Необычный

Покорение Луны: экспериментальная отработка систем жизнеобеспечения

Опыт создания систем жизнеобеспечения долговременных орбитальных станций показал, что на разработку и отработку нового комплекса необходимо не менее 10 лет. Особенностью этой отработки, принятой для всех отечественных пилотируемых аппаратов, является длительная отработка летных образцов в полноразмерных макетах обитаемых модулей с операторами на борту, которой предшествует длительная техническая отработка. В качестве экспериментальной базы для этой отработки можно использовать базу ГНЦ РФ ИМБП для 500 суточного эксперимента.

 

Экспериментальная отработка систем жизнеобеспечения является одной из самых сложных и длительных операций. Поэтому параллельно с многолетней наземной отработкой в макетах обитаемых модулей лунной базы целесообразно проводить летную отработку в дополнительном обитаемом модуле российского сегмента МКС. Создание такого модуля позволит отработать в более короткие сроки систему жизнеобеспечения лунной базы и расширить возможности использования МКС и надежность ее жизнеобеспечения.

Автор: Admin | 2014-09-05 |

Создание комплекса средств жизнеобеспечения на базе уже существующих систем. Часть IV


При наличии рационов питания, содержащих 0,5 кг воды/чел.сут. и использования воды за счет ее извлечения из всех продуктов жизнедеятельности, комплекс не потребует дополнительных запасов воды.

 


Базовый комплекс средств жизнеобеспечения лунных орбитальной станции и базы

 

Принципиальная схема базового комплекса систем жизнеобеспечения лунных орбитальной станции и базы приведена на рис. выше. Потребление запасов в таком комплексе — 1,1 кг на человека в сутки (пища), общая степень замкнутости комплекса — 77%, замкнутость по воде — более 90%. Массовый баланс этого базового комплекса приведен в табл. 1, а примерная массовая сводка — в табл. 2.

 


Таблица 1. Массообмен в замкнутом регенерационном комплексе жизнеобеспечения

 

Наименование системы

Масса (ресурс 1 год), кг

Масса (ресурс 800 сут.), кг

 

3 чел.

6 чел

3 чел

6 чел

1. Средства обеспечения газового состава

       

— средства кислородообеспечения

224

224

224

224

Расходуемые элементы

50

100

60

115

ЗИП

50

50

75

75

— средства переработки углекислого газа

100

100

100

100

Расходуемые элементы

20

40

ЗИП

40

40

40

40

— средства сбора и концентрирования углекислого газа

200

200

200

200

Расходуемые элементы

22

45

65

130

ЗИП

25

25

50

50

— средства удаления вредных примесей

100

100

100

100

Расходуемые элементы

19

19

19

19

ЗИП

10

10

20

20

— средства контроля газового состава

71

71

71

71

— средства контроля и регулирования давления

30

30

30

30

— средства откачки шлюза, заправки баллонов скафандра

80

80

80

80

Расходуемые элементы

10

10

10

10

ЗИП

5

5

5

5

— запасы воздуха (азота)

119

236

357

708

2. Средства водообеспечения

       

— СРВ-К

143

143

143

143

Расходуемые элементы

250

500

540

1080

ЗИП

10

10

10

10

— СРВ-У с АСУ СПК-У

454

454

454

454

Расходуемые элементы

435

810

950

1800

ЗИП

5

5

10

10

сво-зв

47

47

47

47

Расходуемые элементы-(запасы воды)

786

1573

2359

4719

ЗИП

5

5

10

10

Таблица 2. Массовая сводка базового комплекса средств жизнеобеспечения лунных орбитальной станции и базы

 

В дальнейшем могут быть осуществлены процессы более полного использования двуокиси углерода в базовом комплексе. При этом для обеспечения этого использования необходимо будет перейти в значительной степени к сублимированным продуктам питания. Недостатком процесса Сабатье является невозможность использования всей двуокиси углерода, выделяемой экипажем, так как половина водорода, образующегося при электролизе воды, расходуется на образование метана. Разложение метана до углерода и водорода для сохранения водорода требует расхода катализатора, участвующего в процессе, так как осаждающийся на катализаторе углерод выводит его из дальнейшей эксплуатации. Замена в комплексе системы переработки двуокиси углерода до метана и воды и системы обеспечения экипажа кислородом на систему переработки двуокиси углерода, состоящей из высокотемпературного электролизера с твердым электролитом на керамической подложке и реактора, в котором реализован процесс Белла-Бодуара (гидрирования окиси углерода до метана и воды), может повысить степень замкнутости комплекса до 0,83. В высокотемпературном электролизере осуществляется электролиз двуокиси углерода и воды, причем на аноде образуется кислород, а на катоде — смесь окиси углерода и водорода. Из катодной полости смесь окиси углерода и водорода направляется в реактор, в котором реализуется процесс Белла-Бодуара. Метан и избыток окиси углерода удаляются, а полученная в реакторе вода возвращается в высокотемпературный электролизер. В этом комплексе осуществляется до 75% извлечения кислорода из двуокиси углерода. Комплекс позволяет использовать до 86% сублимированных продуктов.

 

Замена в комплексе средств жизнеобеспечения реактора с использованием процесса Белла-Бодуара на реактор, в котором реализован процесс Боша (2СО=СO<sub>2</sub>+С) может повысить степень замкнутости комплекса до максимальной теоретической величины в 0,85, которая может быть реализована в физико-химическом комплексе при отсутствии биологических звеньев (оранжереи), используемых и для регенерации кислорода.

 

Высокотемпературный электролизер и реактор по процессу Боша позволяют осуществлять 100% извлечение кислорода из двуокиси углерода и получить избыток воды в количестве 0,16 кг/(чел.сут.) при 100% использовании сублимируемых продуктов. Конечным продуктом в реакторе является углерод (сажа) в количестве 0,26 кг/(чел.сут.), который осаждается на катализаторе. Комплекс даст выигрыш в расходуемых массах при условии, что масса расходуемых материалов на удаление сажи и восстановление катализатора не превысит 0,16 кг/(чел.сут.). Однако приемлемая для практического применения технология восстановления катализатора при указанной эффективности пока не отработана.

 

Разработка нормативов среды обитания космонавтов для непрерывных длительных экспедиций человека на Луну необходима в качестве технических требований к системам жизнеобеспечения, от которых будет в значительной степени зависеть необходимость переработки существующих систем орбитальных станций. Одновременно эти нормативы будут медицинскими требованиями к поддержанию здоровья экипажа. Прежде всего, предстоит разработать критерии оценки качества атмосферы, воды и микробиологического состава среды обитания человека вне Земли, в том числе на Луне и в длительном космическом полете. Для улучшения комфорта целесообразно рассмотреть вместо монотонной среды обитания возможности изменения ее параметров — создание переменной влажности и температуры атмосферы, содержания кислорода и двуокиси углерода и т. д.

Автор: Admin | 2014-09-02 |

Создание комплекса средств жизнеобеспечения на базе уже существующих систем. Часть III

Гораздо больше, чем формирование обитаемое базы на Луне, Вас интересуют справочные таблицы и схемы для учебы и работы по: математике, физике, химии, истории, биологии, географии? Тогда эту и еще много другой учебной информации вы сможете найдете на сайте infotables.ru!



Для извлечения кислорода из двуокиси углерода необходимо создание системы ее концентрирования (не менее 99%) и переработки. Сбор и концентрирование двуокиси углерода можно осуществлять электрохимическими или адсорбционным методами. Наиболее отработанным способом сбора и концентрирования является использование адсорбентов, к которым предъявляются требования по устойчивости к многоцикловой работе и регенерации от пара влаги и двуокиси углерода. Перспективным может оказаться использование твердых сорбентов с регенерацией водяным паром (при температуре ~105°С) для систем сбора и концентрирования двуокиси углерода (рис. ниже). Основным преимуществом этой системы является регенерация тепла за счет сброса пара из одного адсорбера в другой адсорбер, что позволяет реализовать процесс концентрирования двуокиси углерода с расходом энергии на регенерацию сорбентов не более 7 Вт/л СО2.

 


Экспериментальная система очистки атмосферы и концентрирования двуокиси углерода с паровой регенерацией адсорбента: 1 — вентилятор: 2 — адсорбер; 3 — парогенератор; 4 — водяной насос; 5 — компенсатор; 6 — холодильник; 7 — влагоотделитель; А1, А2 — адсорбер; В1 ,В2 — влагоотделитель; К1-К12 — клапан; Х1, Х2 — холодильник

 

Для лунной базы, где присутствует гравитация, на последующих этапах перспективно использование в качестве сорбента жидкого поглотителя двуокиси углерода, обладающего значительно большей емкостью, чем твердые поглотители.

 

Разработан простой способ переработки путем гидрирования двуокиси углерода с получением воды и метана (процесс Сабатье). Процесс экзотермический, осуществляется с эффективностью, близкой к единице за один проход на никелевом катализаторе. По этому процессу была создана и отработана полномасштабная экспериментальная система.

 


Система удаления вредных примесей: 1 — вход воздуха из модуля в систему; 2 — фильтр предварительной очистки; 3 — вентилятор; 4 — фильтр нерегенерируемый; 5 — датчик расхода; 6 — блок микропримесей; 7,8- фильтры регенерируемые; 9, 10 — блоки вакуумных клапанов; 11, 12, 13-аварийные вакуумные клапаны; 14- каталитический фильтр; 15 — выход воздуха из системы в модуль; 16 — термокаталитический фильтр; 17 — воздух (часть потока); 18 — выброс вредных примесей в вакуум; 19 — без-моментный насадок; 20 — корпус орбитальной станции

 

Существующие регенерационные системы очистки основаны на поглощении газообразных и паровых примесей активированным углем, который периодически регенерируется в вакуум. Удаление окиси углерода и водорода осуществляется на катализаторе при температуре окружающей среды в модуле. Система удаления вредных примесей на этих принципах эксплуатировалась на станциях «Мир» и МКС и после дополнительной автоматизации ее работы может войти в состав базового комплекса средств жизнеобеспечения (рис. выше). В дальнейшем она может быть, после разработки, дополнена фотокаталитической системой или заменена более универсальной системой на основе высокотемпературного катализатора с нагревом до ~160°С (рис. ниже). Схема ее аналогична схеме системы с низкотемпературным катализатором, но весь поток воздуха проходит через блок высокотемпературного катализатора с регенерацией тепла.

 


Система удаления вредных примесей на основе высокотемпературного катализатора: АВК4, АВК5 — аварийный клапан; АВК БМП — аварийный клапан блока микропримесей; БВК1, БВК2 — блок вакуумных клапанов; ФДО — фильтр доочистки

 

Экономия массы и объема также должна быть проведена за счет организации сушки отходов жизнедеятельности экипажа и стирки и последующей сушки одежды — разработки средств для сушки и разработки стиральной машины.

Автор: Admin | 2014-08-29 |

Создание комплекса средств жизнеобеспечения на базе уже существующих систем. Часть II


Метод, реализуемый с помощью центробежного многоступенчатого вакуумного дистиллятора, обеспечивает экономию удельных энергозатрат в 5-6 раз по сравнению с реализованной на станции «Мир» атмосферной дистилляцией. Вода из системы СРВ-УМ будет использоваться главным образом в системе для электролизного получения кислорода (система типа «Электрон-В»). При необходимости, в системе можно осуществлять доочистку других типов водосодержащих отходов.

 

Очистка загрязненной санитарно-гигиенической воды осуществляется в системе регенерации типа СРВ-СГ с использованием процесса ультрафильтрации с последующей сорбционной очисткой. Очистке в СРВ-СГ будет подвергаться только вода, непосредственно использовавшаяся в средствах мытья с применением моющих средств (в рукомойнике, душевой кабине), или для стирки белья (в стиральной машине). Предполагается, что при принятии санитарно-гигиенических процедур часть воды будет испаряться, попадать в систему кондиционирования воздуха и далее в СРВ-К. Способы регенерации и степень восстановления воды будут зависеть от примененных моющих средств.

 


Схема размещения системы «Электрон» в структурной схеме средств кислородообеспечения: 1 — система «Электрон»; 2 — блок визуального контроля давления; 3 — гермокапсула блока жидкостного; 4 — вентилируемая капсула блока жидкостного; 5 — блок управления; 6 — теплоноситель системы терморегулирования; 7 — электролизер; 8 — теплообменник; 9 — разделители фаз; 10 — сигнализатор жидкой фазы; 11 — кислород; 12 — водород; 13 — блок датчиков давления; 14 — водород; 15 — вход воздуха; 16 — фильтр гидрофобный; 17 — буферная емкость; 18 — насосы; 19 — подача азота; 20 — блок продувки азотом; 21 — выход азота; 22 — выход воздуха; 23 — газоанализатор водорода; 24 — клапан водородный; 25 — газоанализатор кислорода в водороде; 26 — регулятор перепада давления; 27 — клапан вакуумный водородный; 28 — корпус орбитальной станции; 29 — выброс водорода в вакуум; 30 — безмоментный насадок; 31 — кислород; 32 — газоанализатор водорода в кислороде; 33 — емкость для воды; 34 — блок дожигания; 35 — выход кислорода в гермоотсеки; 36 — стабилизатор тока

 

Для получения кислорода из воды может быть использована после модернизации система электролиза воды «Электрон» с водным раствором щелочи КОН, эксплуатировавшаяся на орбитальных станциях «МИР» и МКС, ресурс которой может быть увеличен с 1 года до 3 лет (рис. выше). Газожидкостная смесь после электролиза охлаждается с использованием жидкостного контура системы терморегулирования и далее ее разделение производится на статических разделителях кислорода и водорода. Для обеспечения безопасности в магистралях кислорода и водорода установлены газоанализаторы, выдающие сигналы на отключение системы «Электрон» в случае превышения уровней примесей в электролизных газах. Основной недостаток эксплуатируемой конструкции щелочного электролизера — невозможность замены отказавшего агрегата, так как не исключена вероятность пролива щелочи и снижение сопротивления электроизоляции агрегата.

 


Система электролиза воды на основе твердого полимерного электролита «Янтарь»: БЕ2 — буферная емкость; БПА — блок продувки азотом; БПВ1, БПВ2 — блок подготовки воды; БЭЛ — блок электролизный; ГА1 ,ГА2 — газоанализатор; ДД1, ДД2 — датчик давления; ДПД1, ДПД2 — датчик перепада давления; ДР1 ,ДР2 — дроссель; ДЭП1, ДЭП2 — датчики электропроводности воды; ЕДВ — емкость для воды; К01, К02 — клапан обратный; КР — кран ручной; НП — насос подачи; НЦ — насос циркуляционный; РПД — регулятор перепада давления РПД1 — регулятор перепада давления кислорода; РПД2 — регулятор перепада давления водорода; СС — статический сепаратор; ТО — теплообменник; УС1.УС2 — устройство стерилизации; УСТ1 — устройство стерилизации; ЭК1 …ЭК9 — клапан электромагнитный; ЭН – электронагреватель

 

Разрабатывается также система электролиза воды на основе твердого полимерного электролита (рис. выше). Преимуществом этой системы «Янтарь» является отсутствие агрессивной среды. В циркуляционном контуре используется деионизированная вода. Разделение водородо-водяной смеси, поступающей из электролизера, обеспечивается статическим разделителем. Сухой кислород непосредственно поступает на потребление. Оперативно обеспечивается замена любого агрегата. Безопасность обеспечивается с помощью газоанализаторов аналогично щелочной системе.

 

Такой электролизер ремонтопригоден, так как в нем циркулирует вода. Однако, из-за высоких требований к качеству подпитывающей воды (сопротивление ~1 МОм), масса расходуемых материалов для этой системы в настоящее время составляет не менее 15 кг/чел. год.

Автор: Admin | 2014-08-25 |

Создание комплекса средств жизнеобеспечения на базе уже существующих систем. Часть I

Вы не астроном, а рыболов и проблемы освоения Луны Вас совершено не интересуют? Тогда Вы наверняка хотите купить лодку для рыбалки! И сделать это на максимально выгодных для себя условиях Вы всегда сможете на lodka.com.



Создание комплекса средств жизнеобеспечения на базе модернизируемых систем жизнеобеспечения космических станций «Мир» и МКС представляется наиболее целесообразным для первых этапов лунной базы и орбитальной станции. Для этого необходимо создать базовый комплекс с максимальным использованием продуктов жизнедеятельности экипажа для получения воды и кислорода с целью сокращения массы и объема расходуемых и запасных компонентов.

 

Проблема регенерации воды может быть решена за счет модернизации существующих систем регенерации воды из конденсата, урины и санитарно-гигиенической воды, которые успешно эксплуатировались на космических станциях. Схемы этих систем регенерации представлены на рис. ниже.

 


Система регенерации воды из конденсата атмосферной влаги (СРВ-К) Международной космической станции:

I — подсистема фильтрования и предварительной очистки конденсата;

II — подсистема очистки и кондиционирования;

III — подсистема хранения, подогрева и раздачи воды;

1 — фильтр газожидкостной смеси; 2 — фильтр-реактор; 3 — разделитель; 4 — индикатор проскока жидкости; 5 — мембранная емкость постоянного разрежения; 6 — насос; 7 — блок колонок очистки; 8 — сигнализатор проскока примесей; 9 — блок клапанов; 10 — блок колонок кондиционирования;

11 — контейнер технической воды; 12 — контейнер питьевой воды; 13 — блок датчиков заполнения и опорожнения контейнеров; 14 — насос; 15 — рекуператор; 16 — нагреватель; 17 — блок подачи конденсата; CWC — американская емкость для воды; СКВ — система кондиционирования воздуха

 


Система регенерации санитарно-гигиенической воды (СРВ-СГ): 1 — сепаратор; 2 — блок хранения исходной и очищенной воды; 3 — фильтр; 4 — блок подачи; 5 — блок колонок очистки; 6 — блок распределения и контроля; 7 — датчик качества воды; 8 — блок введения серебра; 9 — блок раздачи воды; 10 — насос; 11 — насос; 12 — емкость с подогревом; 13 — газожидкостной поток из душа; 14 — газожидкостной поток из умывальника

 


Система приема и консервации урины (СПК-УМ): 1 — устройство для приема урины; 2 — дозатор консерванта и смывной воды; 3 — емкость с консервантом; 4 — емкость для смывной воды; 5,6- датчик заполнения и опорожнения емкости; 7 — центробежный сепаратор; 8 — электромагнитный клапан; 9 — емкость сбора урины; 10 — резервный статический сепаратор; 11 — сигнализатор; 12 — вентилятор; 13 — фильтр воздушный

 

При длительных автономных полетах на окололунной орбите и организации лунной базы в состав средств регенерации воды войдут дополнительные звенья, регенерирующие воду из санитарно-гигиенического (душевого и стирального) оборудования, системы переработки углекислого газа и витаминной оранжереи. Необходимо провести модернизацию системы регенерации воды из конденсата в части регенерации воды из дополнительных источников и снижения массы расходуемых материалов, а системы регенерации воды из урины со средствами приема — в части увеличения степени извлечения воды из урины, уменьшения энергопотребления и массы расходуемых материалов. Система регенерации санитарно-гигиенической воды должна восстанавливать воду из дополнительных источников.

 

Конденсат, образующийся в системе кондиционирования воздуха станции и в оранжерее, должен очищаться в системе регенерации воды из конденсата атмосферной влаги (типа СРВ-К) с коэффициентом извлечения воды 100%. Очистка в данной системе осуществляется постадийно — на первой стадии очистки каталитическим окислением органических примесей, и на второй стадии — хемосорбционным поглощением примесей ионообменными смолами, с сорбционной доочисткой недоокисленных на первой стадии органических примесей. Система осуществляет также механическую фильтрацию и обеззараживание воды — добавлением ионов серебра и пастеризацией (в зависимости от назначения регенерированной воды). В этой же системе может очищаться конденсат из подсистемы дистилляции системы типа СРВ-У и воды из системы переработки углекислого газа (СПУ-ГВ). В системе также может осуществляться доочистка воды запасов. При необходимости в системе регенерации воды из конденсата воздуха СРВ-К должно быть предусмотрено дополнительное резервное оборудование, которое может обеспечить регенерацию воды из различных источников в случае нештатных ситуаций. Вероятнее всего, в этих случаях будут использованы мембранные технологии и высокотемпературный катализ. Извлечение воды из урины, предварительно консервированной для предотвращения дуохимического разложения, может осуществляться в модернизированной системе типа СРВ-УМ (подсистема дистилляции системы СРВ-УМ представлена на рис. ниже), основанной на методе парокомпрессионной вакуумной дистилляции. Извлечение воды из урины осуществляется в этой системе низкотемпературным выпариванием паров воды и рекуперацией энергии, выделяющейся при конденсации.

 


Подсистема дистилляции системы регенерации воды из урины СРВ-УМ: 1 — центробежный многоступенчатый вакуумный дистиллятор; 2 — компрессор пара; 3 — насос; 4 — термоэлектрический тепловой насос; 5 — охладитель; 6 — емкость для упаренного раствора; 7 — датчик заполнения/опорожнения емкости; 8 — насос конденсата; 9 — емкость промежуточная; 10 — ресивер; 11 — воздуходувка; 12 — вакуумный насос; КП — клапан предохранительный; КЭ — клапан электромагнитный; СПК-У — система приема и консервации урины

Автор: Admin | 2014-08-24 |

Лунная база: основные положения по комплексу жизнеобеспечения


Регенерационный комплекс средств жизнеобеспечения для обитаемой лунной базы и лунной орбитальной станции первых этапов может быть создан только на основе физико-химических процессов регенерации, так как создание комплекса только на основе биологических процессов потребует больших массовых и энергетических затрат, превосходящих возможности современных космических средств, кроме того, эта проблема пока не решена и в научном плане. Так, например, энергозатраты только космической оранжереи для полного воспроизводства растительной части пищевого рациона составляют 1200-1600 кВт-ч в сутки на одного члена экипажа. Такой комплекс может постепенно создаваться для последующих стадий освоения Луны. В то же время необходимость создания биологически полноценной и комфортной среды обитания делает целесообразным включение в состав базы и станции витаминной оранжереи.

 

Создание регенерационных средств жизнеобеспечения и их отработка для обеспечения надежности вне земной орбиты — длительная и дорогостоящая задача. Поэтому для первоначального этапа освоения Луны и для орбитальных станций на орбитах Земли и Луны целесообразно разработать единый базовый комплекс, работающий как в невесомости, так и в условиях гравитации, с размерностью, например, на 3-6 членов экипажа. Комплекс должен создаваться на основе опыта эксплуатации аналогичных систем на орбитальной станции «Мир» и российском сегменте Международной космической станции. На последующих этапах освоения Луны для базы должен быть создан свой комплекс с учетом работы в условиях гравитации, а базовый можно будет использовать в качестве резервного.

 

Анализ массовых характеристик регенерационных систем показывает, что каждая в отдельности регенерационная система первого поколения имеет массу аппаратов до 150-200 кг. При дальнейшем совершенствовании регенерационных систем их масса может быть уменьшена в 1,5-2 раза.

 


Состав комплекса жизнеобеспечения лунной базы и орбитальной станции первого этапа должен быть следующим:

— средства обеспечения газового состава (СОГС);

— средства водообеспечения (СВО);

— средства обеспечения питанием (СОП);

— санитарно-гигиеническое оборудование (СГО);

— средства индивидуальной защиты, включая спасательный, выходной и лунный (планетарный) скафандры (СИЗ);

— витаминная оранжерея.

 

Условно сюда можно отнести средства противопожарной защиты (СППЗ) и средства медицинского обеспечения (СМО). Часть задач обеспечения жизнедеятельности, связанных с обеспечением теплообмена организма космонавта с окружающей средой, выполняют средства обеспечения теплового режима (СОТР), не входящие в комплекс средств жизнеобеспечения.

 

Комплекс можно разделить на две группы:

1. Средства обеспечения массообмена человека (обеспечения кислородом и удаления двуокиси углерода, водообеспечения, обеспечения рационами питания), конкретный выбор которых определяет степень замкнутости регенерационного комплекса.

2. Средства обеспечения параметров и комфортных условий среды обитания (контроля и регулирования общего давления атмосферы, хранения, приготовления и приема пищи, санитарно-гигиенического обеспечения и др.), выбор которых определяет степень комфорта экипажа.

 


Критерием оценки эффективности комплекса средств жизнеобеспечения являются массовые затраты на расходуемые элементы. Минимальная масса таких веществ достигается при максимальной степени замкнутости по составляющим массообменного баланса человека. Степень замкнутости, кроме реализации процессов регенерации, определяется составом рациона питания и количеством воды, присутствующей в рационе питания. Максимальная степень замкнутости может быть достигнута только при полном извлечении воды из продуктов жизнедеятельности экипажа и полном извлечении кислорода из выдыхаемого воздуха (в выделяемом воздухе с углекислым газом содержится 80% необходимого для дыхания человека кислорода). Массообменный баланс человека представлен в табл. 4.7, из которой видно, что человек выделяет воды больше, чем потребляет. Извлекая кислород и расходуя часть избытка воды на обеспечение человека кислородом путем электролиза воды, можно создать комплекс, обеспечивающий космонавта водой и кислородом за счет регенерации продуктов жизнедеятельности и извлечении воды (сушке) из удаляемых отходов.

Автор: Admin | 2014-08-13 |

Средства жизнеобеспечения Лунной базы и Лунной орбитальной станции

Гораздо больше чем освоение Луны, Вас интересует семинар по безопасности в строительстве? В таком случае я хочу порекомендовать Вам посетить www.gasis.su. Здесь Вы сможете записать свой персонал на курсы по повышению квалификации в данной области!



 

Средства жизнеобеспечения (СЖО) космонавта в обитаемом космическом аппарате — это совокупность функционально взаимосвязанных средств и систем, предназначенных для создания в обитаемом отсеке условий, обеспечивающих поддержание массообмена организма человека с окружающей средой на уровне, необходимом для сохранения здоровья и работоспособности.

 

Задачей средств жизнеобеспечения является обеспечение на заданное время в замкнутом объеме необходимых физико-химических параметров среды обитания, количества и качества потребляемых веществ (кислорода, воды, пищи) и в удалении продуктов жизнедеятельности. Для обеспечения биологически полноценной среды обитания человека в замкнутом объеме для неограниченного времени пребывания потребуются средства с биологическими звеньями, обеспечивающими круговорот веществ.

 


Использование задела по средствам жизнеобеспечения орбитальных станций. Основное условие, влияющие на характеристики средств жизнеобеспечения — длительность непрерывного пребывания человека в космическом аппарате. При увеличении продолжительности экспедиции более 1-2 месяцев наиболее эффективным по массовым характеристикам становится применение регенерационных систем. Создание такого регенерационного комплекса было целью разработки и отработки процессов и систем физико-химической регенерации среды на долговременных орбитальных околоземных станциях «Мир» и МКС. При создании средств жизнеобеспечения этих станций были практически решены основные научно-технические задачи, включая электролиз воды с разделением газожидкостных фаз в условиях микрогравитации; десорбция углекислого газа и газообразных микропримесей в космический вакуум; регенерация воды из конденсата атмосферной влаги и урины. Разработанные средства обеспечили жизнедеятельность экипажей на станции «Мир» в течение 15 лет, на МКС — с марта 2000 г.

 


Станция «Мир»

 

Созданный комплекс средств жизнеобеспечения для орбитальных станций позволяет осуществлять непрерывный космический полет одного экипажа в околоземном пространстве продолжительностью до одного года при регулярной доставке с Земли продуктов питания, воды, средств личной гигиены, запасов газов и запасного оборудования. Поэтому этот комплекс целесообразно сделать основой для создания комплекса средств жизнеобеспечения лунной базы и лунной орбитальной станции первых этапов освоения Луны.

Автор: Admin | 2014-08-13 |

Охота на астероиды


Основоположники космонавтики недооценивали важность астероидов. В первой половине XX века было известно, что их скопление находится между орбитами Марса и Юпитера. Самую популярную гипотезу о происхождении астероидов выдвинул астроном Генрих Ольберс: он полагал, что эти малые небесные тела — обломки «пятой» планеты, некогда разорванной приливными силами. Фантасты тут же бросились придумывать бесконечные версии того, как могла погибнуть «родина» астероидов, получившая условное название Фаэтон: одни писатели полагали, что она развалилась по естественным причинам, другие — что её погубила ядерная война, начатая местными жителями. Многие надеялись, что изучение астероидов позволит найти следы цивилизации, которая правила на Фаэтоне миллионы лет назад и периодически навещала Землю. Читать дальше>>

Автор: Admin | 2019-07-30 | Космос

Система энергоснабжения Земли из космоса на базе лунных ресурсов: концепция Крисвелла

Обязательно изучите возможность воплощения в жизнь концепции Крисвелла, но только после того, как подберете организацию, в прейскуранте услуг которой значится «хранение шин«? В этом случае «Шинный отель» — именно то, что вам нужно. Узнайте подробности на www.shinahotel.ru.



Наиболее крупный проект по созданию космической системы энергоснабжения на основе лунных ресурсов, преобразующей солнечную энергию на Луне и передающей ее на Землю с использованием СВЧ-излучения, был предложен в конце 80-х годов Д. Р. Крисвеллом (США), где лунная энергетическая система была рассчитана на мощность 20 ТВт, т.е. более современной мощности мировой энергетики по первичным источникам.

 

Рассматривались следующие три разновидности лунной энергосистемы с размещением солнечных коллекторов на поверхности Луны:

 


Принципиальная схема лунной энергетической системы

 

1. Исходная концепция (рис. выше) со светоотражающими зеркалами на окололунных орбитах (ИСЛ) и спутниками-ретрансляторами СВЧ-лучей на орбитах вокруг Земли (ИСЗ).

2.    Концепция системы с дополнительными базами солнечных коллекторов на обратной (невидимой с Земли) стороне Луны вместо зеркал на орбите ИСЛ.

3.    «Упрощенная» концепция без зеркал на орбите ИСЛ и отражателей на орбите ИСЗ.

 

Концепции 1 и 2 обеспечивают непрерывное энергоснабжение Земли (за исключением периодов полных лунных затмений), а концепция 3 — прерывистое, только в периоды, когда Луна видна с того места, где расположена приемная антенна (ректенна).

 

По исходной (первой) концепции на Луне создается несколько пар баз с солнечными коллекторами и СВЧ-антеннами. По возможности, они располагаются ближе к периметру Луны, чтобы наибольшее время была освещена хотя бы одна из них. В связи с тем, что видимая с Земли сторона Луны периодически (ежемесячно) оказывается полностью в тени, вокруг Луны запускается серия спутников с отражателями солнечного света, освещающими коллекторы в период затенения.

 

На Земле сооружаются приемные ректенны и запускаются спутники-ретрансляторы СВЧ-излучения. Ректенны получают энергию либо непосредственно с Луны, либо через спутники-ретрансляторы. По мысли автора при такой схеме ЛЭС будет обеспечено постоянное (без перерывов) энергоснабжение Земли. Предполагался 40-летний срок развития (строительства) ЛЭС до 20 ТВт (получаемых на Земле) и 30-летний срок последующей эксплуатации. При этом удельные капиталовложения будут составлять 400 долл./кВт, а себестоимость электроэнергии — 0,002 долл./(кВтхчас).

 


Всестороннее обсуждение задач, связанных с созданием ЛЭС, показало, что они могут быть технически решены при изготовлении основных ее элементов на Луне из лунных материалов при соответствующей модификации и корректировке масштабов системы. Для этого там должны быть созданы обитаемые лунные базы и максимально автоматизированные и роботизированные производства, включая производство топлива для ракет.

 

По мнению ученых Сибирского отделения РАН, проект привлекает своей огромной мощностью, а также очень хорошими удельными экономическими показателями. Последние объясняются относительно низкими затратами на космическую (лунную и орбитальную) часть системы — они составляют лишь 13% полных затрат. Достигается это максимальной механизацией и роботизацией работ по добыче лунных материалов и производству элементов системы на Луне. Предполагается, что персонал, находящийся на Луне и орбитах, составит всего около 5 тыс. человек. «Земные» затраты в космическую часть системы будут состоять в соответствующих НИР и ОКР, запуске на Луну и орбиты некоторого минимума материалов и оборудования, необходимых для создания обитаемых баз, налаживания производства и жизнеобеспечения персонала, зарплате персонала и расходах на его периодическую замену. Все остальное, включая изготовление механизмов-роботов и всевозможных конструкций, монтаж элементов, получение топлива для ракет, будет осуществляться непосредственно на Луне.

Автор: Admin | 2016-02-06 |

Освоение Луны: взлетно-посадочный и посадочный комплексы

Отправляетесь в Черногорию на конференцию, посвященную взлетным и посадочным комплексам на Луне? Тогда вам следует знать, что такси Подгорица довезет вас в нужное место быстро и за разумные деньги! Подробности вы найдете на aerodromtaxi.com.




При массе взлетного модуля с жилым и шлюзовым отсеками (т.е. массы полезного груза) в 10 т, масса одноразового взлетно-посадочного и посадочного (с полезным грузом) комплекса с двигательной установкой на высококипящих топливных компонентах составит порядка 28 т. Внешний вид взлетно-посадочного комплекса показан на рис. ниже, а его основные характеристики следующие:

масса перед сходом с окололунной орбиты, т

ДО 28

масса взлетного модуля, т

ДО 7

экипаж, человек

3

компоненты топлива

АТ+НДМГ

 

 


Внешний вид взлетно-посадочного комплекса первого этапа

 

Взлетно-посадочный комплекс должен содержать три изолированных обитаемых отсека: взлетную кабину, жилой отсек и шлюзовой отсек. Учитывая, что время пребывания экипажа в комплексе предполагается ограничить 90 человеко-сутками, комплекс средств жизнеобеспечения должен состоять из систем на запасах, размещенных в жилом отсеке. В шлюзовом отсеке могут быть размещаться два выходных скафандра, полный комплект агрегатов средств обеспечения выхода и насосный агрегат откачки, обеспечивающий откачку шлюза до остаточного давления ~15 мм рт.ст. Откачка газа из шлюзового отсека осуществляется в жилой отсек с соответствующим повышением в нем давления.

 

Многоразовый межорбитальный буксир с ЭРДУ предназначен для доставки лунных взлетно-посадочных и посадочных комплексов, контейнеров с полезной нагрузкой, топливом, научного оборудования и многих других грузов, необходимых для освоения Луны или произведенных на Луне с низкой околоземной орбиты на низкую окололунную орбиту и обратно.

 

Такой буксир может быть использован для доставки полезных грузов в точки либрации и на высокие околоземные и окололунные орбиты и обратно. Принципиально возможно его использование для снабжения электроэнергией бортовых систем энергоемких КА, в том числе лунной орбитальной станции.

 


Возможный вид многоразового межорбитального буксира с ядерной энергоустановкой

 

Вариант многоразового межорбитального буксира с ядерной энергоустановкой в РКК «Энергия» рассматривается в качестве основного. Возможный вид буксира с ЯЭУ приведен на рис. выше, а основные характеристики одного из вариантов такого буксира следующие:

масса без запасов рабочего тела и без ПГ, т

25

масса рабочего тела, т

20

мощность энергоустановки, МВт

4,25

масса системы хранения и подачи (СХП), т

2,85

количество ЭРД, шт.; из них:

150

рабочие, шт.

120

резерв, шт.

30

мощность, потребляемая одним ЭРД, кВт

50

тяга одного ЭРД, Н

1

суммарная тяга блоков ЭРДУ (тяга ДУ), Н

до 120

удельный импульс ЭРД, с

4547,5

время перелета с орбиты Земли на орбиту Луны и обратно, суток

180

масса полезного груза, т

30

 


Многоразовый межорбитальный буксир с ЭРДУ является одним из элементов транспортной системы, существенно повышающим эффективность транспортных операций и использующийся на всех этапах освоения Луны и этапах развития транспортной космической системы.

Автор: Admin | 2015-02-09 |
1 страница из 512345

GIF
Видео
Видео
Все обо всем
Забавно!
Иллюстрированные факты
Искусство
Истории
Все размещенные на сайте материалы без указания первоисточника являются авторскими. Любая перепечатка информации с данного сайта должна сопровождаться ссылкой, ведущей на www.unnatural.ru.