РАСШИРЕНИЕ ПЛАНЕТЫ ЗЕМЛЯ

Вас ложно обвинили в злодеянии, которое Вы не совершали и у Вас нет средств для того, чтобы нанять опытного юриста? Не отчаивайтесь, на сайте www.yurist-online.net Вы без труда сможете найти резюме юриста без опыта работы, который за разумную оплату отстоит в суде Вашу невиновность.


РАСШИРЕНИЕ ПЛАНЕТЫ ЗЕМЛЯ

 

Масштабы расширения

 

Надеюсь, все уже поняли, что развитие изначально гидридной Земли непременно должно сопровождаться существенным расширением планеты. Но как определить возможные масштабы этого процесса? Напомню, в изначально гидридной Земле металлосфера образовалась в связи с разложением гидридов и дегазацией водорода. Казалось бы, чего проще, мы знаем плотность гидридов во внутреннем ядре, это примерно 12,3 г/см3, и знаем плотность дегазированной металлосферы, на границе с ядром это порядка 5,5 г/см3. Делим первое на второе и получаем разуплотнение в 2,24 раза. Увеличение объема в два с лишним раза — много это или мало? Если впервые сталкиваешься с мыслью о реальности расширения планеты, то это кажется много, если же догадываешься о возможном диапазоне уплотнения металлов в виде ионных гидридов, то «два с лишним» представляется недостаточным.

 

Наши знания о глубинном строении планеты базируются в основном на данных сейсмологии, и эти данные дают нам только скоростные характеристики, но ничего не говорят о плотности. Распределение плотностей по радиусу планеты не определяется из геофизических данных, а подбирается таким образом, чтобы построенная модель строго соответствовала двум параметрам — суммарной массе Земли и ее моменту инерции. Эти параметры определены в астрономии с достаточной точностью. Многие десятилетия в справочной литературе кочуют одни и те же плотностные модели, построенные в середине прошлого века. В них строго соблюдаются указанные параметры. И хотя в этих моделях ничего не говорится о составе внутренних сфер планеты, а только о распределении плотности по ее радиусу, тем не менее все они отстроены под «железное ядро и силикатную мантию». Но у нас теперь другая Земля, и мы вправе отстроить свое распределение плотностей, разумеется, при сохранении массы и момента инерции планеты.

 

Плотность внутреннего ядра, приводимая в геофизических моделях, явно меньше той, что могут обеспечить ионные гидриды. Но, оказывается, в нашей модели мы можем (вернее, обязаны) удвоить плотность внутреннего ядра. Давайте обсудим, почему мы обязаны это сделать, и какие изменения при этом следует внести в остальной объем планеты, чтобы сохранить ее массу и момент инерции? Здесь важно помнить, что внутреннее ядро составляет всего 1.8% в общей массе планеты и что массы, расположенные близко к центру вращения, дают малый вклад в суммарный момент инерции. К примеру, вклад от одного килограмма, расположенного во внутреннем ядре на расстоянии 1000 км от оси вращения планеты, в 40 раз меньше вклада от килограмма на расстоянии 6300 км (согласно J= r2 • ∆m).

 

На рисунке 12а точечным пунктиром показано распределение плотности в коре и мантии в рамках традиционных представлений о силикатной мантии (Haddon and Bullen, 1969). Здесь отражены скачки в плотности в верхней мантии, привязанные к сейсмическим данным. Градиенты нарастания плотности в нижней мантии (глубже 1050 км) приняты по результатам ударного сжатия окислов (из которых состоят силикаты). При данном варианте распределения плотности в мантии исследователи просто вынуждены приписать ядру плотность строго в интервале от 10 до 12,5 г/см3. В противном случае не удается сохранить суммарную массу и момент инерции планеты.

 

012512 2217 5 РАСШИРЕНИЕ ПЛАНЕТЫ ЗЕМЛЯ

Рис. 12а. Распределение плотности в мантии: точечный пунктир — в свете традиционных представлений о силикатном составе мантии, обычный пунктир — согласно нашей модели. Ключевой момент — уплотнение астеносферы.

 

 

В рамках нашей модели мы можем принять такой же характер распределения плотности в верхней мантии (до глубины 1050 км), однако в нижней мантии наша металлосфера должна иметь существенно меньшие градиенты уплотнения (этим металлы отличаются от силикатов и окислов). Данная ситуация показана на рис. 12а обычным пунктиром. И при этом для сохранения массы Земли (так показывают расчеты) мы вынуждены увеличить вдвое плотность внутреннего ядра — до 25 г/см3. Расчеты также показывают: чтобы набрать суммарный момент инерции планеты, мы должны предусмотреть увеличение плотности астеносферы на 0,2—0,25 г/см3, а также несколько изменить характер распределения плотности во внешнем ядре при сохранении его массы (так, как показано на рис 12б). Что же касается астеносферы, то это вообще ключевой момент нашей модели. Если в нашей астеносфере не обнаружится тенденция к уплотнению, то рухнет вся концепция, поскольку без этого нам не набрать (в рамках нашей модели) суммарный момент инерции. Вместе с тем достижение давлений порядка 50—60 кбар не составляет проблемы для современного экспериментального оборудования, и эту «тенденцию» легко проверить.

 

012512 2217 6 РАСШИРЕНИЕ ПЛАНЕТЫ ЗЕМЛЯ

Рис. 12б.
Распределение плотности в ядре планеты: точечный пунктир — в свете традиционных представлений (ядро железное), обычный пунктир — согласно нашей модели.

 

Итак, если у нас под литосферой залегает металлосфера (с ее малыми градиентами уплотнения глубже 1050 км), то уже одно это требует резкого увеличения плотности внутреннего ядра планеты. Проведенные оценки показывают, что мы действительно можем (должны) вдвое увеличить плотность внутреннего ядра. Плотность в 25 г/см3 многим может показаться невероятно высокой. Вместе с тем некоторые химические элементы имеют почти такую же плотность при атмосферном давлении. К примеру, плотность металла иридия — 22,65 г/см3. Да, конечно, у него большая атомная масса, но у металла висмута атомная масса существенно больше, а плотность в два с лишним раза меньше (9,84 г/см3). В общем, значение плотности 25 г/см3 для внутреннего ядра, диктуемое сжимаемостью металлов в виде ионных гидридов, не является чем-то фантастичным, и я надеюсь на скорое подтверждение этого в эксперименте (как уже не раз случалось при разработке данной концепции).

 

——————————————————————————————————-

* Существует корреляция — чем выше плотность, тем выше скорости прохождения сейсмических волн. И действительно, на сейсмических разделах, где скорости возрастают скачком, также возрастает плотность. Вместе с тем по физическому закону скорости и плотности в твердых телах находятся в обратной зависимости согласно выражению: Vp2 = E/d, где E — модуль упругости, d — плотность. Если при фазовом переходе скорости возрастают, то это связано с резким увеличением модуля упругости, что перекрывает обратное влияние плотности. По этой причине не следует думать, что принимаемая нами высокая плотность внутреннего ядра должна была бы обусловить высокие скорости.

——————————————————————————————————-

 

При такой плотности гидридов в мегабарном диапазоне давлений, развитие изначально гидридной Земли должно было привести примерно к пятикратному увеличению ее объема (25 : 5 = 5, делитель здесь — это плотность металлосферы над границей с ядром).

 

Важное значение имеет своеобразие самого процесса расширения планеты. Вызвать разложение гидридов можно лишь тепловым нагревом. Для этого привлекается радиогенное тепло. Кстати, изначально на нашей планете урана и калия было на порядок больше, чем в метеоритах, тория больше примерно в 2 раза. Так определила магнитная сепарация согласно потенциалам ионизации этих элементов (см. рис. 4). При таких концентрациях урана, тория и калия Земля должна нагреваться на 100 оС примерно за каждые 7—10 миллионов лет в мезокайнозое, а в нижнем архее за каждые 2—3 миллиона лет (тогда радиогенного тепла выделялось больше).

 

Повышение температуры в определенной зоне глубин (в наружной сфере внутреннего ядра) до температурного предела устойчивости гидридов вызывает их разложение, и в данной зоне начинается разуплотнение и дегазация водорода во вне. Энергия для разуплотнения берется из тех энергетических запасов, которые были сделаны в виде химического потенциала водорода на стадии формирования (и уплотнения) твердого тела изначально гидридной Земли (в нашем понимании, потенциальная энергия при гравитационном сжатии планеты не выделялась в виде тепла, а трансформировалась в химический потенциал водорода).

 

Энергетический баланс этого процесса можно представить в следующем виде:

 

m + ∆QR = p V + QHT,

 

где m — химический потенциал водорода в гидридах,

QR — радиогенное тепло,

p V — работа по разуплотнению (V) при давлении (p) в зоне разуплотнения,

QHT — тепло, уносимое из зоны разуплотнения протонированным водородом как теплоносителем.

 

Выше мы уже отмечали, что «изначально гидридная Земля» изначально была холодной. В рамках наших построений, работа по расширению планеты (p AV) целиком поглощает энергию химического потенциала и преобладающую часть радиогенного тепла (QR), а остаток уносится водородом-теплоносителем. Соответственно, у нас нет оснований предполагать существенный разогрев планеты, покуда у нее имеются запасы гидридов, идет расширение и происходит дегазация водорода. Далее
будет показано, что термодинамика Земли, по сути, такая же, как у живых организмов, которые способны поддерживать температуру на одном уровне на протяжении всей своей жизни.

 

Вместе с тем это слишком осредненная (во времени) картина, что-то вроде «средней температуры по больнице» за несколько лет. На самом деле, в пределах интервала времени каждого тектономагматического цикла земные недра, скорее всего, испытывали то сильный разогрев, то глубокое охлаждение. Рассмотрим, что будет, когда во внешней сфере внутреннего ядра температура (за счет радиогенного тепла) поднялась выше температурного предела устойчивости гидридов, и они претерпели диссоциацию. Сжимаемость гидридов много больше сжимаемости металлов с растворенным в них водородом (даже если водорода в них не меньше, чем в гидридах).

 

Следовательно, в сфере, где гидриды распались, сразу начиналось разуплотнение. Эта работа осуществлялась за счет энергии химического потенциала, которая выделялась при распаде гидридов. Но поскольку часть тепла уходила с водородом-теплоносителем во внешние сферы, то температура в зоне разуплотнения начинала понижаться.

 

В итоге зона разуплотнения присоединялась к внешнему ядру, и в нем увеличивалась концентрация водорода (становилась сверхравновесной). В результате этого начиналась дегазация водорода от ядра в металлосферу и далее. Процесс дегазации прекращался по мере распространения низких температур из зоны разуплотнения на объем внешнего ядра.

 

Теперь, чтобы все повторилось, надо ждать, пока вновь накопится радиогенное тепло, ядро согреется и в очередной сфере внутреннего ядра температура дойдет до разложения гидридов. И эта температура должна быть несколько выше, чем в предыдущем этапе, поскольку с глубиной (т.е. с увеличением давления) устойчивость гидридов повышается. Таким образом, расширение планеты должно иметь циклический характер. И в каждом цикле есть этап разуплотнения с последующей дегазацией водорода (когда температура зоны разуплотнения и сопредельных зон понижалась), и этап стабильного существования планеты (когда температура внутренних сфер планеты вновь повышалась за счет накопления радиогенного тепла).

 

Обратите внимание: цикличность определяется характером разложения гидридов внутреннего ядра планеты. Когда-то «изначально гидридная Земля», по сути, целиком состояла из гидридов. Но сейчас внутреннее ядро (гидридное) занимает примерно 1% объема планеты. Совершенно очевидно, что земные запасы гидридов близки к исчерпанию. В данной связи мы вынуждены полагать, что приходит конец привычной цикличности в характере развития планеты и, возможно, альпийский цикл будет последним полно проявленным тектономагматическим циклом *.

 

——————————————————————————————————-

* Однако здесь следует сделать оговорку. Изначально в Земле были сформированы разные гидриды. И вряд ли у них одинаковые температуры разложения и одинаковая зависимость этих температур от давления. Вполне возможно, что какие-то гидриды сохраняются во внешнем ядре наряду с металлами, содержащими водород в виде раствора. В таком случае следует полагать, что цикличность процессов разуплотнения и дегазации водорода может иметь место и во внешней сфере внешнего ядра по тому же сценарию, который мы предложили для ядра внутреннего. Как бы то ни было, но планета имеет два фронта разуплотнения: один — по границе внутреннего ядра, второй — по разделу ядра и металлосферы. Возможно, это связано с тем, что в составе нашей планеты резко преобладают два элемента — кремний и магний. Но прежде чем рассуждать на эту тему, надо получить экспериментальные данные по сжимаемости гидридов и их устойчивости от нагрева под давлением.

——————————————————————————————————-

 

Любопытно отметить, чтобы продолжительность циклов в фанерозое была порядка 100 млн. лет, температура в ядре Земли в связи с разуплотнением должна периодически понижаться примерно на 1000 оС (так показывают расчеты). Однако эту оценку не нужно воспринимать в качестве «reductio ad absurdum», поскольку в рамках наших построений внешнее ядро может быть жидким и электропроводящим даже при комнатной температуре .


Найти на unnatural: РАСШИРЕНИЕ ПЛАНЕТЫ ЗЕМЛЯ
Автор: admin | 26 Январь 2012 | 530 просмотров

Новые статьи:

1 комментарий
  1. Админ,будь любезен, объясни разницу между гидридом металла и металлом, с растворённым в нём, водороде? ГЕК.

Оставить комментарий:

Все размещенные на сайте материалы без указания первоисточника являются авторскими. Любая перепечатка информации с данного сайта должна сопровождаться ссылкой, ведущей на www.unnatural.ru.
Rambler's Top100