Необычный

Маленький шаг — первый этап колонизации солнечной системы


В июле 1969 года едва ли кто-то мог усомниться в том, что маленький шаг Нила Армстронга — со ступени спускаемого аппарата на лунный грунт — действительно стал огромным скачком для всего человечества. Самым смелым писателям уже грезились стеклянные купола лунных городов и новый Дикий Запад в поясе астероидов — с ордами старателей, добывающих минералы. Авторы менее романтичные, взяв за основу реальный опыт колонизации Антарктиды, описывали сеть исследовательских баз в лунных кратерах и ржавых пустынях Марса. Аналогия с Антарктидой действительно казалась убедительной. Но что-то пошло не так. Читать дальше>>

Автор: Admin | 2018-03-05 | Космос, Наука

Добыча гелия-3 из лунного грунта с использованием солнечной тепловой энергии. Продолжение

1
Разделение компонентов производится в процессе охлаждения газовой смеси и конденсации различных ее компонентов по мере снижения температуры. Нижняя температура рабочего цикла составляет 55 К, что достаточно для ожижения всех компонентов, кроме гелия. Площадь охлаждающего радиатора, необходимого для работы криогенной машины выбранной производительности, составляет 800 м2.

Выделенный из смеси газообразный гелий подается в гелиевый ожижитель, где проводится его ожижение и изотопное разделение. В предположении, что ожижитель имеет КПД 17% от цикла Карно и располагаемой мощности 180 кВт при верхней температуре цикла 300 К, требуется 15 дней непрерывной работы для ожижения и охлаждения до 1,5 К 3300 кг гелия. Разделение изотопов производится за счет явления сверхтекучести. Затраты энергии в этом процессе незначительны. Добытый на Луне гелий-3 транспортируется на Землю в сжиженном виде.

 

При обрабатываемой за год площади 1х106 м2 (при длительности работы за год 3942 ч) и мощности тепловой обработки 12,3 МВт, ежегодная добыча 3Не составит 33 кг.

 

2

Однако этот способ имеет ряд недостатков. Так, например, площадь поверхности, обрабатываемая одним агрегатом за год, составляет 1 км2, а отдельная рабочая площадка 9×104 м2, поэтому в течение года необходимо совершить 11 перемещений агрегата и главного зеркала вместе с системой слежения на расстояние около 300 м. С учетом того, что полностью развернутая система состоит из 100 агрегатов добычи гелия, транспортировка агрегатов на Луну, монтаж, ремонт и эксплуатация системы нагрева грунта с помощью солнечной энергии представляется очень сложной.

 

Большее количество вопросов вызывает применение нержавеющих и молибденовых тепловых труб со щелочно-металлическим рабочим телом, работающих в среде водяных паров и CO, так как при этом образуются окислы металлов — рабочего тела и материала корпуса. Эти окислы взаимодействую друг с другом с образованием хрупких и легкоплавких соединений, способствующих разрушению материала корпуса и вытеканию теплоносителя. Поэтому представляется, что опубликованная в концепция добычи гелия-3 на Луне с использованием солнечной энергии от системы зеркал, достаточно слабо проработана в части применяемых материалов.

 

3

Однако главным недостатком рассмотренной технологии представляется создание и использование достаточно сложного и громоздкого оборудования для добычи только гелия-3.

Автор: Admin | 2014-10-30 |

Добыча гелия-3 из лунного грунта с использованием солнечной тепловой энергии


Предложения по добыче гелия-3 из лунного грунта для наземной термоядерной энергетики содержатся в ряде работ, однако наиболее подробно они изложены в работах, проводимых в Висконсинском университете США.

 

В для добычи 3Не предполагается обрабатывать грунт, содержащий максимальное количество гелия, т.е. грунты с большим количеством ильменита FeTi03. Такие грунты расположены в районе Моря Спокойствия, области близкой к Лунному экватору. Однако анализ фотографий поверхности отдельных участков Моря Спокойствия, наиболее богатых ильменитом, показал достаточно большое количество кратеров, окруженных выбросами крупного обломочного материала и камней. Для обеспечения более благоприятной работы добывающих агрегатов целесообразно перерабатывать грунт, не содержащий крупноформатный обломочный материал. Участки квадратной формы, размером 300×300 м2, свободные от такого материала, занимают до 80% площади областей Моря Спокойствия, богатых ильменитом. Исходя из этого, предложено разделить всю обрабатываемую поверхность на смежные участки площадью порядка 300×300 м2. Концентрация газов (г/т) в морском реголите следующая: Не3— 9х103(8,1х103), Не4— 30 (27), Н2— 50-60 (50), С — 142-226 (166), N2— 102-153 (115) (в скобках — концентрация в зернах, меньших 50 мкм).


Подвижный лунный добывающий агрегат массой 18 т добывает грунт, образуя траншею шириной Ими глубиной до 3 м, отделяет мелкую фракцию грунта, размером менее 50 мкм, нагревает ее до 700°С, собирает выделившийся газ в баллон высокого давления и передает собранный в баллон газ для дальнейшей обработки. Выемка грунта производится роторным ковшовым агрегатом, размещенным на поворачивающейся стреле добывающего агрегата с углом поворота стрелы 120°. Грунт подается конвейером на устройство разделения, в котором частицы размером более 50 мкм удаляются из процесса обработки и сразу выбрасываются обратно в траншею. Частицы размером менее 50 мкм транспортируются конвейером в зону нагрева. При нагреве до 700°С из грунта извлекается до 90% содержащихся в нем газов.

Для увеличения эффективности тепловой обработки применяется рекуперация тепловой энергии из обработанного грунта с помощью тепловых труб.

 


Нагрев грунта осуществляется солнечной энергией, собираемой подвижным первичным зеркалом диаметром 110 м, и принимаемой на подвижном агрегате вторичным зеркалом, диаметром 10 м. Движение агрегата по обрабатываемой поверхности отслеживается обоими зеркалами. Вторичное зеркало передает энергию в приемник, где происходите ее равномерное распределение по теплообменной поверхности с помощью дополнительных зеркал и тепловых труб. Греющие тепловые трубы имеют общую для всех зону испарения, совмещенную с поверхностью для приема солнечной энергии, рабочее тело — натрий.

Газы, выделившиеся при тепловой обработке, собираются в баллон высокого давления, где хранятся при давлении до 150 атм до полного заполнения баллона. Повышение давления проводится шестиступенчатым компрессором с промежуточным охлаждением газа между ступенями сжатия. Затраты энергии на сжатие составляют 160 кВт. Баллоны оборудованы палладиевыми мембранами, работающими при температуре 350-400°С, для отделения водорода от остальных компонентов смеси. По окончании заполнения, баллон транспортируется к устройству разделения газовых компонентов.

Автор: Admin | 2014-10-27 |

Обнаруженная на самом краю Солнечной системы планета оказалась безжизненной ледяной пустыней

  • Карликовая планета1 Макемаке – один из пяти самых удаленных от Земли миров, обращающихся вокруг Солнца.
  • Это миниатюрное небесное тело «обитает» в поясе Койпера, от которого до Солнца «всего» 6,5 млрд. километров.
  • Макемаке настолько далеко от небесного светила, что делает полный оборот вокруг него за 310 лет.
  • Обнаружить Макемаке удалось благодаря редкому космическому явлению, в ходе которого планета затмила собой свет далекой звезды.

Карликовая планета, обнаруженная семь лет назад у самой границы Солнечной системы, мертва, покрыта льдами и не имеет собственной атмосферы.
Читать дальше>>

Автор: Admin | 2012-11-23 | Космос

Человечество вышло за пределы Солнечной системы: Вояджер-1 удалился от Земли на 17 970 000 000 км и подошел к границе, за которой начинается межзвездное пространство

Выход космического аппарата Вояджер-1 за пределы Солнечной системы можно без преувеличения назвать величайшим достижением рода человеческого.

Вы только задумайтесь на секунду: нам удалось создать аппарат, который был запущен с поверхности нашей планеты в бездонную глубину бескрайнего космоса, достиг самого края Солнечной системы и стал первым с момента Большого взрыва рукотворным объектом, ‘плывущим’ по волнам межзвездного пространства.

Космический зонд Вояджер-1 – детище небезызвестного «Национального управления по воздухоплаванию и исследованию космического пространства» (НАСА), запуск которого на земную орбиту был осуществлен 5 сентября 1977 года. За 35 лет своего существования Вояджер-1 преодолел 17 970 000 000 км и сейчас движется по ‘волнам’ космического вакуума со скоростью чуть более 10 километров в секунду!
Читать дальше>>

Автор: Admin | 2012-06-16 | Космос

ФИЗИЧЕСКИЕ ОСОБЕННОСТИ СОЛНЕЧНОЙ СИСТЕМЫ: КОМЕТЫ. Часть II

Если хотите порадовать свою вторую половинку и сделать ей незабываемый подарок, тогда советую преподнесите ей букет цветов. На сайте www.dostavka-buketov.spb.ru Вы сможете найти цветочные композиции, которые не смогут оставить равнодушной ни одну из представительниц слабого пола.



Энке — самая короткопериодная комета в Солнечной системе

 

Непрерывная потеря вещества через хвост, свойственная всем кометам, приводит к тому, что они сравнительно быстро уменьшают свою яркость. Например, ближайшая к Солнцу комета Энке, принадлежащая к семейству Юпитера, с периодом обращения в 3,3 года, за последние 100 лет вдвое уменьшила свою яркость.

 

Все это говорит о том, что кометы или должны были образоваться сравнительно недавно или же они, образовавшись в давние эпохи, двигались в отдаленных областях пространства, вдали от Солнца, и не испытывали на себе его разрушительного действия. Ряд авторов показал, что при больших размерах кометных орбит может сказываться возмущающее действие со стороны ближайших звезд, а это в отдельных случаях может приводить к преобразованию кометных орбит в такие, по которым они могут проникать во внутренние области Солнечной системы.

 

Можно задать вопрос: каковы могут быть последствия непосредственного столкновения кометы с Землей, что, согласно расчетам Г. Юри, должно было произойти уже сотни раз за последние миллиарды лет? Одно из подобных редких событий произошло 30 июня 1908 г. и известно как падение Тунгусского метеорита. Вместе с небольшим ядром кометы в земную атмосферу влетел ее пылевой хвост, который задержался на короткое время на высоте до 600—800 км и произвел очень сильное свечение ночного неба в ночь с 30 июня на 1 июля. Ядро кометы, в противоположность крупным метеоритам, полностью затормозилось в воздухе, далеко не достигнув земной поверхности, и взорвалось с огромной силой, причем соответствующие воздушные волны, вызванные этим взрывом, были отмечены на многих станциях земного шара.

 

Вблизи Берлина, на Потсдамской обсерватории, была зарегистрирована как прямая, так и обратная воздушная волна, и это позволило с большой точностью определить скорость распространения волны и показать, что взрыв должен был произойти на высоте около 6—7 км над земной поверхностью. — Твердые продукты взрыва сравнительно медленно распространились во всей атмосфере и примерно через две недели начали достигать западного побережья США, где было отмечено заметное ослабление солнечной радиации. Общая масса подобного распыленного взрывом вещества должна была составить примерно миллион тонн.

 

Если бы подобная колоссальная масса была сосредоточена в одном оплошном теле, аналогичном метеориту, то она легко прошла бы сквозь земную атмосферу и образовала довольно значительный кратер или целую группу кратеров, как это неоднократно бывало ранее. Кометное же ядро, представляющее тесное скопление мелких частиц, занимающих объем в данном случае диаметром порядка одного километра, не могло произвести ни малейшею нарушения рельефа местности и, конечно, не сопровождалось выпадением каких-либо крупных осколков. Единственным веществом, найденным в месте падения, были микроскопические шарики металлической и силикатной природы, которые, вследствие своей малости, были разнесены ветрами на значительные расстояния и только в ничтожном количестве обнаруживаются и «поныне в месте падения или на расстояниях от него в десятки километров.

 

Какое значение для нашей планеты могут иметь подобные встречи с кометами?

 

По-видимому, как указывают различные специалисты, это могло быть весьма важным лишь в том отношении, что земная атмосфера постепенно обогащалась таким путем различными углеводородными соединениями, приносимыми кометами из отдаленного межзвездного пространства, где, как можно полагать, происходит образование подобных тел.

 

Как указывает советский академик А. И. Опарин (р. 1894), для возникновения жизни на первобытной Земле необходимо было предварительное обогащение земной атмосферы различными углеводородами. Он предполагает, что это могло произойти в результате воздействия воды на химические соединения углерода с различными металлами и путем образования углеводородов в кристаллических породах. Однако несомненно, что совершенно неизбежные столкновения комет с Землей должны были обогащать нашу планету этими необходимыми для нее веществами, из которых, как показывают лабораторные опыты, могут возникать все более и более сложные органические соединения. Но даже и при столь активной помощи со стороны комет жизнь на Земле, определенно, могла развиваться лишь за последний миллиард лет ее существования после того, как по крайней мере 3 млрд. лет прошло в безжизненном состоянии со времени ее образования как планеты.

 


Комета Галлея

 

Другая роль комет заключается в том, что они наполняют межпланетное пространство мелкой метеорной пылью, которая представляет результат их полного распада. Имеется много примеров того, как почти на глазах наблюдателя кометы разделялись на самостоятельные части и порождали метеорные потоки. По существу, значительная доля действующих метеорных потоков связана с определенными кометами: августовский поток Персеид1 — с кометой 1862 II, майский поток Акварид — с кометой Галлея, ноябрьский поток Леонид, который в 1799, 1833 и 1866 гг. давал поразительное зрелище звездных дождей, связан с кометой 1866 I и т. д. Но и эти потоки также отличаются весьма непродолжительным существованием. Быстро разлагаясь, растягиваясь вдоль своих орбит и рассеиваясь в пространстве, они в конце концов смешиваются с общим пылевым фоном, образованным в прежние эпохи существовавшими ранее метеорными потоками, и поступают, как можно фигурально выразиться, в общее кладбище комет.

 

—————————————————————————————————-

1Свои названия метеорные потоки получают по названиям созвездий, из которых происходит вылет метеоров — падающих «звезд»: Персеиды — из созвездия Персея, Аквариды — из созвездия Водолея, Леониды — из созвездия Льва.

—————————————————————————————————-

 

Итак, межпланетное пространство заполнено пылевой материей, которая концентрируется к плоскости земной орбиты и проявляет себя тем, что заметно рассеивает солнечный свет. И действительно, в южных широтах Земли после захода Солнца, с наступлением темноты, можно видеть при отсутствии посторонних огней широкую светлую полосу, проходящую через зодиакальные созвездия и быстро убывающую по яркости и ширине с удалением от Солнца. Это свечение, называемое зодиакальным светом, было известно еще в древности. На чистом небе Египта весной и осенью пояс зодиакальных созвездий поднимается высоко над горизонтом, и зодиакальный свет четко бросается в глаза, намного превосходя своей яркостью самые яркие области Млечного Пути.

 

Наблюдения и расчеты показывают, что плотность межпланетной пылевой материи зодиакального света возрастает обратно пропорционально расстоянию от Солнца, но что общая ее масса, заключенная в пределах земной орбиты, все же очень мала и сравнима с массой одного лишь астероида диаметром около 10 км и плотностью около 3 г\см3. Это вещество может быть видимо только потому, что находится в мелкораздробленном пылевом состоянии. Самые мелкие пылинки, размером 0,1 микрона, быстро выталкиваются из Солнечной системы действием лучевого давления, а более крупные, напротив, испытывают торможение и постепенно выпадают на Солнце, сгорая в его огненном горне. Можно считать, что все вещество зодиакального света должно обновляться каждые 100 000 лет.

Автор: Admin | 2012-05-17 |

ФИЗИЧЕСКИЕ ОСОБЕННОСТИ СОЛНЕЧНОЙ СИСТЕМЫ: КОМЕТЫ. Часть I

Если последние несколько дней Вы только и занимаетесь тем, что вбиваете в поисковую строку Яндекса “справка 2 ндфл купить” надеясь найти желаемое, тогда настоятельно советую Вам обратиться к специалистам сайта www.trydovik.ru!



Комета 103P/Hartley попавшая в поле зрения телескопа Хаббл

 

Совершенно другая природа комет — своеобразных неустойчивые тел, заполняющих Солнечную систему и двигающихся в ней в отличие от планет по очень вытянутым орбитам.

 

Каждый год открывается около десятка комет в виде слабых туманных пятен, по большей части остающихся недоступными невооруженному глазу. Лишь немногие кометы достигают большой яркости и развивают хвост, но и они на расстоянии в несколько астрономических единиц все же представляются в виде слабых туманностей. Только приближаясь к Солнцу, они все больше выделяют из себя газы, главным образом углерод и его соединения с водородом и азотом, а также тонкую пыль. Это зачастую происходит резкими взрывами, причем вокруг кометного ядра возникает ряд параболических оболочек, вещество которых затем переходит в комет-ный хвост, направленный, в общем, в сторону, противоположную Солнцу.

 

Изучение кометных хвостов было начато еще Ф. Бесселем и в особенности было развито трудами нашего знаменитого астронома Ф. А. Бредихина (1831—1904) и его учеников, прежде всего членом-корреспондентом Академии наук СССР С. В. Орловым (1880—1958). Бредихин впервые доказал, что хвосты комет, в зависимости от своего состава, бывают нескольких резко выраженных типов, что связано с отношением отталкивательной силы к силе солнечного притяжения. Так, например, если сила отталкивания превышает силу солнечного притяжения в одиннадцать и более раз, то образуется почти прямой хвост — характерный хвост первого типа.

 

Таким образом, на примере кометных форм было установлено существование сил отталкивания в Солнечной системе, что имеет исключительно большое принципиальное значение.

 


Вот так невзрачно выглядит ядро одной из красивейших комет – Темпеля 1

 

Ядро кометы — ее более массивная часть — движется под влиянием сил всемирного тяготения, но для ее более тонкого вещества преобладают какие-то силы отталкивания.

 

Какова же природа этих отталкивательных сил?

 

Английским физиком К. Максвеллом (1831—1879) чисто теоретически и затем нашим физиком П. Н. Лебедевым (1866—1912) опытным путем было доказано, что лучи света, падающие на любое тело, производят определенное давление, которое при достаточно малых размерах тела может в несколько раз превзойти его вес. Поэтому в хвостах комет сначала видели просто проявление обычного светового отталкивания. Однако было обнаружено, как, например, в комете Морхауза 1908 г., что отталкивательные силы, определяемые по отдельным облачным образованиям в кометных хвостах, могут в тысячи раз превосходить солнечное притяжение, что совершенно немыслимо для светового отталкивания. Оказывается, здесь проявляется действие корпускулярного излучения Солнца: потоки корпускул, двигаясь со скоростью тысячи километров в секунду, налетают на кометы, как и на другие тела Солнечной системы, и производят сильное давление на газовое и пылевое вещество комет.

 

Раньше предполагалось, что кометы могут являться к нам из глубин межзвездного пространства, но детальные исследования их орбит показали, что все они принадлежат к Солнечной системе и обращаются вокруг Солнца по большей части по весьма вытянутым орбитам с различными периодами вплоть до сотен тысяч и миллионов лет. Плоскости кометных орбит ориентированы в пространстве самым произвольным образом, и в их расположении не проявляется каких-либо закономерностей. Небольшая группа комет со сравнительно короткими периодами связана с планетами, преимущественно с массивным Юпитером, и, как можно думать, была образована из комет первой категории путем их захвата силой притяжения планет при прохождениях комет вблизи массивной планеты.

Автор: Admin | 2012-05-17 |

ФИЗИЧЕСКИЕ ОСОБЕННОСТИ СОЛНЕЧНОЙ СИСТЕМЫ: МЕТЕОРИТЫ


5,7% из всех упавших метеоритов состоят из железо-никелевого сплава. Ярчайшим представителем таких метеоритов является Вилламетт, изображенный на фотографии выше

 

Внутреннюю структуру железо-никелевых метеоритов можно назвать показательной, т.к. в большой степени ее структура зависит от относительного содержания никеля: чем меньше никеля, тем метеорит имеет более грубую структуру. Протравливая серной кислотой отполированную поверхность метеорита, можно легко обнаружить на ней своеобразный рисунок, называемый видманштеттеновыми фигурами, по имени австрийского ученого А. Б. Видманштеттена, получившего эти фигуры в 1808 г. при нагревании поверхности одного из железных метеоритов. Видманштеттеновы фигуры имеют вид треугольников, квадратов и других геометрических фигур, в зависимости от структуры! метеоритов и содержания в них никеля.

 


Так выглядит видманштеттенова структура

 

Можно заключить, что подобная структура могла возникнуть только в достаточно крупном космическом теле при сравнительно высокой температуре и давлении. Отдельные особенности химического состава и структуры метеоритов заставляют заключить, как это показано советским исследователем А. А. Явнелем, что они распадаются по крайней мере на 4—5 отдельные групп и что, следовательно, могли возникнуть путем распада не одного-единственного, но по крайней мере 4—5 различных родоначальных тел.

 

Малые планеты из-за большой вероятности пересечения их орбит должны довольно часто сталкиваться между собой с небольшими относительными скоростями. При этих столкновениях первоначальная структура получающихся обломков-метеоритов остается ненарушенной. Вследствие этого возраст вещества метеоритов, получаемый по радиоактивному методу путем сравнения содержания в метеоритах начального радиоактивного вещества [урана, тория, рубидия, калия 40] с конечным продуктом его распада (свинец 206, свинец 208, стронций, артон), характеризует именно промежуток времени с момента формирования соответствующего астероида, что принимается также за возраст всей Солнечной системы), в том числе и нашей Земли. По всем исследованиям метеоритного вещества этот возраст оказался равным примерно 4—5 млрд. лет.

 

С другой стороны, факт образования метеоритов при дроблении из астероидов очевиден по космическому возрасту — так называется возраст самих метеоритов, определяемый по выделению легкого гелия из ядер тяжелых химических элементов.

 


Сихотэ-Алиньский метеорит

 

Так, например, оказалось, что Сихотэ-Алиньский метеорит, выпавший 12 февраля 1947 г. на Дальнем Востоке, образовался всего около 170 млн. лет назад, в то время как другие метеориты имеют совсем иной космический возраст. Каменные метеориты, вероятно, вследствие их гораздо большего количества, имеют и меньший космический возраст. Самый молодой метеорит из известных в настоящее время, называемый Рамсдорф, образовался при астероидальном дроблении 2,4 млн. лет назад. Несомненно, что процесс дробления астероидов и образования метеоритов происходит и в настоящее время, причем образуются не только мелкие камни, но и огромные глыбы весом во много миллионов тонн. Подобные глыбы, двигаясь по самым разнообразным орбитам, могут с известной вероятностью встречаться с Землей, и в этом случае действительно происходят большие нарушения известных участков земной поверхности. Наиболее заметным свидетельством таких бомбардировок являются метеоритные кратеры (рис. 1), которые могут сохраняться в течение многих тысяч лет, в особенности в сухих безводных районах. Наиболее изучен из них метеоритный кратер в Аризонской пустыне (США) диаметром в 1200 м, возраст которого оценивается приблизительно в 25 000 лет. В окрестностях этого кратера найдено большое количество типичных осколков железных метеоритов; вес некоторые осколков достигает нескольких тонн. Целая группа подобных кратеров (наибольший около 100 метров в диаметре) находится на острове Саарема (Эзель). На всей Земле известно 14 вполне достоверных кратеров метеоритного происхождения, по большей части относящихся к совсем недавнему геологическому времени.

 


Рис. 1. Один из кратеров, образованных падением Сихотз-Алиньского метеорита 12 февраля 1947 г.

 

Естественно, что вследствие непрерывной деятельности ветра й воды метеоритные кратерьи исчезают сравнительно быстро по сравнению с огромными геологическими периодами, и поэтому кратеры, образовавшиеся в далеком прошлом, могут быть обнаружены сейчас лишь с большим трудом. Однако по ряду признаков можно утверждать, что так называемое кольцо Вредефорта около Претории (Южная Африка) есть остаток древнейшего метеоритного кратера диаметром около 50 км. Предполагается, что примерно 250 млн. лет назад астероид размером в полтора километра ударился в этом месте о земную поверхность с космической скоростью в десятки километров в секунду. Получившийся взрыв был, вероятно, в миллион раз более мощным, чем известное извержение вулкана Кракатау1 в 1883 г., когда половина горьи взлетела в воздух, а мелкая пыль плавала в высокой атмосфере в течение нескольких лет.

 

—————————————————————————————————-

Находится в Индонезии, в Зондском проливе, между островами Явой и Суматрой.

—————————————————————————————————-

Автор: Admin | 2012-05-17 |

ФИЗИЧЕСКИЕ ОСОБЕННОСТИ СОЛНЕЧНОЙ СИСТЕМЫ. Часть II

Превратить свой загородный дом в непреступную крепость Вам помогут опытные специалисты сайта www.zaborekran.ru, которые утверждают, что: “Бетонные заборы с шумозащитой для дач — лучший способ оградить частую собственность от нежелательных посягательств и посторонних шумов!”.



Перейдем теперь к характеристике особенностей планет. Эти характеристики сгруппированы в следующей таблице:

 

Среднее расстояние от Солнца

Период обращения в годах

Эксцентриситет (вытянутость) орбиты

Наклонение орбиты к плоскости земной орбиты

Масса планеты в массах Земли

Средняя плотность вещества планеты в г/см3

Период вращения вокруг оси, часы, мин.

Наклонение экватора планеты к плоскости ее орбиты

 
 

в млн. км

в астрономических единицах

 
 
 

Меркурий 

57,9 

0,387 

0,241 

0,206 

7° 10′ 

0,053 

5,3 

   

Венера 

108,2 

0,723 

0,615 

0,007 

3°23′ 

0,815 

4,95 

 

 

Земля 

149,6 

1,000 

1,000 

0,017 

 

1,000 

5,52 

23 56 

23°27′ 

Марс 

227,9 

1,524 

1,881 

0,093 

1°51′ 

0,107 

3,95 

24 37 

25°12′ 

Юпитер

778 

5,20 

11,86 

0,048 

1°18′ 

318 

1,33 

9 50 

3°7′ 

Сатурн 

1428 

9,55 

29,46 

0,056 

2°30′ 

95,2 

0,69 

10 14 

26°45′ 

Уран 

2872 

19,20 

84,02 

6,047

0°46′ 

14,55 

1,56 

10 49 

97°59′ 

Нептун 

4498 

30,09 

164,8 

0,009 

1°47′ 

17,23 

2,27 

15 40 

29° 

Плутон 

5910 

39,5 

248,4 

0,247 

17° 9′

0,9 

4 

16 

 

 

На основании этой таблицы можно прежде всего сделать вывод о том, что планеты образуют две резко выраженные группы — внутреннюю и внешнюю по отношению к поясу астероидов, располагающемуся между Марсом и Юпитером (рис. 1). К первой группе относятся Меркурий, Венера, Земля и Марс (рис. 2). Они сравнительно мальв — их общая масса не превышает 0,1% общей массы всех планет. Они отличаются сравнительно большой плотностью, довольно разреженной атмосферой, медленным вращением вокруг оси. Как можно полагать, самая главная отличительная особенность этих планет состоит в том, что в них велико относительное содержание тяжелых тугоплавких химических элементов по сравнению с наличием их в космосе вообще и в частности в солнечной атмосфере. Так, например, в земной, коре водород (элемент, наиболее распространенный во Вселенной) занимает только восьмое место по своей общей массе с учетом его содержания в различных минеральных соединениях. На первом же месте стоит кислород, который активно входит в химические соединения со многими элементами.

 


Рис. 1. Схема Солнечной системы. Кривые линии изображают пути, по которым движутся вокруг Солнца разные планеты. Так как пути некоторых планет не уместились на рисунке, они изображены не полностью, а путь планеты Плутона не изображен вовсе

 


Рис. 2. Сравнительные размеры больших планет

 

Напротив, внешние планеты имеют большие массы, но плотности их малы, особенно плотность Сатурна (0,687 плотности воды), что указывает на газообразное состояние большей части его1 массы. Эти планеты быстро вращаются вокруг оси, и притом с различной скоростью под разными широтами, что опять-таки указывает на то, что их видимая поверхность есть просто слой облаков, плавающих в газообразной атмосфере. Специфическая особенность больших планет в том, что они очень обильны легкими элементами, прежде всего водородом и гелием.

 

Резкое различие между обеими группами планет подчеркивается еще тем, что они разделены между собой большим пустым промежутком, который лишь незначительно заполнен малыми планетами — астероидами (рис. 3). Даже наибольшие из них — Церера, Паллада, Юнона, Веста, открытые еще в первой половине XIX столетия, имеют очень скромные размеры, их диаметры соответственно равны 770, 490, 190 и 390 км. Остальные астероиды значительно меньше, и нижнего предела их размеров, собственно, не существует. Астероиды очень быстро вращаются вокруг своей оси, и это проявляется в регулярном колебании их яркости. По большей части период вращения астероида составляет примерно- 4 час, и только одна планета Евномия вращается с периодом около 12 час. Изменение яркости малых планет показывает, что их форма должна довольно значительно отличаться от сферической, как если бы они представляли собой обломки одного или нескольких более крупных тел, расколовшихся на части в результате какой-то катастрофы.

 


Рис. 3. Пояс малых планет—астероидов.

 

В начале XIX столетия, когда были открыты первые астероиды, тогдашний выдающийся немецкий любитель астрономии и врач Г. В. Ольберс (1758—1840) высказал предположение, что эти тела произошли путем распада на части одной, более крупной планеты. Это казалось тем более естественным, что их орбиты приблизительно пересекались в одной точке. В дальнейшем, однако, это не получило подтверждения. Во-первых, стало известным существование многих различных астероидальных семейств, образующих самостоятельные группы. В особенности выделяется семейство астероидов-троянцев1, тесно связанных с Юпитером и обращающихся практически по орбите этой планеты. Во-вторых, были открыты астероиды с очень вытянутыми орбитами, выходящими даже за пределы орбиты Сатурна, как, например, Гидальго. В-третьих, существуют астероиды, обращающиеся по очень коротким и вытянутым орбитам; к ним относятся Аполлон, Адонис, Гермес. Наконец, орбита недавно’ открытого астероида Икара едва лишь превосходит размеры земной орбиты, и Икар проникает даже внутрь орбиты Меркурия. Совершенно невероятно считать, что все эти тела могли произойти из одной родоначальной планеты. О том же говорит и различие их периодов вращения вокруг своих осей.

 

Крупнейшим куском железа на Земле считается упавший на ее поверхность метеорит Гоба

 

Другое независимое доказательство того, что астероиды никогда не образовывали единого тела, вытекает из различия их вещественного состава. Об этом можно судить, изучая различные астероидальные осколки при встрече их с Землей и выпадении на ее поверхность. Такие осколки называются метеоритами. В своем движении вокруг Солнца Земля постоянно встречается с подобными твердыми глыбами от килограммов до многих тысяч тонн весом, осколками,, которые резко отличаются от всех земных пород по своему составу, не говоря уже об их оплавленной поверхности — результате их движения с космической скоростью сквозь земную атмосферу. Железные метеориты обязательно содержат в различной пропорции никель (от нескольких до 40%), далее кобальт и ряд других химических элементов. Гораздо чаще встречаются каменные метеориты со значительной примесью железа и других тугоплавких элементов. Наиболее распространенную категорию подобных метеоритов составляют хондриты, в которых обязательно содержатся своеобразные включения — хондры — шарики разных размеров радиально кристаллического строения, указывающие на своеобразие условий их образования.

 

—————————————————————————————————-

1 Группа из 14 астероидов, названных именами героев легендарной Троянской войны.

—————————————————————————————————-

 

Автор: Admin | 2012-05-17 |

ФИЗИЧЕСКИЕ ОСОБЕННОСТИ СОЛНЕЧНОЙ СИСТЕМЫ

Если хотите провести это лето за границей, то обязательно посетите сайт www.clickavia.ru, где сможете узнать цены на авиабилеты в турцию, расписание полетов и даже наличие свободных посадочных мест!


Остановимся очень кратко на физических свойствах центрального тела нашей планетной системы — Солнца. Как показали современные исследования, Солнце представляет собой типичную, достаточно уплотненную звезду, диаметр которой больше земного диаметра в 109 раз, а масса в 329 000 раз превышает массу Земли. Средняя плотность Солнца равна 1,4 г/см3, но тем не менее оно во всей своей массе сохраняет газовое состояние, в том числе и в центральных его недрах, где вследствие огромного давления, доходящего до 400 млрд. (4 — 1011) атмосфер, вещество состоит из ионизованных атомов и имеет плотность в 160 раз больше плотности воды.

 

Однако при подобном сжатии температура в центральных областях Солнца доходит примерно до 20 млн. градусов, и это при обилии водорода с примесью различных более тяжелых элементов, в том числе углерода, приводит к самопроизвольному развитию термоядерных реакций. Протоны (ядра водорода), попадая в более тяжелые ядра углерода с атомным весом 12 (углерод С12), постепенно увеличивают массу этих ядер на четыре атомных единицы массы, после чего, вместо образования устойчивого ядра кислорода О16, происходит распад на прежнее ядро углерода С12 с выбором а-частицы (альфа-частицы), т. е. ядра гелия, что сопровождается выделением энергии, равной разности между массами четырех протонов и одного ядра гелия.

 

 


Другими словами, Солнце представляет собой нечто вроде водородной бомбы самопроизвольного действия и с очень эффективным терморегулированием ядерных процессов.

 

Так, если, например, указанные реакции по каким-либо причинам пойдут ускоренным темпом с выделением большой энергии, то вещество Солнца, как и всякий газ, немедленно расширяется, что сразу несколько понижает его температуру и замедляет развитие этих реакций. Действительно, как показывает теория, вышеуказанное выделение энергии пропорционально температуре среды в 20-й степени! Следовательно, достаточно температуре уменьшиться только на 1°, чтобы реакция сразу затихла на одну пятую своей величины. При реакциях другого рода может получиться, вообще говоря, нарушение устойчивости тела звезды, и тогда произойдет огромный взрыв, в результате которого почти вся масса звезды разлетается на части. Однако наше Солнце при своем составе полностью гарантировано от подобной катастрофы.

 

Указанные термоядерные реакции поддерживают солнечное излучение примерно на одинаковом уровне в течение нескольких миллиардов лет. Судя по современному обилию водорода на Солнце, этот процесс будет продолжаться и в будущем еще по крайней мере несколько миллиардов лет.

 

Возникающее вследствие ядерных процессов в недрах Солнца излучение, многократно поглощаясь и переизлучаясь в солнечном веществе, выходит наконец из солнечной поверхности в мировое пространство в виде общей, в том числе и световой, радиации, соответствующей температуре около 6000°.

 


Рис. 6. Солнечные протуберанцы

 

Однако Солнце не находится в абсолютно устойчивом состоянии. Его внешние области подвержены непрерывным периодическим и непериодическим изменениям, что проявляется в неодинаковой скорости вращения Солнца вокруг оси, уменьшающейся к его полюсам, в циклических изменениях числа и распределения солнечных пятен и раскаленных газовых фонтанов — протуберанцев (рис. 1), и в особенности в резких местных появлениях интенсивных магнитных полей, наиболее сильных в областях солнечных пятен. Эти магнитные поля управляют движением вещества вблизи солнечной поверхности и, взаимодействуя между собой, могут приводить к колоссальному разогреву вещества. Резкие местные выделения энергии наблюдаются в виде вспышек (рис. 2).

 


Рис. 2. Крупнейшая из известных вспышек на Солнце, произошедшая в 2005 году

 

Любопытно отметить, что на Солнце наблюдается удивительная закономерность в распределении температуры с расстоянием от солнечного центра. Как уже указывалось, вблизи самого центра температура составляет около 20 млн. градусов, далее быстро уменьшается и около видимой солнечной поверхности — фотосферы понижается до 5400°. Подобное понижение обусловливается условиями термодинамического равновесия внутри непрозрачной солнечной массы. Во внешних областях Солнца, за пределами его видимого диска, где термодинамическое равновесие отсутствует, снова происходит нарастание температуры, характеризующей здесь скорость молекулярного движения и потому называемой кинетической температурой.

 


Рис. 3. Солнечная корона во время полного солнечного затмения 1952 г.

 

Уже в слое солнечной атмосферы, расположенном над фотосферой и называемом за свой красный цвет хромосферой1, кинетическая температура поднимается до сотен тысяч градусов, а в самой внешней оболочке солнечной атмосферы — в солнечной короне, отчетливо видимой во время полных затмений (рис. 3), доходит до миллионов градусов. В этом явлении проявляются нестационарные процессы, преобладающие во внешних областях Солнца. Они проявляются также в испускании Солнцем корпускулярного излучения, т. е. целых потоков мельчайших частиц, выбрасываемых с огромной скоростью, снижающейся на расстоянии Земли от Солнца до 3000 км/сек. Эти корпускулярные потоки, достигающие даже самых отдаленных планет, взаимодействуют с их магнитными полями и с верхними слоями их атмосфер, вызывая резкие изменения в состоянии магнитных полей, известные под названием магнитных бурь. Они же служат причиной возникновения в атмосфере планет полярных сияний. Кроме того, обнаружено, что Солнце интенсивно излучает радиоволны. Солнце следует рассматривать не просто как некоторое центральное тело, управляющее движением всех планет и других тел Солнечной системы и обеспечивающее ее устойчивость в течение миллиардов лет ее существования. Солнце — это тело, доставляющее планетам различного рода радиации, непрерывно взаимодействующие с внешними оболочками планет.

 

—————————————————————————————————————-

1От греческих слов: хроматос — цвет, сфера — шар.

—————————————————————————————————————-

Автор: Admin | 2012-05-16 |
1 страница из 31123456789...2030...Последняя »

GIF
Видео
Видео
Все обо всем
Забавно!
Иллюстрированные факты
Искусство
Истории
Все размещенные на сайте материалы без указания первоисточника являются авторскими. Любая перепечатка информации с данного сайта должна сопровождаться ссылкой, ведущей на www.unnatural.ru.