронения. Это особенно актуально для высоких орбит, где взрыв или столкновение могут породить множество осколков, орбиты которых способны эволюционировать далеко за переделы орбиты взрыва. При этом время их существования на высоких орбитах достаточно велико. На ГСО оно может достигать миллионов лет. На рис. 2 [Friesen et al., 1992] показано количественное влияние взрыва на ГСО на образование дополнительных потоков крупных осколков (размером > 10 см) на близких высотах. Аналогичную зависимость (ежегодное приращение плотности потока осколков в зависимости от разности высот) можно распространить и на случай взрыва на орбите захоронения вблизи ГСО. Из рисунка видно, что чем дальше орбита захоронения от начальной, тем меньше фрагментов разрушения, если оно произойдет на орбите захоронения, достигнет начальной орбиты.

 


Рис. 2. Расчетный поток из 500 осколков размером более 10 см от взрыва КО на высоте ГСО

 

Перевод КА на орбиту захоронения естественно связан с определенными затратами. Во-первых, КА и РН должны иметь соответствующие системы управления двигателем и ориентацией. Во-вторых, для совершения такого маневра необходимо предусмотреть дополнительный объем топлива, а это приходится делать либо за счет уменьшения массы выводимой на орбиту полезной нагрузки, либо за счет уменьшения расхода топлива на операции по основной рабочей программе (например, для корректировки орбиты). При расчете этого дополнительного объема топлива обнаруживается следующая закономерность: чем выше рабочая орбита и, соответственно, орбита захоронения, тем меньше требуется топлива для осуществления маневра с целью изменения высоты орбиты КА на одну и ту же величину. Эта закономерность объясняет и тот факт, что при взрыве на разных высотах разлет осколков взрыва происходит по-разному. На больших высотах образовавшиеся осколки «захватывают» более широкий диапазон новых орбит, чем на низких, при одной и той же мощности взрыва и при тех же начальных скоростях отделения фрагментов.

 


Рис. 3. Приращение скорости, необходимое для вывода ИСЗ на орбиту захоронения (для трех классов орбит)

 

На рис. 3, подтверждающем эту закономерность, показано для трех типичных классов орбит необходимое изменение скорости кА, требуемое для перевода его на орбиту захоронения, отстоящую от рабочей на указанную на оси абсцисс величину [Orbital___, 1995].

 

В свое время были и другие предложения по проблеме захоронения ИСЗ в конце их активной жизни. Например, отбуксировывать их в так называемые стабильные точки на ГСО, расположенные на 75° в. д. и 105° з. д. Рассматривалась возможность переводить геостационарные ко на геосинхронную орбиту в плоскости Лапласа с наклонением 7,3°, где действия главных возмущений компенсируют друг друга. В результате КО, движущиеся по этой орбите, имеют тренд оставаться на ней, а их относительные скорости составляют всего несколько метров в секунду, т. е. практически не опасны в случае столкновений. Однако у этих вариантов немало и недостатков. Наиболее удовлетворительным со многих точек зрения остается перевод ко на орбиту захоронения в той же экваториальной плоскости вверх или вниз. Показано, что минимальное расстояние орбиты захоронения, обладающей достаточной эффективностью, равно 300 км вверх [Chobotov, 1990; Yoshikawa, 1992].

 


Вместе с тем перевод геостационарных КО на орбиту захоронения не дает радикального решения проблемы «очищения» ГСО. Он лишь временно снижает «плотность» риска столкновения, а его практическая ценность не так уж высока в виду и без того малой вероятности столкновений на ГСО в настоящее время [Orbital___, 1995]. Тем не менее, оценка «не так уж высока» имеет количественную меру: более 40 взрывов и серьезных (позволивших их обнаружить по анализу позиционных измерений) столкновений на ГСО [Sochilina et al., 1998].

 


Рис. 3. Распределение КО по высоте апогея (в диапазоне высот 100…3000 км). Общее количество КО 19 377 (2010)

 


Рис. 4. Распределение КО по высоте апогея в диапазоне высот 3000…40 000 км. Общее количество КО 19 377 (2010)

 

Наиболее интенсивно используемые в настоящее время орбитальные области — самые низкие от 100 до 800 км, орбиты с высотами от 900 до 1000 км и от 1400 до 1500 км; средневысокие в окрестности 20 000 км; высокоэллиптические и, наконец, геостационарная орбита. Гистограмма распределения КО по высотам приведена на рис. 3. и 4.

 

Мониторинг ОКП бывает затруднен не только ввиду многочисленности КО малых размеров и/или большой удаленности большинства из них, плохой отражательной способности и/или фазы освещенности, но и из-за маневров и орбитальных коррекций многих действующих КА. Методы поиска КА после маневра или орбитальной коррекции описаны в статье [Вениаминов, 2010].

 

Приведенная классификация не претендует на полноту и универсальность, да идеальной классификации и не существует. Некоторые классы пересекаются между собой: низкие орбиты и солнечно-синхронные, геосинхронные и геостационарные. Приведенные классы могут не покрывать всего многообразия околоземных орбит, например, в зависимости от того, что в каждом конкретном случае понимается под классом средневысоких орбит или какие орбиты относить к высоким и сверхвысоким.


Расшифровку всех приведенных в статье условных сокращений смотреть здесь: «Исследование ближнего космоса: условные сокращения».

Автор: Admin | 2012-05-29 |

Классификация околоземных орбит. Часть I

Только на сайте www.goldlass.ru Вы найдете заговоры на любые случаи жизни, воспользовавшись которыми Вы с легкостью сможете найти свою любовь, продать автомобиль и даже сдать экзамен!



Нет единого мнения относительно классификации орбит. Начать хотя бы с того, что нет однозначного понимания границы, где заканчивается воздушное пространство и начинается космос. Многие специалисты считают, что космос начинается с высоты 100 км над Землей. Однако до сих пор отсутствуют официальные определения и обоснования этой границы [Dunk, 2006].

 


На этой фотографии, сделанной в 2006 году астронавтом НАСА Даниэлем Бурбэнком (Daniel Burbank), запечатлен космический мусор, неопознанного происхождения, двигающийся по земной орбите на огромной скорости

 

В большинстве случаев (в том числе, в формате обсуждений в IADC) принято различать следующие орбитальные категории:

  • низкие орбиты (LEO — Low Earth Orbits);
  • солнечно-синхронные орбиты (SSO — Sun-Synchronous Orbits);
  • средневысотные орбиты (MEO — Medium Earth Orbits);
  • круговые полусинхронные орбиты (CSO — Circular Semisynchronous Orbits);
  • высокоэллиптические орбиты (HEO — Highly Elliptical Orbits); геостационарная орбита (ГСО) (GEO — Geostationary Orbit);
  • геосинхронные орбиты (GSO — Geosynchronous Orbits); высокие орбиты (HO — High Orbits);
  • сверхвысокие орбиты (SHO — Super-High Orbits); орбиты захоронения — (DO — Disposal Orbits).

 

Эта классификация условно представлена блок-схемой на рис. 1. наличие пунктирных линий обязано неоднозначности определения почти всех классов, в первую очередь средневысотных и высоких орбит.

 


Рис. 1. условная классификация околоземных орбит

 

Категория орбит LEO включает диапазон высот от 100 км (иногда немного ниже) до 2000 км (стандарт НАСА и IADC). У разных экспертов верхний предел колеблется от 1500 до 3000 км, редко до 5000 км, но бывает и 6000 км.

 

Солнечно-синхронная орбита (SSO) — низкая орбита с попятным движением, в котором плоскость орбиты прецессирует с той же скоростью, с какой Земля обращается вокруг Солнца. КА на такой орбите ежедневно наблюдает одну и ту же освещенность Земли.

 

Средневысотные орбиты (MEO) присутствуют не во всех классификациях экспертов, а там, где они имеют место, могут охватывать диапазоны высот от 5000 до 10 000 км [Space., 2008], от 1500 или 2000 до 20 000 км или до ГСО, иногда это некоторая область около 20 000 км [Jenkin, McVey, 2009]. Есть и другие варианты. Короче говоря, у разных экспертов нет единого мнения относительно границ этого класса орбит.

 

Круговые полусинхронные орбиты (CSO) исторически используются навигационными системами NAVSTAR, GPS, GLONASS, Galileo и характеризуются периодом обращения ИСЗ, равным ~12 ч. Средняя высота такой орбиты ~20 200 км. в некоторых классификациях эти орбиты включаются в состав средневысотных [Rossi et al., 2009]. Эта орбитальная область все более интенсивно эксплуатируется по мере заполнения ее навигационными КС: к американской GPS (ранее NAVSTAR) и российской GLONASS добавились европейская Galileo и китайская Compass.

 

Высокоэллиптические орбиты (HEO) имеют эксцентриситет более чем 0,5.0,6 (в разных классификациях). Этот класс орбит включает такие подклассы, как орбиты типа кА «молния» и переходные эллиптические орбиты (GTO — Geostationary transfer orbits).

 


Космический аппарат «Молния-1»

Орбиты типа КА «Молния» — высокоэллиптические орбиты с наклонением 63…65°, периодом около 12 ч и апогеем в северном полушарии. Эти орбиты всегда использовались для обеспечения связи и функций раннего предупреждения о ракетном нападении.

 

Переходные эллиптические орбиты (GTO) с апогеем на геостационарной орбите и перигеем в области низких орбит используются для перевода ИСЗ с низкой орбиты на геосинхронную и, в частности, геостационарную. Ракеты-носители (РН), применяемые для осуществления такого перехода, остаются на этих орбитах после того, как полезный груз отделится и выйдет на ГСО или другую геосинхронную орбиту. время существования таких ко составляет от месяца до более чем 100 лет [Johnson, 2004a].

 

Высокие орбиты (HO) — пожалуй, самый неопределенный класс, так как для отнесения к нему могут быть использованы самые разные факторы. Например, отсутствие влияния атмосферы на движение ИСЗ, наличие заметных лунных и солнечных возмущений, удаленность от наземных средств наблюдения и т. п. Даже в пределах любого из этих факторов существует значительная неопределенность. В частности, верхняя граница атмосферы — довольно условное понятие (500, 600, 700, 800 км… ?). При исследовании влияния Луны и Солнца на движение КО к высоким относят орбиты, для математического описания которых таким влиянием пренебречь нельзя. Это орбиты высотой более 10 000.20 000 км (здесь нижняя граница считается неопределенной). Более того, влияние Луны и Солнца и даже сам характер этого воздействия на движение ИСЗ существенно зависит от пространственной ориентации плоскости его орбиты относительно этих небесных тел. С точки зрения невозможности устойчивого контроля движения ИСЗ наземной сетью РЛС, к высоким относят орбиты с периодом >3 ч и, в частности, высокоэллиптические с перигеем в южном полушарии [вениаминов, 2010]. Кстати, аналогичный подход к определению высоких орбит принят в Линкольновской лаборатории массачусетсского технологического института [Solodyna, Banner, 2000], где КО считается высоким, если период его обращения превышает 225 мин., что соответствует высоте 5000 км. Есть и другие точки зрения [Jenkin, McVey, 2009; Johnson, 2006; Space., 2008].


Расшифровку всех приведенных в статье условных сокращений смотреть здесь: «Исследование ближнего космоса: условные сокращения».

Автор: Admin | 2012-05-29 |

Космический мусор. Часть II

Если Вы попали в аварию на автомобиле, то не стоит отчаиваться, все поправимо, тем более, что решением вашей проблемы займется лучший адвокат по дтп, который либо докажет вашу невиновность, либо сведет к минимуму вашу ответственность за совершенное дорожно-транспортное правонарушение. За более подробной информацией обращайтесь по адресу адвокатподтп.рф.



В настоящее время, на орбитах вокруг Земли реально функционирует около 850 КА, из которых 36 % на низких орбитах, 6 % на средних, 48 % на геостационарной и 10 % на высокоэллиптических и сверхвысоких орбитах [Space., 2008]. Они используются для решения задач связи, навигации, метеорологии, геодезии, геофизики, астрономии, астрофизики, зондирования поверхности Земли, космического материаловедения, калибровки наземной и космической аппаратуры, проведения биологических экспериментов, обслуживания различных наземных и космических проектов (научных, социальных, экономических и др.), обеспечения национальной и коллективной безопасности.

 

Вместе с расширением освоения ОКП усиливается и его техногенное засорение и противодействие второго первому. На это не сразу обратили внимание, а когда обратили, было уже несколько поздно. к сожалению, очень долго господствовало мнение, что космос необъятен, безграничен и выдержит все. и за такое представление о нем как о бездонной бочке, в которую можно безнаказанно сваливать мусор в любом количестве, человечество поплатилось близким к катастрофическому состоянием техногенной засоренности ОКП.

 

Это происходило, несмотря на то, что многие группы специалистов во всем мире были всерьез озабочены этой проблемой. Ею занимались в космических агентствах разных государств, практически во всех Академиях наук, во многих научных и конструкторских учреждениях, а также в военных организациях. Но эти группы и сообщества были структурно разрознены, хотя их участники и общались между собой.

наконец, сама собой созрела идея объединения всех специалистов, занимающихся этой проблемой. В 1993 г. официально оформился международный орган, единственной задачей которого было всестороннее изучение проблемы техногенного засорения ОКП и выработка мер противодействия этому процессу — межагентский координационный комитет по проблеме техногенного засорения космического пространства — Inter-Agency Space Debris Coordination Committee (IADC).

 

IADC — наиболее авторитетная международная организация, деятельность которой полностью посвящена проблеме техногенного засорения космического пространства и выработке рекомендаций по его замедлению и противодействию негативным последствиям. Это важнейший международный орган, охватывающий своей деятельностью полный круг проблем, связанных с км, включая координатные и некоординатные измерения КО, описание околоземной космической среды, моделирование, защиту КА, меры противодействия дальнейшему засорению окП и снижению его негативного влияния на космическую деятельность.

 


Ариан V-16

 

Идея создания такого органа возникла после взрыва PH EKA Arian V-16 в 1986 г. официально его структура была оформлена только в 1993 г. в Центре управления комическими полетами ЕКА (ESOC) в Дармштадте, 11 Германия. Членами-основателями стали НАСА, РКА (ныне Роскосмос), ЕКА и единая делегация от трех японских космических агентств, позднее объединившихся в одно (JAXA). В таком составе IADC просуществовал 3 года. С 1996 по 2000 гг. в него были приняты космические агентства китая, Франции, Германии, Индии, Италии, Украины и Великобритании. К началу 2011 г. в качестве 12-го члена принято космическое агентство Канады.

 

Структурно IADC состоит из руководящей группы (Steering group) и четырех рабочих групп: WG-1 (измерения), WG-2 (среда и база данных), WG-3 (защита КА) и WG-4 (меры по смягчению влияния и снижению засоренности ОКП).

 

C 2001 г. по просьбе научно-технического подкомитета комитета оон по мирному использованию космического пространства (UN COPUOS) IADC регулярно представляет ему обобщенные технические отчеты о состоянии космической среды и соответствующих проблемах, т. е. официально считается консультативным органом оон. на основе этих отчетов оон выпускает свои рекомендации по использованию ОКП.

 

Комитет периодически организовывал и координировал проведение международных кампаний по наблюдению КМ: в области ГСО — в 1999, 2002, 2003 гг., на низких орбитах — в 1996, 1999, 2000, 2003, 2004, 2006, 2007, 2008 гг. и т. д.

 

Ежегодные сессии IADC стали трибуной для интенсивного и взаимно полезного обмена информацией и мнениями между компетентными экспертами в данной области. Издается много технических документов, открытых широкой общественности. НАСА выпускает ежеквартальный сборник материалов, освещающий широкий спектр текущих событий, злободневных проблем, последних научных и технических достижений в области космической деятельности государств и техногенного засорения космоса (Orbital Debris Quarterly News), в котором печатаются участники сессий. Существовал также научный журнал Space Debris с международной редколлегией, который, к сожалению, недавно закрылся.

 

США, располагая гигантскими финансовыми ресурсами, инвестирует большие средства в исследование техногенной засоренности ОКП, разработку и внедрение мер по нейтрализации этого процесса, в многостороннее освещение проблемы. Под эгидой американского национального исследовательского Совета (National Research Council) — главного научного органа США, в который входят все три академии (наук, инженерная и медицинская), в рамках одного из его подразделений — Совета по аэронавтике и космической технике, в 1993 г. был создан международный комитет по проблеме техногенного засорения космоса. Один из авторов настоящего издания — член этого органа. Результатом работы комитета стала первая полная монография по проблеме КМ, вышедшая в 1995 г. [Orbital., 1995].

 

НАСА сформировала собственную программу по КМ, включившую требования по ограничению засорения ОКП, соответствующие рекомендации и стандарты [New NASA…, 2007]. В 2008 г., как составляющая часть этой 5 программы, вышло Справочное пособие по ограничению техногенного засорения ОКП [Publication of the Handbook…, 2008].

 

С 1988 г. каждый американский президент одним из пунктов национальной политики освоения космоса США объявлял ограничение роста КМ. Впервые в истории президент Барак обама 28 июня 2010 г. включил в нее требование проведения исследований, разработки технологий и методов удаления КМ. Документ вышел под заголовком «Сохранение космической среды и ответственное использование космоса» [New U.S. National…, 2010; President…, 2010].

 


Схематическое изображение столкновения французского космического спутника Cerise с космическим мусором

 

Радикально отношение к проблеме стало меняться лишь в последние годы. Еще в 1995 г. национальный исследовательский совет США утверждал [Orbital., 1995], что опасность со стороны КМ представляется умеренной, и нет примеров серьезного повреждения КА или их разрушения в результате столкновения с км. (Заметим, что эта организация — одна из наиболее обеспокоенных техногенным засорением ОКП.) Но уже через год, 24 июня 1996 г., случилось событие, буквально ошеломившее скептиков. Очень дорогой французский экспериментальный спутник радиоэлектронной разведки Cerise столкнулся с фрагментом ракеты-носителя (РН) Arian. В результате КА был разрушен. За этим не заставили себя ждать и другие драматические события в космосе.


 


Расшифровку всех приведенных в статье условных сокращений смотреть здесь: «Исследование ближнего космоса: условные сокращения«.

Автор: Admin | 2012-05-25 |

Исследование ближнего космоса: условные сокращения

АММ — автоматический межорбитальный модуль

АСАТ — транслитерация аббревиатуры ASAT

ВВС — военно-воздушные силы

ВОКО — высокоорбитальный космический объект

ВЭКО — космический объект на высокоэллиптической орбите

ВЭО — высокоэллиптическая орбита

ГЕОДСС — наземная электронно-оптическая станция зондирования глубокого космоса (GEODSS)

ГСКО — геосинхронный космический объект

ГСО — геостационарная орбита

ЕКА — Европейское космическое агентство

ЕСОКО — Европейская система оценки космической обстановки

ИСЗ — искусственный спутник Земли

КА — космический аппарат

КК — космический корабль

КО — космический объект

КС — космическая система

КМ — космический мусор

МКК — межорбитальный космический корабль

МКС — международная космическая станция

MO — министерство обороны

НАСА — национальное аэрокосмическое агентство США

НАСДА — Японское космическое агентство

НОКО — низкоорбитальный космический объект

ОК — орбитальный комплекс

ОКП — околоземное космическое пространство

ОС — орбитальная станция

ПВО — противовоздушная оборона

ПЗС — прибор зарядовой связи

ПРО — противоракетная оборона

РКА — Российское космическое агентство

РЛС — радиолокационная станция

РН — ракета-носитель

Роскосмос — Российское космическое агентство

СН — средство наблюдения ко

СПРН — Система предупреждения о ракетном нападении

СС — спутниковая система

ССО — солнечно-синхронная орбита

ХЭКС — транслитерация аббревиатуры HAX

ЭПР — эффективная поверхность рассеяния

ABM — Anti-Ballistic Missile

ABL — Anti-Ballistic Missile

ADR — Active Debris Removal

ANGELS — Autonomous Nanosatellite Guardian for Evaluating Local Space

 

ASAT — Anti-Satellite Weapon 5

ASI — Italian Space Agency

ATV — Automated Transfer Vehicle (см. АММ)

BMEWS — Ballistic Missile Early Warning System (Russia)

BMD — Ballistic Missile Defense

BNSC — British National Space Centre g

CCD — charge coupled device

CDT — Charge Coupled Device (CCD) Debris Telescope

CNES — Centre National d’Etudes Spatiales (France)

CNSA — Chinese National Space Administration

COPUOS — United Nations Committee on the Peaceful Uses of Outer Space

COSPAR — Committee on Space Research (в ООН)

CSA — Canadian Space Agency

CSO — Circular Semisynchronous Orbit(s)

DISCOS — Database and Information System Characterizing Objects in Space

DLR — German Aerospace Center

DOD — Department of Defense (US)

ESA — European Space Agency

ESOC — European Space Operations Center

ESSAS — European Space Situational Awareness System

EURECA — European Retrievable Carrier

GEODSS — Ground-based Electro-Optical Deep-Space Surveillance

GEO — Geosynchronous Earth Orbit(s)

GLONASS — Global Navigation Satellite System (Russia)

GMT — Greenwich Mean Time

GPS — Global Positioning System

GRAVES — Grande Reseau Adapte a la Veille Spatiale

GTO — Geostationary Transfer Orbits

HAX — Haystack Auxiliary (Radar)

HEO — Highly Elliptical Orbit(s)

HST — Hubble Space Telescope

IAA — International Academy of Astronautics

IADC — Inter-Agency Space Debris Coordinating Committee

ICBM — Intercontinental Ballistic Missile

ISRO — Indian Space Research Organization

ISS — International Space Station

JAXA — Japan Aerospace Exploration Agency

JSpOC — Joint Space Operations Center (of U.S. Strategic Command)

JSC — Johnson Space Center

JSOC — Joint Space Operations Center

LAD-C — Large Area Debris Collector

LDEF — Long Duration Exposure Facility

LEGEND — a LEO-to-GEO Environment Debris model

LEO — Low Earth Orbit(s)

LRIR — Long Range Imaging Radar (точное название радара «Хэйстэк»)

MAWS — Missile Attack Warning System (Russia)

MCC — Mission Control Center (ЦУП НАСА)

MDA — Missile Defense Agency (US)

 

MEO — Medium Earth Orbit(s)

MODEST — Michigan Orbital Debris Survey Telescope

MSX — Midcourse Space Experiment (специальный военный ИСЗ в США)

NASA — National Aeronautics and Space Administration (US)

NATO — North Atlantic Treaty Organization

NORAD — North American Aerospace Defense Command

NRC — National Research Council

ODERACS — Orbital Debris Radar Calibration Spheres

ODQN — Orbital Debris Quarterly News

OSC — Orbital Sciences Corporation

RAMOS — Russian-American Observation Satellite Program

Roscosmos — Russian Federal Space Agency

SAR — Synthetic Aperture Radar

SBRAM — Satellite Breakup Risk Assessment Model

SBIRS — Space Based Infrared System

SBL — Space Based Laser

SBSS — Space Based Surveillance System (US)

SHF — Super High Frequency

SHO — Super-High Orbit(s)

SPADUS — Space Dust Instrument

SPDA — Space Debris Prediction and Analysis

SRM — Solid rocket motor

SSA — Space Situational Awareness (оценка космической

обстановки)

SSN — Space Surveillance Network (US)

SSO — Solar-synchronous Orbit(s)

SSS — Space Surveillance System (Russia)

STS — Space Transportation System

STSS — Space Tracking and Surveillance System

SVS — Space Visible Sensor (космический сенсор видимого

диапазона)

UARS — Upper Atmosphere Research Satellite

UHF — Ultra High Frequency

UNGA — United Nations General Assembly

USAF — United States Air Force USSPACECOM — US Space Command

VHF — Very High Frequency

XSS — Experimental Spacecraft System

WG — Working Group

 

Автор: Admin | 2012-05-25 |

Рождение и юность планеты Земля.

Хотите знать, что ждет нас в будущем? Тогда рекомендую к обязательному прочтению статью «Предсказания Ванги о России», которая приоткроет завес грядущего будущего! Найти эту статью Вы сможете только на сайте www.iksinfo.ru.



За время существования человечества Земля существенно не изменилась. Исчезли большие ледники, изменилось расположение климатических зон, поднялся уровень воды в Мировом океане, местами опустилась суша, местами выше поднялись горы, изменили течение некоторые реки — пожалуй, и все. Силы, действующие в недрах планеты, практически остались неизменными. Но десятки тысяч лет — это всего лишь одна стотысячная доля от всего времени существования Земли. Поэтому сейчас нам очень трудно судить о том, что происходило в окрестностях очень молодого Солнца 45 миллиардов лет назад. По этому поводу наука еще не имеет окончательных суждений.

 


Так выглядела, по мнению художника НАСА, Солнечная система в самом начале своего эволюционного развития

 

Представляется наиболее вероятным, что образование Земли началось на ранней стадии эволюции Солнца, когда в окрестностях сжимающегося и разогревающегося газово-пылевого облака образовались неоднородности и завихрения. Воздействие мощных магнитных полей центрального сгустка — будущего Солнца — как бы гигантским электромотором передало момент вращения мелким окраинным сгусткам. В ближайшей зоне под активным воздействием излучения и магнитного поля центрального светила в сгустках плазмы, состоящих почти целиком из водорода, началось образование тяжелых элементов, в основном кислорода, кремния, железа, магния, алюминия.

 


Эти сгустки, постепенно сжимаясь и уплотняясь, образовали ближние (и вероятно, близкие по составу) планеты — Венеру, Землю, Марс. В это время Земля была довольно рыхлой и относительно холодной, однако под действием силы тяжести она все более уплотнялась, образовывались основные химические соединения, и при этом шло разогревание ее недр. Основным источником тепла, вероятно, были тяжелые радиоактивные элементы, однако не исключено и действие других источников, например, выделение тепла в результате внутреннего трения при прохождении волн земных приливов.

 


Туманность Кольцо может служить наглядным примером того, как будет выглядеть наша планетарная система после гибели Солнца

 

Уже 3—3,5 миллиарда лет назад Земле были присущи те основные черты ее строения, которые мы видим сейчас. В частности, на некоторых участках к этому моменту из нижележащих слоев уже выплавились зоны гранитной земной коры. Именно таков уверенно определенный возраст гранитов на древнейших стабильных зонах — щитах Скандинавии и Канады.

 

Так началась длящаяся миллиарды лет геологическая история Земли, о которой мы можем судить, изучая условия залегания горных пород различного возраста. К ней мы еще вернемся после того, как рассмотрим основные процессы, происходящие в более глубоких недрах. Именно там действуют основные силы, определяющие сейчас характер эволюции Земли.

 

В каком направлении развивается сейчас наша планета? В поисках ответа на этот вопрос очень часто ста* раются всю эволюцию Земли свести к какой-нибудь од* ной причине. В прошлом веке и в начале нашего столетия почти безоговорочно принималось, что Земля образовалась из раскаленного облака газов и прошла стадию полного расплавления, а сейчас медленно остывает и поэтому постепенно сжимается. В силах сжатия (или, как говорят, контракции) видели источник всех процессов, происходящих в верхних слоях Земли. Казалось, что существование очагов расплавленной магмы и огненно-жидкого ядра лучше всего доказывает эту точку зрения.

 

Теория контракции не выдержала проверки. Оказалось, что жидкая Земля должна была очень быстро остыть, потеряв все свое тепло. С другой стороны, в настоящее время радиоактивные элементы во внешних частях Земли выделяют тепла больше, чем успевает выделиться в окружающее пространство. Поэтому остывать может только земное ядро, а внешняя зона медленно разогревается. Следовательно, быть намного более разогретой она не могла. Установлено, что очаги магмы расположены очень редко и по своему происхождению вторичны. Таким образом, верхняя часть Земли никогда не проходила стадии полного расплавления. Наиболее же веским возражением против гипотезы контракции оказался расчет энергии, выделяющейся при сжатии Земли. Выяснилось, что величину этой энергии никак не удается привести в соответствие с полной энергией тектонических (горообразовательных) процессов и землетрясений.

 

В последние годы некоторые ученые развивают прямо противоположную точку зрения и считают, что наша Земля расширяется. По мнению одних, это расширение вызвано разуплотнением земного ядра, недостаточно сдерживаемым давлением мантии. Другие полагают, что во Вселенной в целом ослабевают силы тяготения и внешние части Земли все меньше притягиваются внутренними частями. Третьи же — и их, к сожалению, большинство среди сторонников теории расширяющейся Земли — не пытаются создать глубокие физические обоснования, а попросту принимают такое расширение на веру, а затем строят свои более или менее фантастические гипотезы растрескивания Земли, расползания материков и т. п.

 

Сейчас трудно сказать, что происходит с Землей на самом деле, и поэтому важнейшая задача геофизики — детальное изучение доступных для наблюдения сложных процессов развития Земли в их взаимодействии, изучение источников энергии внутри Земли, сравнительное исследование различных зон на поверхности и в глубине. При этом наука применяет все более совершенные средства: планируется бурение сверхглубоких скважин, недра Земли изучаются со спутников, для теоретических расчетов и обработки данных применяются новейшие вычислительные машины. И постепенно без больших сенсаций и головокружительных гипотез перед нами развертывается картина жизни земных недр.

Автор: Admin | 2012-05-03 |
10 страница из 19« Первая...67891011121314...Последняя »

GIF
Видео
Видео
Все обо всем
Забавно!
Иллюстрированные факты
Искусство
Истории
Все размещенные на сайте материалы без указания первоисточника являются авторскими. Любая перепечатка информации с данного сайта должна сопровождаться ссылкой, ведущей на www.unnatural.ru.