Необычный

Задачи и этапность создания лунной транспортной космической системы. Часть II

По-видимому, целесообразно многоразовые корабли и комплексы создавать и отрабатывать одновременно с разработкой и пуско-наладочными работами лунного добывающе-производственного комплекса, чтобы на тот момент, когда комплекс начнет производить кислород (и, возможно, водород) в требуемых масштабах, уже имелись готовые к эксплуатации, отработанные многоразовые элементы лунной транспортной космической системы.

 

Для хранения на окололунной орбите горючего (водорода) и окислителя (кислорода) а также грузов, доставляемых с Земли, необходимо включить в состав транспортной системы лунную орбитальную станцию с системой хранения компонентов топлива и системой дозаправки. В составе лунной орбитальной станции будет осуществляться заправка многоразового лунного пилотируемого корабля и, в случае производства на Луне только кислорода, заправка водородом многоразовых взлетно- посадочных и посадочного комплексов.

 

В составе лунной орбитальной станции может также проводиться техническое обслуживание многоразового межорбитального электро- ракетного буксира.

 

Лунная орбитальная станция должна использоваться и как база при проведении спасательных операций на окололунной орбите. Так, например, в случае нештатной ситуации на пилотируемом корабле во время полета по окололунной орбите, при которой невозможно дальнейшее выполнение программы полета, корабль стыкуется со станцией (если он не был с ней состыкован), и экипаж пребывает на станции в ожидании корабля-спасателя. Для этого на станции необходимо предусмотреть запас средств жизнеобеспечения из расчета на ~30 суток для трех членов экипажа.

 

Естественно, что лунная орбитальная станция должна быть и научной обсерваторией. Научное оборудование может состоять из аппаратуры для исследования лунной поверхности, радиолокаторов, детекторов инфракрасного и ультрафиолетового излучений и может использоваться для уточнения лунной топографии, изучения поверхностного и нижележащего слоев по их радиационной активности, разведки полезных ископаемых и т.п.

 

Укрупненный состав лунной транспортной космической системы первого и второго этапов. Для решения задач транспортировки людей и грузов предполагается использование следующих типов космической техники, которые можно назвать основными элементами лунной транспортной космической системы:

 

Первый этап развития:

  • лунный пилотируемый корабль (ЛПК) — для перевозки экипажа с поверхности Земли на окололунную орбиту и обратно;
  • одноразовые разгонные блоки (РБ) с жидкостными ракетными двигателями (ЖРД) — для доставки ЛПК или грузовых контейнеров (в случае срочной необходимости) с околоземной на окололунную орбиту;
  • многоразовый межорбитальный буксир (ММБ) с электроракетной двигательной установкой (ЭРДУ) — для транспортировки грузов, не требующих скорой доставки, между околоземной и окололунной орбитами;
  • малые одноразовые разгонные блоки с ЖРД — для доставки грузов между низкой опорной околоземной орбитой и минимально допустимой орбитой ММБ;
  • взлетно-посадочный комплекс (ВПК) — для доставки экипажа с окололунной орбиты на поверхность Луны и обратно;
  • посадочный комплекс (ПК) — для доставки грузов с окололунной орбиты на поверхность Луны;
  • условно в состав лунной транспортной системы можно включить и лунные транспортные средства — пилотируемые и грузовые луноходы — для перевозки людей и грузов по поверхности Луны.

    Безусловно, в состав транспортной системы входят ракеты-носители для доставки полезных грузов с поверхности Земли на низкую опорную орбиту, принимаемую обычно равной круговой орбите высотой 200 км.

     

    Второй этап развития.

    Отметим, что рассматриваемая ниже лунная транспортная космическая система разработана с учетом производства на Луне в качестве компонента ракетного топлива только кислорода.

  • Многоразовый лунный пилотируемый корабль на компонентах топлива кислород-водород (кислород производится на Луне, водород доставляется с Земли) — для перевозки экипажа между окололунной и околоземной орбитами, причем обслуживание и оснащение многоразового корабля расходуемыми компонентами может происходить в составе околоземной орбитальной станции;
  • транспортный пилотируемый корабль (ТПК) — для доставки с Земли на околоземную орбиту и возвращения с нее на Землю
    экипажей (на околоземной орбите экипаж переходит в многоразовый ЛПК или, наоборот, из многоразового ЛПК в транспортный пилотируемый корабль);
  • многоразовый пилотируемый взлетно-посадочный комплекс (МВПК-П) на компонентах топлива кислород—водород (кислород производится на Луне, водород доставляется с Земли) — для перевозки экипажа между окололунной орбитой и поверхностью Луны;
  • многоразовый посадочный комплекс (МПК) на компонентах топлива кислород-водород (кислород производится на Луне, водород доставляется с Земли) — для доставки грузов с окололунной орбиты на поверхность Луны;
  • многоразовый грузовой взлетно-посадочный комплекс (МВПК-Г — модификация многоразового посадочного комплекса) на компонентах топлива кислород-водород (кислород производится на Луне, водород доставляется с Земли) — для доставки кислорода с поверхности Луны на окололунную орбиту, где происходит его перекачка в емкости лунной орбитальной станции;
  • лунная орбитальная станция (ЛОС), предназначенная для хранения и заправки компонентами ракетного топлива перечисленных выше многоразовых пилотируемого корабля и взлетно-посадочных и посадочных комплексов.

     

    В состав транспортной системы второго этапа входит также используемый на первом этапе многоразовый межорбитальный буксир с электроракетной двигательной установкой, назначением которого является транспортировка грузов, не требующих скорой доставки, между околоземной и окололунной орбитами, а при необходимости и обратно. Скорее всего, буксир будет большей мощности и более длительного ресурса, чем на первом этапе.

     

    Естественно, в состав транспортной системы будут также входить ракеты-носители и малые разгонные блоки довыведения и, возможно, разгонные блоки для доставки грузовых контейнеров (в случае срочной необходимости) с околоземной на окололунную орбиту.

Автор: Admin | 2015-01-11 |

Задачи и этапность создания лунной транспортной космической системы. Часть I

Освоение Луны невозможно без создания надежной и экономически эффективной транспортной космической системы.

 

Состав, характеристики и схема функционирования элементов транспортной системы определяются этапом ее развития. На этапе исследования Луны автоматическими КА, т.е. на начальном этапе исследования и освоения Луны, оборудование и грузы могут доставляться с помощью существующих и разрабатываемых ракет-носителей и разгонных блоков, а также электроракетным буксиром. Возможные массы доставляемого оборудования и грузов автоматических станций рассмотрены выше в разделе 3.2. В настоящей главе рассматривается состав и возможные характеристики транспортной системы применительно к этапам исследования и освоения Луны с участием человека.

 

Наиболее проработан вариант лунной транспортной космической системы первого этапа функционирования, когда все ее элементы используют компоненты топлива, произведенные на Земле. Однако имеются и концептуальные проработки транспортной системы, в которой используется, по крайней мере, хотя бы один компонент топлива ракетных двигателей, произведенный на Луне.

 

Приводимые ниже состав и характеристики транспортных средств базируются на проектных разработках РКК «Энергия», выполненных в 2007-2009 г.

 


Первый и второй этапы функционирования транспортной космической системы. В зависимости от наличия или отсутствия «лунных» компонентов ракетного топлива период создания и эксплуатации транспортной космической системы можно условно разделить на несколько этапов.

 

На первом этапе еще нет лунного добывающе-производственного комплекса, поэтому все элементы транспортной системы используют компоненты ракетного топлива и рабочего тела, произведенные на Земле. Создание и использование многоразовых лунных пилотируемого корабля, взлетно-посадочных и посадочного комплексов на первом этапе нецелесообразно, поскольку топливо для дозаправки этих элементов будет доставляться с Земли, и масса доставляемых с Земли грузов может возрасти примерно в два раза. Значительно усложнятся схемы доставки на Луну людей и грузов, так как в эти схемы должны быть включены операции доставки топлива на околоземную и окололунную орбиты и операции дозаправки. Увеличится и количество, и номенклатура элементов транспортной системы, так как в ее состав должны быть включены заправочные станции на околоземной и окололунной орбите и транспортный пилотируемый корабль, доставляющий космонавтов с Земли на околоземную орбиту и обратно. Поэтому до начала производства на Луне, по крайней мере, кислорода целесообразнее и эффективнее будет использование транспортной системы с одноразовыми пилотируемым кораблем, взлетно-посадочным и посадочным комплексами. На этом этапе многоразовым будет только межорбитальный электроракетный буксир для транспортировки грузов между орбитами Земли и Луны, причем обратный рейс с орбиты Луны на орбиту Земли будет порожним.

 

Второй этап функционирования транспортной системы начнется после создания добывающе-производственного комплекса и начала производства на Луне кислорода в достаточно больших масштабах. При наличии производства «лунного» кислорода одноразовые лунный пилотируемый корабль, взлетно-посадочный и посадочный комплексы могут быть заменены на многоразовые, которые будут заправляться «лунным» кислородом и водородом, произведенным на Земле. При заправке элементов транспортной системы «лунным» кислородом значительно увеличивается ее эффективность, так как с Земли на околоземную орбиту нужно будет выводить один лишь компонент ракетного топлива — водород. Соотношение масс компонентов ракетного топлива в кислородно-водородном ЖРД составляет 1:6 (водород : кислород), поэтому масса доставляемых с Земли грузов, по сравнению с транспортной системой первого этапа, значительно уменьшится. Если подтвердится наличие в полярных областях достаточно большого количества водяного льда, то станет возможным производство на Луне, для заправки элементов транспортной системы, не только кислорода, но и водорода. В этом случае транспортная система перейдет на полное обеспечение компонентами ракетного топлива от лунных ресурсов, и необходимость доставки водорода с Земли отпадет. При производстве на Луне компонентов топлива становится целесообразным применение многоразовых кораблей и комплексов, которые придут на смену аналогичным одноразовым элементам транспортной космической системы, что приведет к дополнительному снижению масс грузов, выводимых с Земли, так как не нужно будет выводить на околоземную, а затем и на окололунную орбиту новый взлетно-посадочный комплекс для каждой пилотируемой экспедиции или новый посадочный для каждой экспедиции по доставке грузов. В несколько раз могут снизиться объемы производства взлетно-посадочных и посадочных комплексов.

Автор: Admin | 2015-01-08 |

Цели и задачи первых экспедиций на Луну


Основная цель первых экспедиций — выбор места строительства обитаемой лунной базы (ОЛБ), проведение рекогносцировки и первичная подготовка площадки, на которой будет располагаться ОЛБ. Задачами первых экспедиций может быть обслуживание и дооснащение автоматических лунных баз, а также проведение научных исследований, требующих участия человека.

 


Копия ракеты «Восток» в Москве на ВВЦ

 

Как уже отмечалось, для определения возможных районов мест строительства лунной базы будут использоваться автоматические КА, с помощью которых будут проведены съемка поверхности Луны с высоким разрешением, изучение особенностей магнитного и гравитационного полей, радиационной обстановки, элементного состава и структурных особенностей поверхностных пород с оценкой их стратиграфии и возможного генезиса. По окончании этой программы исследований должны быть определены места первой очереди для строительства обитаемой лунной базы. На одном из этих мест возможно создание многоцелевой автоматической лунной базы. После определения возможных мест будущего базирования на одно или несколько из них будут направлены пилотируемые экспедиции. По проектным разработкам РКК «Энергия» предполагается, что первые экспедиции проведут на поверхности Луны около тридцати суток, причем за это время они смогут выполнить объем работ, на два порядка превышающий выполненный во время экспедиций кораблей «Аполлон».

 


Пилотируемый луноход состыкован с взлетно-посадочным комплексом, образуя временную лунную базу

 

В помощь космонавтам на поверхность Луны перед первыми пилотируемыми экспедициями будет доставлен пилотируемый луноход, включающий два герметичных отсека, в которых возможно проживание космонавтов. С его помощью могут быть исследованы значительные площади лунной поверхности, прилегающие к району посадки, а стыковкой пилотируемого лунохода и взлетно-посадочного комплекса может быть создана временная лунная база, которая обеспечит проживание космонавтов на Луне в течение месяца (рис. выше).

 

К луноходу может крепиться навесное строительно-монтажное оборудование, с помощью которого космонавты могут провести первичную подготовку площадки, выбранной для размещения ОЛБ.

 

Для доставки пилотируемого лунохода на поверхность Луны предлагается использовать посадочный комплекс, созданный на базе посадочного модуля взлетно-посадочного комплекса. С его помощью на поверхность Луны может доставляться не только пилотируемый луноход, но и любые другие грузы массой в 10-12 т. По сути, посадочный комплекс и будет являться посадочным модулем, только вместо взлетного модуля на нем будет располагаться груз. Доставка ПК на окололунную орбиту ничем не будет отличаться от схемы доставки ВПК, описанной выше.

 

После окончания экспедиции луноход в автоматическом режиме может быть перемещен к месту посадки следующей пилотируемой экспедиции.


Планируете построить просторный загородный дом с обсерваторией для наблюдения за Луной? Тогда Вам следует доверить выполнение данной задачи опытным специалистам. Как гласят Kaskad Family отзывы, таких мастеров своего дела Вы сможете найти именно в этой компании! Удачи Вам в строительстве и успехов в изучении Луны!

Автор: Admin | 2014-06-17 |

Задачи исследования окололунного пространства. Часть II

Планируете посетить столицу, где в этом месяце пройдет конференция по проблемам исследования Луны? Тогда Вам определенно точно будет интересно узнать, что квартира на час в Москве арендуется невероятно просто! Все, что Вам для этого потребуется сделать, — посетить сайт mskroom.ru!



Расчеты траекторий движения одиночных частиц показали, что днем атомы водорода свободно диссипируют из лунной атмосферы, а молекулы Н2 выходят на высокую, близкую к круговой, окололунную орбиту. Ионы гелия также выходят на орбиту, близкую к круговой, но поскольку большая и малая полуоси этого эллипса мало отличаются по величине от лунного радиуса, частицы возвращаются на лунную поверхность и начинают новый цикл теплового движения. Орбиты ионов неона и аргона представляют собой более вытянутые эллипсы, которые входят в лунный шар на еще меньших расстояниях от точки выхода на орбиту. В ночное время атомы водорода движутся по эллиптическим орбитам, возвращающим их на лунную поверхность. Процесс миграции частиц с дневной стороны на ночную идет более интенсивно, чем в обратном направлении. Эта особенность движения частиц в лунной атмосфере служит дополнительным объяснением более высокой ночной концентрации легких газов и всплесков ионов аргона вблизи восхода и захода. Большая величина утреннего пика объясняется еще и процессами освобождения аргона, адсорбированного поверхностными породами в ночное время.

 

Очевидно, что отклонения реальных скоростей движения частиц от средних значений неизбежны. За счет того, что какая-то доля атомов или молекул движется со скоростями большими, чем средняя тепловая, в лунной экзосфере (как и в экзосфере других планет) происходит процесс диссипации, захватывающий не только легкие, но и тяжелые газы. В табл. ниже приведены результаты проведенных расчетов по временам диссипации различных компонентов лунной атмосферы с указанием средних скоростей теплового движения газовых частиц при максимальных температурах (Т = 400 К).

 

 

Таблица. Средние скорости теплового движения газовых частиц V при температуре 400 К и время диссипации t различных компонентов лунной атмосферы

 

H

Н2

Не

Ne

36Ar

40Ar

V.cm/c

2,76×105

1,95×105

1,38×105

0,62×105

0,46×105

0,44×105

t, лет

10-6

10-6

10-5

10-2

105

106

 

 

Время t, приведенное в таблице, определяется лишь тепловой диссипацией. Однако, для элементов более тяжелых, чем водород и гелий, существенную роль играет процесс фотоионизации и связанное с ним увеличение интенсивности рассеивания ионов.

 

Лунная атмосфера практически полностью находится в ионизированном состоянии, так как нейтральные молекулы и атомы газов, появляющиеся в окололунном пространстве, под воздействием жесткого ультрафиолетового излучения Солнца приобретают заряд. Поскольку Луна не обладает собственным магнитным полем значительной напряженности, ионы лунной атмосферы захватываются межпланетным магнитным полем, и, двигаясь по спирали вокруг силовых линий, покидают лунную экзосферу. Следовательно, с учетом фотоионизации процесс диссипирования Ne и Ar идет более интенсивно и время диссипации t следует несколько сократить.

 

Согласно оценкам максимальной плотности ранней лунной атмосферы в эпоху наиболее активной дегазации недр концентрация газов достигала 1010—1011 см 3. Если предположить, что эти процессы происходили в период наиболее интенсивного лунного вулканизма (4,0-3,5)х109 лет назад, то современная концентрация с учетом времени диссипации должна быть на 6-7 порядков ниже наблюдаемого значения. Следовательно, можно сделать принципиально важное предположение, что в настоящее время газовая оболочка Луны не является остатками ранней атмосферы. Только постоянное пополнение могло бы сохранить плотность лунной атмосферы на ее современном уровне, и такое пополнение постоянно происходит. Наиболее очевидным источником, пополняющим содержание водорода, гелия и неона в лунной атмосфере, является солнечный ветер. Измерения на искусственных спутниках Земли показали, что на уровне земной орбиты поток частиц солнечного ветра (главным образом протонов) составляет около 2,5 108 протонов/(см2с). В зависимости от солнечной активности поток протонов может колебаться от 5×107 до 5×108 протонов/(см2с). Кроме протонов и электронов в солнечном ветре присутствуют ядра гелия (от 2 до 20%) и ионы других газов. Поскольку магнитное поле Луны не может служить препятствием, частицы солнечного ветра полностью достигают поверхности и за длительное время (более 4 млрд лет) в значительной мере насытили поверхностные слои лунного реголита.

Автор: Admin | 2014-04-07 |

Задачи исследования окололунного пространства. Часть I

В данный момент Вас гораздо больше интересует не задачи исследования окололунного пространства, а вопрос: «Где купить оптические муфты качественные и недорогие?». В связи с этим, Вам следует в обязательном порядке заглянуть на страничку http://c-a-v.ru/armatura-vols/bandazhnaia-lenta. Здесь Вы найдете данные изделия, отвечающие всем вашим требованиям!



Газовая оболочка вокруг Луны, как показали наблюдения, состоит из водорода, гелия, неона и аргона и имеет концентрацию, на 3-4 порядка превышающую концентрацию частиц в солнечном ветре. Наиболее вероятным источником лунной атмосферы (экзосферы) являются солнечный ветер и дегазация Луны. Уточнение этого предположения возможно на основе комплекса данных о химическом составе экзосферы Луны над различными ее районами, характере взаимосвязи динамики изменений экзосферы с солнечной активностью, механизме взаимодействия солнечного ветра и других факторов с поверхностью Луны, о процессах в недрах Луны. Такие данные могут быть получены только на основе исследований с использованием космических средств, прежде всего напланетных.

 

Лунная атмосфера и насыщение лунного поверхностного вещества продуктами солнечного ветра. Лунная атмосфера является частичным источником летучих в лунной среде. Значительное количество летучих находится в лунном грунте в адсорбированном состоянии.

 

Газовая оболочка Луны начинается непосредственно у поверхности. Процессы, протекающие в ней, в значительной мере определяются тепловым движением частиц, а температурный режим задается степенью нагрева лунного поверхностного слоя. Поэтому состояние лунной экзосферы во многом зависит от теплового режима поверхности.

 


Современные данные о составе и плотности лунной атмосферы получены с помощью спектральных измерений с окололунной орбиты и непосредственных измерений ионизационным манометром и масс-спектрометром на лунной поверхности. Некоторые данные получены также при изучении газов, содержащихся в лунных образцах, доставленных на Землю.

 

Основными компонентами лунной газовой оболочки оказались водород, гелий, неон и аргон. Водород находится в лунной атмосфере, главным образом, в молекулярном виде. Орбитальная ультрафиолетовая спектрометрия показала, что дневная концентрация атомарного водорода менее чем 10 см-3. Для молекулярного водорода вблизи подсолнечной точки верхний предел числа молекул Н2 в 1 см3 составляет 6х103. В условиях лунной ночи самое низкое значение концентрации Н2 составило 3,5х104 см-3, т.е. почти в шесть раз выше.

 

Концентрация гелия достигает максимума также в ночное время лунных суток и равна 4×104 см -3. С наступлением дня эта величина уменьшается примерно в 20 раз.

 

Доминирующим компонентом лунной атмосферы является неон, а точнее, ионы 20Ne. Его максимальная концентрация приходится на ночное время лунных суток и составляет 8×104 см-3. В дневное время суток концентрация неона падает до 4×103 см 3, что примерно вдвое выше концентрации Не.

 

Наличие аргона в лунной атмосфере зарегистрировано по содержанию двух изотопов:36Аг и40Аг. Наибольшая концентрация40Аг отмечается перед местным восходом Солнца и достигает величины 4×104 см 3. Другой суточный пик концентрации 40Аг наблюдается около момента местного захода Солнца и составляет 8×103 см 3. После захода Солнца концентрация аргона-40 снижается до величины 3,5×103 см-3. В ночное время минимально регистрируемое количество40Аг составляет около 102 см-3.

 

Максимальная концентрация 36Аг достигает 3×103 см-3. Суточные вариации этой величины происходят по той же схеме, что и для 40Аг, сохраняя примерное отношение 1:10.

 


Особенностью существования разреженной газовой оболочки Луны является миграция газовых частиц с освещенной части поверхности на темную. Располагая данными о концентрации частиц вблизи лунной поверхности, можно оценить длину свободного пробега атомов и молекул, т.е. расстояния между двумя последовательными столкновениями частиц.

 

В ночное время, когда общая концентрация всех газовых составляющих лунной атмосферы достигает 2×105 см-3, длина свободного пробега равна 8,8х108 см. Днем, при концентрации частиц 104 смdecyfer down3, длина свободного пробега увеличится до 1,8×1010 см. Таким образом, ночью длина свободного пробега почти на порядок, а днем более чем на два порядка превышает величину лунного радиуса. Следовательно, взаимные столкновения частиц оказывают очень незначительное влияние на форму траектории атома или молекулы газа в лунной атмосфере. Поэтому можно рассматривать как типичный случай движение единичной частицы в гравитационном поле.

Автор: Admin | 2014-04-07 |

Задачи исследования внутреннего строения Луны

Верхняя часть Луны — кора, сложена анортозитами, базальтами и подстилающими их анортозитовыми габбро. Она имеет толщину около 65 км. Состав пород в материковых и морских районах Луны отличается коренным образом. На континентах кора однослойная, на морях имеет базальтовый слой толщиной 15 км, а вся остальная толща коры анортозитовая. Верхний слой коры, толщиной до 25 км, отличается очень малой электропроводностью и теплопроводностью, малыми величинами скоростей распространения сейсмических волн (100-300 м/с в верхнем стометровом слое), быстрым ростом этих скоростей с увеличением глубины коры (предположительно до 4 км/с на глубине 5 км) и слабым затуханием сейсмической энергии, что обусловливает наблюдаемое сверхдальнее распространение сейсмических волн и продолжительный «сейсмозон».

 

Предполагается, что нижняя кора имеет преимущественно норитовый состав, а верхняя кора более анортозитовая. Однако предположение о наличии вертикальной слоистости коры требует больше данных для обоснования. Морские породы представлены оливиновыми, глиноземистыми и титанистыми (до 12% содержания ТiO2) базальтами с различным содержанием щелочей в каждой из этих групп.

В настоящий момент в породах Луны изучено более 50 минералов и около 40 еще недостаточно охарактеризованных минеральных фаз. Этот вопрос требует дополнительного изучения и более детальной диагностики.

 


Сейсмозондирование позволило выявить еще ряд слоев внешней оболочки Луны, названных по аналогии с Землей литосферой: верхняя мантия (до глубины 300 км), средняя мантия (до 600 км) и переходный слой (до 900 км). Горизонтальная неоднородность плотностей приводит к возникновению напряжений в породах, которые должны вызывать тектонические лунотрясения на глубинах от 25 до 300 км. Эти напряжения должны быть в десятки раз меньше горизонтальных сил, определяющих тектоническую активность литосферы Земли, поэтому тектонические лунотрясения очень слабы по сравнению с землетрясениями.

 

По резкому ослаблению энергии поперечных волн на глубинах более 900 км выявлена нижняя граница литосферы. Допускается, что вещество этой внутренней части Луны находится в расплавленном состоянии и что возможно имеется очень малое (менее 1% по массе) железное ядро или ядро из силикатных пород. Средний удельный вес Луны показывает, что она должна быть обеднена железом, поэтому ее ядро должно быть небольшим или его не существует вовсе. Решение этого вопроса поможет разобраться в моделях происхождения Луны. Знание количества сегрегированного металла на Луне поможет вычислить первоначальное количество сидерофильных элементов. Эту информацию можно использовать для решения вопроса, образовалась ли Луна из недифференцированной солнечной туманности или из дифференцированного вещества, такого как вещество мантии Земли. Геофизические данные о наличии и размерах лунного ядра пока очень неопределенные. Ранняя информация давала возможность предположить наличие у Луны обогащенного железом ядра с радиусом от 170 до 360 км. Однако при последующей оценке, вопрос об отсутствии или наличии металлического ядра с радиусом менее 500 км не получил никаких реальных сейсмических доказательств.

 


Ряд методов, для которых замеряется индуцированный дипольный момент Луны, дал возможность предположить наличие сильно проводящего ядра с радиусом более 400 км. Дополнительный ряд свидетельств о наличии у Луны центрального жидкого ядра был получен лазерными замерами параметров физической либрации. Для частных моделей совместного ламинарного и турбулентного движения коры и мантии были применены данные физической либрации, которые дали грубую оценку в 330 км для радиуса такого ядра. В целом некоторые геофизические данные свидетельствуют, однако, не безоговорочно, о наличии металлического ядра Луны с радиусом в диапазоне 330-450 км. Если допустить что в составе ядра преобладает железо, то ядро должно составлять 2-4% массы Луны.

 

Если Луна образовалась из материала земной мантии, которая уже содержала значительно меньше сидерофилов, то для сегрегации потребуется только 0,1-1% металла, отвечающего современным оценкам содержания сидерофильных элементов Луны. При этом радиус железного ядра с наибольшей вероятностью составит менее 285 км. Таким образом, лишь определение размеров ядра геофизическими способами поможет сделать выбор среди существующих гипотез происхождения Луны.

Автор: Admin | 2014-04-07 |

Задачи исследования поверхности Луны. Часть II


Исследование радиации на поверхности Луны (галактическая, солнечная, лунная, взаимодействие поверхности Луны с полями и плазмой солнечного ветра) имеет не только научное, но и большое практическое значение, прежде всего применительно к созданию обитаемых лунных баз и деятельности экипажа на поверхности.

 

Облучение лунной поверхности происходит по сложной системе. На рис. ниже приведена схема положения Луны в процессе ее орбитального движения по отношению к Солнцу и Земле. Основная особенность — периодические погружения Луны в магнитосферу Земли (в магнитный хвост земной магнитосферы) и выходы в положение между Землей и Солнцем, когда поверхность Луны подвержена прямому облучению потоком частиц солнечного ветра. Если при этом еще учесть осевое (суточное) вращение Луны, то станет очевидным сложный характер пространственно-временного влияния солнечной радиации на лунную поверхность.

 


Схема периодического погружения Луны в магнитосферу Земли

 

Низкая отражательная способность лунного поверхностного слоя приводит к тому, что около 90% падающей на Луну солнечной радиации переходит в тепло. В результате этого Луна имеет собственное тепловое излучение в инфракрасной области спектра и частично в радиодиапазоне.

 

Тепловое поле Луны в глобальном масштабе можно представить по результатам инфракрасной съемки видимого диска Луны при различных фазовых углах.

 

Экспериментально поглощательная способность различных участков лунной поверхности может быть оценена по интенсивности собственного излучения Луны в инфракрасной области спектра, поскольку в этом случае речь идет о переизлученной солнечной радиации, поглощенной поверхностным слоем лунного реголита.

 

Фотометрическая неоднородность поверхности Луны в инфракрасной области спектра формируется пересеченностью рельефа, теплопроводностью поверхностного слоя и условиями освещения и съемки. Высокоточные измерения теплового излучения поверхности Луны, выполненные с помощью современных германиевых детекторов высокого разрешения, показали значительные отклонения фактических температур от существовавших ранее эмпирических моделей. Расхождения эмпирических данных с фактическими измерениями возрастает до 50% при косом падении лучей и значительно увеличиваются к краю диска. Все это требует дополнительного детального изучения, в том числе, непосредственно на поверхности Луны.

Автор: Admin | 2014-04-04 |

Задачи исследования поверхности Луны. Часть I


Фотографирование с КА позволило построить карты видимой и обратной сторон Луны. Они позволяют распознавать различные образования на поверхности Луны и являются основой при проведении практически всех исследований Луны. Выявлена асимметрия рельефа поверхности видимой и обратной сторон Луны. На видимой стороне основное место занимают моря (обширные холмистые равнины с поперечником до 500-1000 км при перепаде высот порядка 150 м, имеющие округлую форму и окруженные кольцевыми горами) и материки (горные хребты и долины, прорезанные трещинами и сбросами, при среднем превышении гор над морями около 3 км). Моря и материки видимой стороны усыпаны кратерами округлой формы с поперечником от 100 км и менее. Обратная же сторона в основном материковая и представляет собой холмистую равнину с множеством кратеров. Причина такой асимметрии не выяснена, не имеет убедительных гипотез и требует изучения и научного объяснения.

На данный момент главным источником актуальной информации о Луне являются документы на английском. Поэтому, если Вы не знаете данного языка, то Вам сможет помочь репетитор английского языка по skype. Такое обучение является наиболее эффективным, и уже через несколько месяцев Вы сможете бегло читать на английском!

 

Установлено, что моря видимой стороны Луны представляют собой застывшую базальтовую лаву, напоминающую земной базальт. Материковые районы сложены в основном анортозитами. Сверху каменные породы морей и материков покрыты рыхлым грунтом толщиной от нескольких десятков метров (в районе впадин) до нескольких сантиметров (на склонах крутых гор). Этот грунт не имеет аналогов среди природных земных образований и назван реголитом. Сформировавшись в условиях метеоритной бомбардировки коренных горных пород и воздействий солнечного ветра и космических лучей в высоком вакууме, реголит прошел фазы переплавок и спекания с метеорным веществом поверхности Луны, чему способствовала сравнительно малая величина ускорения ее силы тяжести. Поэтому химический состав реголита в основном отражает состав ниже залегающих пород, но в нем присутствует и вещество, не содержащееся в коренных породах, которое сформировалось в описанных выше условиях. Большая часть реголита раскрошена до фракции порошка. Бомбардировка микрометеоритами снова соединяет определенные порции такого порошка в остеклованные агрегаты частиц материковых пород и минералов. Такие агрегаты обычно называются агглютинатами. Было установлено, что химический состав пород в определенном месте может соответствовать, а может и не соответствовать тем породам, которые могут получиться при смешивании локальных брекчий или вулканических материковых пород. Это может означать образование реголита из разных лунных источников.

 


Перемешивание реголита изучалось на основе доставленных образцов, но такие детали, как интенсивность переноса, перемешивание в вертикальном и горизонтальном направлениях еще тщательно не рассматривались. Эти процессы усложняют обработку полученной дистанционными методами информации, а поэтому их следует изучить во всех подробностях в различных областях Луны.

 

Установлено, что коренные лунные породы по минеральному составу в основном схожи с земными. Только три минерала в породах, доставленных с Луны на Землю, оказались неизвестны геологам. Остальные лунные минералы пироксен, плагиоклаз, оливин, кристобалит, ильменит широко распространены на Земле. В лунных породах больше содержится тугоплавких материалов, чем в земных. Этим же отличаются и породы лунных морей от материковых. Кроме того, обнаружено относительно большое количество инертных газов в лунном грунте. Предполагается, что они занесены на Луну солнечным ветром.

 


Изотопный анализ доставленных с Луны пород показал, что среди них нет образцов моложе 3,1 млрд лет и старше 4,6 млрд лет. Это может свидетельствовать о том, что примерно 3 млрд лет назад на Луне закончилось затопление базальтами Больших Каньонов видимой стороны и наступило относительное спокойствие. Образовавшийся в те времена рельеф, испещренный кратерами от метеоритной бомбардировки, сохранился до наших дней.

 

Все эти выводы о химическом и минеральном составе лунных пород и реголите, в частности, получены на основе исследований среднеширотных и приэкваториальных районов видимой стороны Луны. Неохваченными остались и требуют изучения приполярные области и обратная сторона.


Хотите не изучать поверхность Луны, а записаться на archicad курсы и создавать настоящие произведения архитектурного искусства? Тогда Вам следует найти опытных преподавателей. На их роль идеально подойдут сотрудники ООО «Вершина Мастерства»!

Автор: Admin | 2014-04-03 |

Исследование Луны: перечень требующих решения научных задач

Гораздо больше, чем исследование Луны, Вас интересует обмен webmoney? В таком случае, Вам следует заглянуть на wm4.ru! Только здесь Вы сможете обменять свои WM на самых выгодных для себя условиях!



 

Расширение представлений о Луне поставило массу новых задач, как фундаментального, так и прикладного характера. Перечень актуальных научных проблем и задач, решение или более тщательное исследование которых целесообразно осуществить в ближайшие по крайней мере два десятилетия, следующий.

 

Фундаментальные научные проблемы:

происхождение и эволюция Луны, Земли и Солнечной системы в целом;

— мониторинг Земли и Луны, как системы небесных тел;

— появление и распространение жизни.

 

Задачи исследования поверхности Луны:

картирование поверхности в различных диапазонах длин волн (видимый, ИК и УФ-диапазоны, гамма-спектрометрия, нейтроно-спектрометрия, рентгеноспектрометрия, альтиметрия);

— воздействие пыли и метеоров на поверхность;

— радиация (галактическая, солнечная, лунная, взаимодействие поверхности Луны с полями и плазмой солнечного ветра);

— детальное исследование районов Луны с аномальными условиями;

— теплообмен;

— электростатика;

— оптические, механические и физико-химические характеристики грунта;

— доставка образцов вещества Луны на Землю и их исследование в лабораторных условиях;

— морфология Луны. Формирование реголита. Задачи исследования внутреннего строения Луны:

минеральный состав среды внутри Луны (в частности, минеральный состав коры, содержание тугоплавких и сидерофильных элементов);

— размер ядра;

— содержание в ядре железа;

— масконы и масмины;

— температурный профиль;

— электрические токи.

 


Задачи исследования окололунного пространства:

тонкая структура гравитационного поля. Аномалии силы тяжести.

— магнитное поле (механизм и источник энергии поля, пространственно-временные корреляции магнитных и гравитационных аномалий);

— корпускулярная обстановка;

— параметры экзосферы;

— метеорная обстановка;

— пылевое облако вокруг Луны;

— электромагнитная обстановка (в частности, распространение радиоволн различных диапазонов длин волн);

 

Разведка лунных ресурсов:

— поиск и оценка запасов лунных ресурсов (водорода, кислорода, воды, гелия-3, металлов, строительных материалов и др.);

— эксперименты для отработки технологий на Луне;

— получение газов, воды, металлов, ракетного топлива, энергии;

— производство строительных материалов;

— добыча полезных ископаемых.

 

Задачи в обеспечение отработки технических средств на Луне:

— экспериментальная оценка воздействия факторов космической и лунной сред;

— разработка инженерно-технических моделей отдельных областей Луны.

 


Использование Луны в качестве инструмента проведения исследований:

— наблюдение за Землей и космическим пространством;

— астрофизические исследования с Луны (в частности, поиск планет вне Солнечной системы).

Автор: Admin | 2014-03-28 |

Как Бунзен и Кирхгоф нашли решение задачи, решения не имеющей

Вы без ума от яркого колорита жаркого и такого далекого от нас африканского континента? Тогда Вы просто обязаны прочитать статью «Дикие животные Африки» на сайте www.katyaburg.ru, которая познакомит Вас с самыми удивительными представителями животного царства!



Роберт Вильгельм Бунзен — немецкий химик-экспериментатор, который внес немалую лепту и в развитие неорганической химии

 

Роберт Бунзен (1811-1899) и Густав Кирхгоф (1824-1887) — две ослепительные вершины в истории химии. Памятником Бунзену можно считать всю спектроскопию. Знаменитую горелку, которую назвали его именем, Бунзен сконструировал с целью получить бледное, практически бесцветное пламя, в котором проще различать цвета спектра. Родившийся в Геттингене в 1811 году, в зрелые годы Бунзен был обожаемым всеми приветливым холостяком с привычкой к неряшеству: жена одного из его коллег по Гейдельбергскому университету как-то сказала, что хотела бы его поцеловать, но прежде его нужно отмыть. Кирхгоф, друг и коллега Бунзена, на равных участвовал во многих работах по спектральному анализу и внес вклад во многие другие области физической химии. Лаборатории Бунзена и Кирхгофа во Фридрихсбау, в здании физического факультета, располагались по соседству.

 


Немец Густав Кирхгоф – один из величайших физиков XIX века, работавший преимущественно в области математической физики

 

Начиналось все в конце XIX века — с имени Кирхгофа, нацарапанного на окне комнаты, которую сейчас отвели старшему ассистенту. Из этого окна открывается вид на долину Рейна, где лежит город Мангейм, и именно в эту сторону смотрели Бунзен и Кирхгоф однажды вечером: там бушевал пожар, и спектроскопический анализ пламени позволил им определить, что в горящих материалах присутствуют барий и стронций. Если же выглянуть из окна в другую сторону, взгляду откроются река Неккар и Хейлинген-берг, где по склонам петляет «философская тропа» — главная из множества тропинок на лесистых холмах вокруг города, и именно там двое друзей имели привычку совершать свои ежедневные прогулки. Бунзен говорил, что как раз во время таких прогулок к нему и приходят самые умные мысли. Одна из них была такой: «Если мы смогли узнать, что за вещества горят в Мангейме, то отчего бы не проделать этот трюк с Солнцем? Только вот все скажут, что мы сошли с ума» Что произошло потом, знает теперь весь мир, однако прекраснее всего, надо думать, была минута, когда Кирхгоф сказал: «Бунзен, а я уже сошел с ума», и когда Бунзен, сообразив, что это значит, ответил: «И я тоже, Кирхгоф!».

 


Английский ученый Уильям Гайд Воластон первым получил платину в чистом виде и открыл ультрафиолетовое излучение

 

Свет Солнца, пропущенный сквозь спектрограф (простой инструмент, где призма раскладывает свет в цвета радуги), как оказалось, прерывается множеством узких черных полос. В 1802 году английский химик Уильям Гайд Воластон (главный повод вспомнить о нем сегодня — большая двояковыпуклая лупа, с которой изображают Шерлока Холмса) с удивлением обнаружил семь таких «зазоров» в солнечном спектре, 10 лет спустя Йозеф Фраунгофер из Германии, вооруженный куда лучшей оптикой, зафиксировал не менее 300 таких линий (потом их станут называть фраунгоферовыми). Как установили Бунзен и Кирхгоф, две самые известные фраунгоферовы линии в точности соответствуют тем линиям из желтой части спектра, которые дает натрий в пламени горелки. Затем они стали находить в спектре Солнца все новые и новые следы присутствия других элементов, и в конце концов их методика позволила открыть прежде неизвестный, но имеющийся в изобилии на Солнце элемент — благородный газ гелий.

 


Известный и уважаемый в ученых кругах XIX века Огюст Конт (1798-1857) был гениальным человеком, но даже он был убежден, что человечеству никогда не удастся постичь тайну Солнца

 

Чтобы оценить значение этого случая и понять, что привело друзей-ученых в восторг, стоит вспомнить влиятельного философа и математика Огюста Конта, который несколькими годами раньше провозгласил, что вопрос о составе Солнца — один из тех, на которые наука ответить не сможет никогда. Открытие того, что Солнце (и, как установили позднее аналогичным способом, далекие звезды) состоит из тех же элементов, что и Земля, стало невероятно важным событием в истории науки.

Автор: Admin | 2012-11-25 |
1 страница из 50123456789...203040...Последняя »

GIF
Видео
Видео
Все обо всем
Забавно!
Иллюстрированные факты
Искусство
Истории
Все размещенные на сайте материалы без указания первоисточника являются авторскими. Любая перепечатка информации с данного сайта должна сопровождаться ссылкой, ведущей на www.unnatural.ru.